
UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl)

UvA-DARE (Digital Academic Repository)

Convex optimization using quantum oracles

van Apeldoorn, J.; Gilyén, A.; Gribling, S.; de Wolf, R.
DOI
10.22331/q-2020-01-13-220
Publication date
2020
Document Version
Final published version
Published in
Quantum - the open journal for quantum science
License
CC BY

Link to publication

Citation for published version (APA):
van Apeldoorn, J., Gilyén, A., Gribling, S., & de Wolf, R. (2020). Convex optimization using
quantum oracles. Quantum - the open journal for quantum science, 4, [220].
https://doi.org/10.22331/q-2020-01-13-220

General rights
It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s)
and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open
content license (like Creative Commons).

Disclaimer/Complaints regulations
If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please
let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material
inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter
to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You
will be contacted as soon as possible.

Download date:09 Mar 2023

https://doi.org/10.22331/q-2020-01-13-220
https://dare.uva.nl/personal/pure/en/publications/convex-optimization-using-quantum-oracles(3fa1dced-bb7f-4449-9f59-8867ed47baef).html
https://doi.org/10.22331/q-2020-01-13-220

Convex optimization using quantum oracles
Joran van Apeldoorn1, András Gilyén2, Sander Gribling3, and Ronald de Wolf4

1QuSoft, CWI, Amsterdam, the Netherlands. apeldoor@cwi.nl
2QuSoft, CWI, Amsterdam, the Netherlands. gilyen@cwi.nl
3QuSoft, CWI, Amsterdam, the Netherlands. gribling@cwi.nl
4QuSoft, CWI and University of Amsterdam, the Netherlands. rdewolf@cwi.nl

We study to what extent quantum algorithms can speed up solving convex
optimization problems. Following the classical literature we assume access to
a convex set via various oracles, and we examine the efficiency of reductions
between the different oracles. In particular, we show how a separation ora-
cle can be implemented using Õ(1) quantum queries to a membership oracle,
which is an exponential quantum speed-up over the Ω(n) membership queries
that are needed classically. We show that a quantum computer can very ef-
ficiently compute an approximate subgradient of a convex Lipschitz function.
Combining this with a simplification of recent classical work of Lee, Sidford,
and Vempala gives our efficient separation oracle. This in turn implies, via a
known algorithm, that Õ(n) quantum queries to a membership oracle suffice
to implement an optimization oracle (the best known classical upper bound on
the number of membership queries is quadratic). We also prove several lower
bounds: Ω(

√
n) quantum separation (or membership) queries are needed for

optimization if the algorithm knows an interior point of the convex set, and
Ω(n) quantum separation queries are needed if it does not.

1 Introduction
Optimization is a fundamental problem in mathematics and computer science, with many
real-world applications. As people try to solve larger and larger optimization problems, the
efficiency of optimization becomes more and more important, motivating us to find the best
possible algorithms. Recent experimental progress on building quantum computers draws
attention to new approaches to the problem: can we solve optimization problems more
efficiently by exploiting quantum effects such as superposition, interference, and entangle-
ment? For many discrete optimization problems [Gro96, DH96, Szeg04, DHHM06, AŠ06]
significant speed-ups have been shown, but less is known about continuous optimization
problems.

One of the most successful continuous optimization paradigms is convex optimization,
which optimizes a convex function over a convex set that is given explicitly (by a set of
constraints) or implicitly (by an oracle). See Bubeck [Bub15] for a recent survey. Quantum
algorithms for convex optimization have been considered before. In 2008, Jordan [Jor08]
described a faster quantum algorithm for minimizing quadratic functions. Recently, for
an important class of convex optimization problems (semidefinite optimization) quantum
speed-ups were achieved using algorithms whose runtime scales polynomially with the
desired precision and some geometric parameters [BS17, vAGGdW17, BKL+19, vAG19].

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:1

80
9.

00
64

3v
4

 [
qu

an
t-

ph
]

 2
0

D
ec

 2
01

9

https://quantum-journal.org/?s=Convex%20optimization%20using%20quantum%20oracles&reason=title-click

However, many convex optimization problems can be solved classically using algorithms
whose runtime scales logarithmically with the desired precision and the relevant geometric
parameters. We are aware of only one quantum speed-up which is partially in this regime,
namely the very recent quantum interior point method of Kerenidis and Prakash [KP18].
In this paper we look at general convex optimization problems, considering algorithms that
have such favorable logarithmic scaling with the precision.

The generic problem in convex optimization is minimizing a convex function f : K →
R ∪ {∞}, where K ⊆ Rn is a convex set. We consider the setting where an interior point
x0 ∈ int(K) is given and radii r,R > 0 are known such that B(x0, r) ⊆ K ⊆ B(x0, R),
where B(x0, r) is the Euclidean ball of radius r centered at x0.

It is well-known that if the convex function is bounded on K, then we can equivalently
consider the problem of minimizing a linear function over a different convex set K ′ ⊆
Rn+1, namely the epigraph K ′ = {(x, µ) : x ∈ K, f(x) ≥ µ} of f . Accessing K ′ is easy
given access to K and f , and the parameters involved will be similar. Conversely, for
any linear optimization problem over an unknown convex set K, there is an equivalent
optimization problem over a known convex set (say, the ball), with an unknown bounded
convex objective function f that can be evaluated easily given access to K. From now on
we therefore focus on optimizing a known linear function over an unknown convex set.

We consider the setting where access to the convex set is given only in a black-box man-
ner, through an oracle. The five basic problems (oracles) in convex optimization identified
by Grötschel, Lovász, and Schrijver [GLS88] are: membership, separation, optimization,
violation, and validity (see Section 2 for the definitions). They showed that all five ba-
sic problems are polynomial-time equivalent. That is, given an oracle O for one of these
problems, one can implement an oracle for any of the other problems using a polynomial
number of calls to O and polynomially many other elementary operations. Subsequent
work made these polynomial-time reductions more efficient, reducing the degree of the
polynomials. Recently Lee et al. [LSV18], in the classical setting, showed that with Õ

(
n2)

calls1 to a membership oracle (and Õ
(
n3) other elementary arithmetic operations) one can

solve an optimization problem. They did so by showing that Õ(n) calls to a membership
oracle suffice to do separation, and then composing this with the known fact [LSW15] (see
also [LSV18, Theorem 15]) that Õ(n) calls to a separation oracle suffice for optimization.

Our main result (Section 4) shows that on a quantum computer, Õ(1) calls to a mem-
bership oracle suffice to implement a separation oracle, and hence (by the known classical
reduction from optimization to separation) Õ(n) calls to a membership oracle suffice for
optimization.2 Lee et al. [LSV18] use a geometric idea to reduce separation to finding
an approximate subgradient of a convex Lipschitz function. They then show that Õ(n)
evaluations of a convex Lipschitz function suffice to get an approximate subgradient. Our
contributions here are twofold (Section 3 and 4). We use the same geometric idea, but
we provide a simpler way to compute an approximate subgradient of a convex Lipschitz
function (Section 3). We point out that this new algorithm is purely classical. Besides

1Here, and in the rest of the paper, the notation Õ(·) is used to hide polylogarithmic factors in n, r,R, ε.
2Although not stated explicitly in our results, we also use Õ

(
n3) additional operations for optimization

using membership, like [LSV18]. This is because our quantum algorithm for separation uses only Õ(n)
gates in addition to the Õ(1) membership queries, and we use the same reduction from optimization to
separation as [LSV18]. If queries themselves have significant time complexity, then our algorithm does lead
to a speedup in time complexity over the best known classical algorithm. For example, if each membership
query (with the required precision) takes time Õ

(
n2) to implement, then our quantum algorithm for

optimization has time complexity Õ
(
n3), while the classical algorithm will use time Õ

(
n4) because it uses

Õ
(
n2) membership queries.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 2

being simpler, the main advantage of our algorithm is that it is suitable for a quantum
speed-up using known quantum algorithms (Jordan’s algorithm) for computing approxi-
mate (sub)gradients [Jor05, GAW19], which we show in Section 4. To show our quantum
speed-up, we have to extend Jordan’s quantum algorithm for gradient-computation to the
case of convex Lipschitz functions.

As a second set of results, in Section 5 we provide lower bounds on the number of mem-
bership or separation queries needed to implement several other oracles. We show that
our quantum reduction from separation to membership indeed improves over the best pos-
sible classical reduction: Ω(n) classical membership queries are needed to do separation.3

We only have partial results regarding the optimality of the reduction from optimization
to separation. In the setting where we are not given an interior point of the set K, we
can prove an essentially optimal Ω(n) lower bound on the number of quantum queries to
a separation oracle needed to do optimization, using the general adversary bound. This
lower bound implies that a quantum computer offers no query speed-up over a classical
computer for the task of finding an interior point.

However, for the case of quantum algorithms that do know an interior point, we are
only able to prove an Ω(

√
n) lower bound. In the classical setting, regardless of whether or

not we know an interior point, the reduction uses Θ̃(n) queries. This raises the interesting
question of whether knowing an interior point can lead to a better quantum algorithm. We
therefore view closing the gap between upper and lower bound as an important direction
for future work.

Finally, we briefly mention (Section 6) how to obtain upper and lower bounds for
some of the other oracle reductions, using a convex polarity argument. As we show, in
the setting where we are given an interior point, the relation between membership and
separation is analogous to the relation between validity and optimization. In particular,
our better quantum algorithm for separation using membership queries implies that on a
quantum computer Õ(1) queries to a validity oracle suffice to implement an optimization
oracle. That is, on a quantum computer, finding the optimal value is equivalent to finding
an optimizer. Also, the same polarity argument shows that algorithms for optimization
using separation are essentially equivalent to algorithms for separation using optimization.
In particular, this turns our lower bound on the number of separation queries needed to
implement an optimization oracle into a lower bound on the reverse direction.

Figure 1 gives an informal presentation of our results; the upper bounds arise from
oracle reductions, the (change in) accuracy is ignored here for simplicity. The above-
mentioned polarity manifests itself in the central symmetry of the figure.

Related independent work. In independent simultaneous work, Chakrabarti, Childs,
Li, and Wu [CCLW18] discovered a similar upper bound as ours: combining the recent
classical work of Lee et al. [LSV18] with a quantum algorithm for computing gradients, they
show how to implement an optimization oracle via Õ(n) quantum queries to a membership
oracle and to an oracle for the objective function. Their proof stays quite close to [LSV18]
while ours first simplifies some of the technical lemmas of [LSV18], giving us a slightly
simpler presentation and a better error-dependence of the resulting algorithm. They also
prove several lower bounds that are similar to the ones we prove here.

3We are not aware of an existing proof of this classical lower bound, but it may well be somewhere in
the vast literature on convex optimization.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 3

MEM(K) SEP(K) OPT(K) VAL(K)

Classical:

Θ̃(n)

Θ(1)

Θ̃(n)

Θ̃(n)

Θ(1)

Θ̃(n)

MEM(K) SEP(K) OPT(K) VAL(K)

Quantum:

Θ̃(1)Θ̃(1)Θ̃(1)

Θ(1)

Õ(n)
Ω(n)∗Ω(n)∗Ω(n)∗

Ω(
√
n)Ω(
√
n)Ω(
√
n)

Õ(n)

Θ(1)

Θ̃(1)Θ̃(1)Θ̃(1)

Figure 1: The top and bottom diagram illustrate the relations between the basic (weak) oracles for
respectively classical and quantum queries, with boldface entries marking our new results. All upper
and lower bounds hold in the setting where we know an interior point of K, except the ∗-marked Ω(n)
lower bound on the number of separation queries needed for optimization. Notice the central symmetry
of the diagrams, which is a consequence of polarity.

2 Preliminaries
We use [n] := {1, 2, . . . , n}. For p ≥ 1, ε ≥ 0, and a set C ⊆ Rn we let

Bp(C, ε) = {x ∈ Rn : ∃y ∈ C such that ||x− y||p ≤ ε}

be the set of points of distance at most ε from C in the `p-norm. When C = {x} is a
singleton set we abuse notation and write Bp(x, ε). We overload notation by setting

Bp(C,−ε) = {x ∈ Rn : Bp(x, ε) ⊆ C}.

Whenever p is omitted it is assumed that p = 2.
Recall that a function f : C → R is Lipschitz if there exists a constant L > 0 such that∣∣f(y′)− f(y)

∣∣ ≤ L∥∥y′ − y∥∥2 for all y, y′ ∈ C.

We write that f is L-Lipschitz. The inner product between vectors v, w ∈ Rn is 〈v, w〉 =
vTw.

Definition 1 (Subgradient). Let C ⊆ Rn be convex and let x be an element of the interior
of C. For a convex function f : C → R we denote by ∂f(x) the set of subgradients of f at
x, i.e., those vectors g satisfying

f(y) ≥ f(x) + 〈g, y − x〉 for all y ∈ C.

Note that in the above definition ∂f(x) 6= ∅ due to convexity.
If f : C → R is L-Lipschitz, then for any x in the interior of C and any g ∈ ∂f(x) we

have ‖g‖ ≤ L, as follows. Consider a y ∈ C such that y − x = αg for some α > 0. Then
since g is a subgradient of f at x we have

α‖g‖2 = 〈g, y − x〉 ≤ f(y)− f(x) ≤ L‖y − x‖ = αL‖g‖, (1)

and therefore ‖g‖ ≤ L.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 4

We will assume familiarity with quantum computing [NC00]. In particular, a stan-
dard quantum oracle corresponds to a unitary transformation that acts on two (finite-
dimensional) registers, where the first register contains the query and the answer is added
to the second register. For example, a function evaluation oracle for f : X → Y would map
|x, 0〉 to |x, f(x)〉, where |x〉 and |f(x)〉 are basis states corresponding to binary represen-
tations of x and f(x) respectively. Unlike classical algorithms, quantum computers can
apply such an oracle to a superposition of different y’s. They are also allowed to apply the
inverse of a unitary oracle.

The standard quantum oracle described above models problems where there is a single
correct answer to a query. When there are multiple good answers (for instance, different
good approximations to the correct value) and the oracle is only required to give a correct
answer with high probability, then we will work with the more liberal notion of relational
quantum oracles.

Definition 2 (Relational quantum oracle). Let F : X → P(Y) be a function, such that
for each x ∈ X the subset F(x) ⊆ Y is the set of valid answers to an x query. A relational
quantum oracle for F which answers queries with success probability ≥ 1− ρ, is a unitary
that for all x ∈ X maps

U : |x, 0, 0〉 7→
∑
y∈Y

αx,y|x, y, ψx,y〉,

where |ψx,y〉 denotes some normalized quantum state and
∑
y∈F(x) |αx,y|2 ≥ 1 − ρ. Thus

measuring the second register of U |x, 0, 0〉 gives a valid answer to the x query with proba-
bility at least 1− ρ.

This definition is very natural for cases where the oracle is implemented by a quantum
algorithm that produces a valid answer with probability ≥ 1− ρ. In order to achieve our
quantum speed-ups we will always assume access to the inverse U † of the relational oracle
as well, which is justified if U comes from an efficiently implementable quantum algorithm.

2.1 Oracles for convex sets
The five basic oracles for a convex set K that we consider are as follows (in contrast with
the original [GLS88], we allow some error probability ρ in these oracles as in [LSV18]).
Throughout we will assume that real vectors are represented with polylog(nR/(rε)) bits of
precision per coordinate. In particular, we assume that the input / output of the following
oracles is represented this way.4

Definition 3 (Membership oracle MEMε,ρ(K)). Queried with a vector y ∈ Rn, the oracle,
with success probability ≥ 1− ρ, correctly asserts one of the following

• y ∈ B(K, ε), or

• y 6∈ B(K,−ε).

Definition 4 (Separation oracle SEPε,ρ(K)). Queried with a vector y ∈ Rn, the oracle,
with success probability at least ≥ 1− ρ, correctly asserts one of the following

• y ∈ B(K, ε), or

4Note that for weak oracles, where ε > 0, this is essentially without loss of generality, since the rounding
errors can be incorporated into the error parameter of the oracle.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 5

• y 6∈ B(K,−ε),

and in the second case it returns a unit vector g ∈ Rn such that 〈g, x〉 ≤ 〈g, y〉+ ε for all
x ∈ B(K,−ε).

Definition 5 (Optimization oracle OPTε,ρ(K)). Queried with a unit vector c ∈ Rn, the
oracle, with probability ≥ 1− ρ, does one of the following:

• it returns a vector y ∈ Rn such that y ∈ B(K, ε) and 〈c, x〉 ≤ 〈c, y〉 + ε for all
x ∈ B(K,−ε),

• or it correctly asserts that B(K,−ε) is empty.

Note that the above optimization oracle corresponds to maximizing a linear function over
a convex set; we could equally well state it for minimization.

Definition 6 (Violation oracle VIOLε,ρ(K)). Queried with a unit vector c ∈ Rn and a
real number γ, the oracle, with probability ≥ 1− ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it finds a vector y ∈ B(K, ε) such that 〈c, y〉 ≥ γ − ε.

Definition 7 (Validity oracle VALε,ρ(K)). Queried with a unit vector c ∈ Rn and a real
number γ, the oracle, with probability ≥ 1− ρ, does one of the following:

• it asserts that 〈c, x〉 ≤ γ + ε for all x ∈ B(K,−ε),

• or it asserts that 〈c, y〉 ≥ γ − ε for some y ∈ B(K, ε).

If in the above definitions both ε and ρ are equal to 0, then we call the oracle strong. If
either is non-zero then we sometimes call it weak.

The above describes the classical oracles, and the quantum oracles are defined anal-
ogously, i.e., they are relational quantum oracles (see Definition 2), that use a binary
representation for the input / output vectors.

When we discuss membership queries, we will always assume that we are given a small
ball which lies inside the convex set. It is easy to see that without such a small ball one
cannot obtain an optimization oracle using only poly(n) classical queries to a membership
oracle (see, e.g., [GLS88, Sec. 4.1] or the example below). As the following example shows,
the same holds for quantum queries. We will use a reduction from a version of the well-
studied search problem:

Given z ∈ {0, 1}N such that |z| = 1, find b ∈ [N] such that zb = 1.

It is not hard to see that if the access to z is given via classical queries i 7→ zi, then Ω(N)
queries are needed. It is well known [BBBV97] that if we allow quantum queries, i.e.,
applications of the unitary |i〉|b〉 7→ |i〉|zi ⊕ b〉, then Ω(

√
N) queries are needed. Now let

N = 2n and consider an input z ∈ {0, 1}N to the search problem. Let b ∈ {0, 1}n be the
index such that zb = 1. Consider maximizing the linear function 〈e, z〉 (where e is the all-1
vector) over the set Kz =

∏n
i=1[bi − 1/2, bi]. Clearly the optimal solution to this convex

optimization problem, even with a small constant additive error in the answer, gives the
solution to the search problem. However, a membership query is essentially equivalent to
querying a bit of z and therefore Ω(

√
N) = Ω(2n/2) quantum queries to the membership

oracle are needed for optimization.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 6

3 Computing approximate subgradients of convex Lipschitz functions
Here we show how to compute an approximate subgradient (at 0) of a convex Lipschitz
function. That is, given a convex set C such that 0 ∈ int(C) and a convex function
f : C → R, we show how to compute a vector g̃ ∈ Rn such that f(y) ≥ f(0) + 〈g̃, y〉 −
a‖y‖ − b for some real numbers a, b > 0 that will be defined later (see Lemma 12 and
Lemma 18). The idea of the classical algorithm given in the next section is to pick a point
z ∈ B∞(0, r1) uniformly at random and use the finite difference ∇(r2)f(z) (defined below)
as an approximate subgradient of f at 0; the radii r1 and r2 need to be chosen small to
make the approximation good. This results in a slightly simplified version of the algorithm
of Lee et al. [LSV18]. In Section 3.2 we show how to improve on this classical algorithm
on a quantum computer.

3.1 Classical approach
In the discussion that follows we will use the following approximation of the gradient.

Definition 8 (Finite-difference gradient approximation). For a function f : C → R, a
real r > 0, and a point x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define

∇(r)
i f(x) := f(x+ rei)− f(x− rei)

2r ,

where ei ∈ {0, 1}n is the vector that has a 1 only in its ith coordinate. Similarly we define

∇(r)f(x) :=
(
∇(r)

1 f(x),∇(r)
2 f(x), . . . ,∇(r)

n f(x)
)
.

We will also consider a similar approximation of the Laplacian (the trace of the Hessian)
of a function.

Definition 9 (Finite-difference Laplace approximation). For a function f : C → R, a
real r > 0, and a point x ∈ Rn such that B1(x, r) ⊆ C, and i ∈ [n], we define

∆(r)
i f(x) := f(x+ rei)− 2f(x) + f(x− rei)

r2 .

Similarly

∆(r)f(x) :=
n∑
i=1

∆(r)
i f(x).

Note that for a convex function we have ∆(r)
i f(x) ≥ 0 for all x such that B1(x, r) ⊆ C.

The next two lemmas will be needed in the proof of the main result of this section,
Lemma 12. In Lemma 10 we give an upper bound on the deviation

∥∥∥g −∇(r2)f(z)
∥∥∥

1
of a finite difference gradient approximation ∇(r2)f(z) from an actual subgradient g at
the point z, in terms of the finite difference Laplace approximation ∆(r2)f(z). Then, in
Lemma 11 we show that in expectation (over the points of a small ball around x), the
finite difference Laplace approximation is small. Together with Markov’s inequality this
gives us good control over the quality of a finite difference gradient approximation.

Lemma 10. If r2 > 0, z ∈ Rn, and f : B1(z, r2)→ R is convex, then

sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
≤ r2∆(r2)f(z)

2 .

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 7

Proof. Fix a g ∈ ∂f(z). For every i ∈ [n], we have f(z + r2ei) ≥ f(z) + 〈g, r2ei〉 =
f(z) + r2gi, and, similarly, f(z − r2ei) ≥ f(z)− r2gi. Rearranging gives

f(z)− f(z − r2ei)
r2︸ ︷︷ ︸

:=A

≤ gi ≤
f(z + r2ei)− f(z)

r2︸ ︷︷ ︸
:=B

.

Note that |gi − A+B
2 | ≤

B−A
2 for any three real numbers A ≤ gi ≤ B. Moreover, A+B

2 =

∇(r2)
i f(z) and B − A = r2∆(r2)

i f(z), thus
∣∣∣gi −∇(r2)

i f(z)
∣∣∣ ≤ r2∆(r2)

i f(z)
2 . Now we can finish

the proof by summing this inequality over all i ∈ [n].

Lemma 11. If 0 < r2 ≤ r1, and f : B∞(x, r1 + r2)→ R is convex and L-Lipschitz, then

E
z∈B∞(x,r1)

∆(r2)f(z) ≤ nL

r1
.

Proof. Below we show that E
z∈B∞(x,r1)

∆(r2)
i f(z) ≤ L

r1
for all i ∈ [n], summing over i then

proves the lemma.
Let hi(z) := f(z − r2ei)− f(z); we have that

E
z∈B∞(x,r1)

∆(r2)
i f(z) = 1

(2r1)n
∫
z∈B∞(x,r1)

f(z + r2ei)− 2f(z) + f(z − r2ei)
r2

2
dz

= 1
(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

∫
zi∈[xi−r1,xi+r1]

f(z − r2ei)− 2f(z) + f(z + r2ei)
r2

2
dz

= 1
(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

(∫
zi∈[xi−r1,xi+r1]

hi(z)
r2

2
dz

−
∫
zi∈[xi−r1,xi+r1]

hi(z + r2ei)
r2

2
dz
)

= 1
(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

(∫
zi∈[xi−r1,xi+r1]

hi(z)
r2

2
dz

−
∫
zi∈[xi−r1+r2,xi+r1+r2]

hi(z)
r2

2
dz
)

= 1
(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i

(∫
zi∈[xi−r1,xi−r1+r2]

hi(z)
r2

2
dz

−
∫
zi∈[xi+r1,xi+r1+r2]

hi(z)
r2

2
dz
)

≤ 1
(2r1)n

∫
zj∈[xj−r1,xj+r1],

j∈[n],j 6=i
2Ldz

= L

r1
.

The last inequality above follows from multiplying the upper bound r2L on |hi| with the
length r2 of the integration intervals.

Note that the above lemma is stated and proved for continuous random variables, but
the same proof holds if we have a uniform hypergrid over the same hypercube, providing
a discrete version of the above result. In the discrete case, in order to get the same

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 8

cancellations we need to assume that both r1 and r2 are integer multiples of the grid
spacing.

We are now ready to prove the main result of this section. Informally, the next lemma
proves that an approximate subgradient of a convex Lipschitz function f at 0 can be
obtained by an algorithm that outputs ∇(r2)f̃(z) for a random z close enough to 0, where
f̃ is an approximate version of f . In other words, this lemma gives us a classical algorithm
to compute an approximate subgradient of f using 2n classical queries to an approximate
version of f .

Lemma 12. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], δ ∈ (0, r1
√
nL/ρ], then r2 :=

√
δr1ρ√
nL
≤ r1.

Suppose f : C → R is a convex function that is L-Lipschitz on B∞(0, 2r1), and f̃ :
B∞(0, 2r1)→ R is such that

∥∥∥f̃ − f∥∥∥
∞
≤ δ. Then for a uniformly random z ∈ B∞(0, r1),

with probability at least 1− ρ,

f(y) ≥ f(0) +
〈
∇(r2)f̃(z), y

〉
− 3n

3
4

2

√
δL

ρr1
‖y‖ − 2L

√
nr1 for all y ∈ C.

Proof. Let z ∈ B∞(0, r1) and g ∈ ∂f(z). Recall ‖g‖ ≤ L by Equation (1). Then for all
y ∈ C

f(y) ≥ f(z) + 〈g, y − z〉

= f(z) + 〈g, y − z〉+
(〈
∇(r2)f(z), y

〉
−
〈
∇(r2)f(z), y

〉)
+ (f(0)− f(0))

= f(0) +
〈
∇(r2)f(z), y

〉
+ 〈g −∇(r2)f(z), y〉+ (f(z)− f(0)) + 〈g,−z〉

≥ f(0) +
〈
∇(r2)f(z), y

〉
−
∥∥∥g −∇(r2)f(z)

∥∥∥
1
‖y‖∞ − L‖z‖ − ‖g‖‖z‖

≥ f(0) +
〈
∇(r2)f(z), y

〉
−
∥∥∥g −∇(r2)f(z)

∥∥∥
1
‖y‖∞ − L

√
nr1 − L

√
nr1

≥ f(0) +
〈
∇(r2)f̃(z), y

〉
− δ
√
n

r2
‖y‖ −

∥∥∥g −∇(r2)f(z)
∥∥∥

1
‖y‖∞ − 2L

√
nr1.

Note that in the last line we switched from f to f̃ , using that ∇(r2)f(z) and ∇(r2)f̃(z)
differ by at most δ/r2 in each coordinate. Our choice of r2 gives δ

√
n

r2
= n

3
4
√

δL
ρr1

and by
Lemma 10–11 we have

E
z∈B∞(x,r1)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
≤ nLr2

2r1
= n

3
4

2

√
δLρ

r1
.

By Markov’s inequality we get that
∥∥∥g −∇(r2)f(z)

∥∥∥
1
≤ n

3
4

2

√
δL
ρr1

with probability ≥ 1− ρ

over the choice of z. Plugging this bound on
∥∥∥g −∇(r2)f(z)

∥∥∥
1
into the above lower bound

on f(y) concludes the proof of the lemma.

3.2 Quantum improvements
In this section we show how to improve subgradient computation of convex functions via
Jordan’s quantum algorithm for gradient computation [Jor05]. We use the formulation
given by Gilyén et al. [GAW19, Lemma 20], for which we first introduce the following
definition.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 9

Definition 13 (Hyper-grid). For k ∈ N we define the following discretization of the
interval (−1/2, 1/2):

Gk :=
{
j

2k −
1
2 + 2−k−1 : j ∈ {0, . . . , 2k − 1}

}
⊂ (−1/2, 1/2).

Similarly we define the n-dimensional hyper-grid Gnk , which is the n-fold Cartesian product
of Gk with itself.

Note that an element of Gnk can be represented using n × k (qu)bits. Basically, Jordan’s
algorithm just sets up a uniform superposition over all grid points, applies a “phase query”
to f , and then a quantum Fourier transform over each coordinate.

Lemma 14. (Jordan’s quantum gradient computation algorithm [GAW19, Lemma 20])
Let m ∈ N, c ∈ R and g ∈ Rn such that ‖g‖∞ ≤ 1/3. If h : Gnm → R is such that

|h(x)− 〈g, x〉 − c| ≤ 2−m

42π , (2)

for 99.9% of the points x ∈ Gnm, then using a single query to a phase oracle O: |x〉 7→
e2πi2mh(x)|x〉 Jordan’s gradient computation algorithm outputs a vector v ∈ Rn such that:

Pr
[
|vi − gi| >22−m

]
≤ 1/3 for every i ∈ [n].

We now show that the above algorithm allows us to compute an approximate subgradi-
ent of a function f , even if we are only given standard oracle access to a function f̃ which
is sufficiently close to f . In particular, we will assume we are given access to a standard
unitary oracle of a function f̃ : Gnm → R which satisfies |f̃(x) − f(x)| ≤ δ for all x ∈ Gnm.
That is, we assume we are given access to a unitary U acting as

U : |x〉|0〉 7→ |x〉|f̃(x)〉 (3)

Note that if we can classically efficiently evaluate f̃ , then it is well known that we can
construct such a unitary as a small quantum circuit (see [NC00, Sec. 1.4.1]).

The main idea is that, using one application of U , a phase gate corresponding to the
output register, and another application of U † to uncompute the function value, we can
implement a phase oracle for f̃ . Moreover, Equation (4) below will also hold for f̃ , with
a slightly worse right-hand side, since f is close to f̃ . A version of the following is proven
in [GAW19, Theorem 21], for completeness we sketch a proof.

Corollary 15 (Gradient computation using approximate function evaluation). Let δ,B, r ∈
R+, c ∈ R, ρ ∈ (0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r . Let m :=

⌈
log2

(
B

28πδ

)⌉
and sup-

pose f : (x0 + rGnm)→ R is such that

|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ (4)

for 99.9% of the points x ∈ Gnm, and we have access to a standard unitary oracle U ,
providing O

(
log
(
B
δ

))
-bit fixed-point binary approximations f̃(z) s.t. |f̃(z)− f(z)| ≤ δ for

all z ∈ (x0 + rGnm). Then we can compute a vector g̃ ∈ Rn such that

Pr
[
‖g̃ − g‖∞ >

8 · 42πδ
r

]
≤ ρ,

with O
(
log
(
n
ρ

))
queries to U and U † and gate complexity O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 10

Proof. As described above the corollary, we first implement a phase oracle for f̃ and then
we apply Jordan’s gradient computation algorithm (Lemma 14).

With a single query to U and its inverse we can implement a phase oracle O that acts as
O : |x〉 7→ e2πi M3B f̃(x0+rx)|x〉, where M := 3B

84πδ , and
5 m := log2(M). Let h(x) := f̃(x0+rx)

3B ,
then by (4) 99.9% of the points x ∈ Gnm satisfy

∣∣h(x)−
〈
r

3B g, x
〉
− c

3B
∣∣ ≤ 2δ

3B = 1
42πM . Since∥∥ r

3B g
∥∥
∞ ≤

1
3 , by Lemma 14 we can compute a vector v ∈ Rn which is a coordinatewise 4

M -
approximator of r

3B g: for each i ∈ [n] we have
∣∣∣gi − 3B

r vi
∣∣∣ ≤ 12B

rM = 8·42πδ
r with probability

at least 2
3 .

Note that the above success probability is per coordinate of g. However, repeating
the whole procedure O

(
log(nρ)

)
times and taking the median of the resulting vectors coor-

dinatewise gives a gradient approximator g̃ with the desired approximation quality with
probability at least 1 − ρ. For the proof of the gate complexity we refer6 to [GAW19,
Theorem 21] where the complexity of Jordan’s algorithm is analyzed in detail.

Remark. With essentially the same approach, the above corollary of Jordan’s quantum
gradient computation algorithm can also be proven in the setting where our access to an
approximation of f is not given by a standard quantum oracle but by a relational quantum
oracle, see Appendix A for both the definition of this type of approximation to f and a
proof of this corollary.

In terms of applications, we want to point out that if the membership oracle used in
Section 4 comes from a deterministic algorithm, then we get a standard quantum oracle.
Only when the membership oracle itself is relational (for example, when it is itself com-
puted by a bounded-error quantum algorithm) do we need the more general setting of
Appendix A.

We would like to apply the above corollary to compute gradients of a convex Lipschitz
function. To that end, the function needs to be sufficiently close to a linear function on
a small region. Fortunately convex Lipschitz functions have this property. The following
two lemmas ensure that Equation (4) holds.

Lemma 16. Let S ⊆ Rn be such that S = −S, and let conv(S) denote the convex hull
of S. If f : conv(S)→ R is a convex function, f(0) = 0, and |f(s)| ≤ δ for all s ∈ S, then

|f(s′)| ≤ δ for all s′ ∈ conv(S).

Proof. Since f is convex and f(s) ≤ δ for all s ∈ S we immediately get that f(s′) ≤ δ
for all s′ ∈ conv(S). Because f(0) = 0 and S = −S, due to convexity we get that
f(s′) ≥ −f(−s′) ≥ −δ.

Lemma 17. If r2 > 0, z ∈ Rn and f : B1(z, r2)→ R is convex, then

sup
y∈B1(0,r2)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ r2
2∆(r2)f(z)

2 .

Proof. Let d(y) := f(z + y) − f(z) −
〈
y,∇(r2)f(z)

〉
be the difference between f(z + y)

and its linear approximator. Let S := {±r2ei : i ∈ [n]}. It is easy to see that d(0) = 0,

5We can assume without loss of generality that the upper bound B is such that M is a power of two.
6The correspondence with the parametrization of [GAW19, Theorem 21] is ε↔ 8·42πδ

r
, M ↔ B

r
.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 11

S = −S, and conv(S) = B1(0, r2). Also, for all s ∈ S we have |d(s)| ≤ r2
2∆(r2)f(z)/2:

d(±r2ei) = f(z ± r2ei)− f(z)−
〈
±r2ei,∇(r2)f(z)

〉
= f(z ± r2ei)− f(z)∓ r2∇(r2)

i f(z)

= f(z ± r2ei)− f(z)∓ f(z + r2ei)− f(z − r2ei)
2

= f(z + r2ei)− 2f(z) + f(z − r2ei)
2

= r2
2∆(r2)

i f(z)/2 ≤ r2
2∆(r2)f(z)/2.

Therefore Lemma 16 implies that supy∈B1(0,r2) |d(y)| ≤ r2
2∆(r2)f(z)/2.

We can now state the main result of this section, the quantum analogue of Lemma 12.

Lemma 18. Let r1 > 0, L > 0, ρ ∈ (0, 1/3], and suppose δ ∈ (0, r1nL/ρ]. Suppose
f : C → R is a convex function that is L-Lipschitz on B∞(0, 2r1), and we have quantum
query access7 to f̃ , which is a δ-approximate version of f , via a unitary U over a (fine-
enough) hypergrid of B∞(0, 2r1). Then we can compute a g̃ ∈ Rn using O(log(n/ρ))
queries to U and U †, such that with probability ≥ 1− ρ, we have

f(y) ≥ f(0) + 〈g̃, y〉 − 232

√
δn3L

ρr1
‖y‖1 − 2L

√
nr1 for all y ∈ C

and hence (by Cauchy-Schwarz)

f(y) ≥ f(0) + 〈g̃, y〉 − (23n)2
√
δL

ρr1
‖y‖ − 2L

√
nr1 for all y ∈ C.

Proof. Let r2 :=
√

δr1ρ
nL and note that r2 ≤ r1. The quantum algorithm works roughly as

follows. It first picks a uniformly8 random z ∈ B∞(0, r1). Then it uses Jordan’s quantum
algorithm to compute an approximate gradient at z by approximately evaluating f in
superposition over a discrete hypergrid of B∞(z, r2/n). This then yields an approximate
subgradient of f at 0.

We now work out this rough idea. Since B∞(z, r2/n) ⊆ B1(z, r2), Lemma 17 implies

sup
y∈B∞(0,r2/n)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ r2
2∆(r2)f(z)

2 . (5)

Also as shown by Lemma 11 and Markov’s inequality we have

∆(r2)f(z) ≤ 2nL
ρr1

(6)

with probability ≥ 1− ρ/2 over the choice of z. If z is such that Equation (6) holds, then
we get

sup
y∈B∞(0,r2/n)

∣∣∣f(z + y)− f(z)−
〈
y,∇(r2)f(z)

〉∣∣∣ ≤ nLr2
2

ρr1
= δ.

7Using Corollary 29 instead of Corollary 15 shows that a relational quantum oracle also suffices as
input.

8A discrete quantum computer strictly speaking cannot do this, but (as noted after Lemma 11) a
uniformly random point from a fine-enough hypergrid suffices.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 12

Now apply the quantum algorithm of Corollary 15 with r = 2r2/n, c = f(z), g = ∇(r2)f(z),
and B = Lr. This uses O(log(n/ρ)) queries to U and U †, and with probability ≥ 1− ρ/2
computes an approximate gradient g̃ such that

∥∥∥∇(r2)f(z)− g̃
∥∥∥
∞
≤ 8 · 42πn

2r2
· δ = 4 · 42 · π

√
δn3L

ρr1
. (7)

Also, if z is such that Equation (6) holds, then by Lemma 10 we get that

sup
g∈∂f(z)

∥∥∥∇(r2)f(z)− g
∥∥∥

1
≤ r2∆(r2)f(z)

2 ≤ nLr2
ρr1

=
√
δnL

ρr1
,

and therefore by the triangle inequality and Equation (7) we get that

sup
g∈∂f(z)

‖g − g̃‖∞ ≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥
∞

+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤ sup
g∈∂f(z)

∥∥∥g −∇(r2)f(z)
∥∥∥

1
+
∥∥∥∇(r2)f(z)− g̃

∥∥∥
∞

≤
√
δnL

ρr1
+ 4 · 42 · π

√
δn3L

ρr1
< 232

√
δn3L

ρr1
.

Thus with probability at least 1− ρ, for all y ∈ C and for all g ∈ ∂f(z) we have that

f(y) ≥ f(z) + 〈g, y − z〉
= f(0) + 〈g̃, y〉+ 〈g − g̃, y〉+ (f(z)− f(0)) + 〈g,−z〉
≥ f(0) + 〈g̃, y〉 − |〈g − g̃, y〉| − L‖z‖ − ‖g‖‖z‖
≥ f(0) + 〈g̃, y〉 − ‖g − g̃‖∞‖y‖1 − L

√
nr1 − L

√
nr1 (by (1))

≥ f(0) + 〈g̃, y〉 − 232

√
δn3L

ρr1
‖y‖1 − 2L

√
nr1

≥ f(0) + 〈g̃, y〉 − (23n)2
√
δL

ρr1
‖y‖ − 2L

√
nr1.

4 Algorithms for separation using membership queries
Let K ⊆ Rn be a convex set such that B(0, r) ⊆ K ⊆ B(0, R). Given a membership
oracle9 MEMε,0(K) as in Definition 3, we will construct a separation oracle SEPη,ρ(K)
as in Definition 4. Let x be the point we want to separate from K. We first make a
membership query to x itself, receiving answer x ∈ B(K, ε) or x 6∈ B(K,−ε). Suppose
x 6∈ B(K,−ε), then we need to find a hyperplane that approximately separates x from K.

9For simplicity we assume throughout this section that the membership oracle succeeds with certainty
(i.e., its error probability is 0). This is easy to justify: suppose we have a classical T -query algorithm, which
uses MEMε,0(K) queries and succeeds with probability at least 1−ρ. If we are given access to a MEMε, 1

3
(K)

oracle instead, then we can create a MEMε,
ρ
T

(K) oracle by O(log(T/ρ)) queries to MEMε, 1
3
(K) and

taking the majority of the answers. Then running the original algorithm with MEMε,
ρ
T

(K) will fail with
probability at most 2ρ. Therefore the assumption of a membership oracle with error probability 0 can be
removed at the expense of only a small logarithmic overhead in the number of queries. A similar argument
works for the quantum case.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 13

Due to the rotational symmetry of the separation problem, for ease of notation we assume
that x = −‖x‖en.10 We define h : Rn−1 → R ∪ {∞} as

h(y) := inf
(y,yn)∈K

yn,

see also Figure 2. Note that h implicitly depends on x, since we have rotated the space
such that x = −‖x‖en.

(y, 0)

x

−h(y)

(y, h(y))

r

K

Figure 2: Graphical example of the relation between h(y) and the distance from (y, 0) to the border in
the −en direction.

Our h is a bit different from the one used in [LSV18], but we can show that it has
many of the same properties. Since K is a convex set, h is a convex function over Rn−1.
As we show below, the function h is also Lipschitz (Lemma 19) and we can approximately
compute its value using binary search with Õ(1) classical queries to a membership oracle
(Lemma 20). Furthermore, an approximate subgradient of h at 0 allows to construct a
hyperplane approximately separating x from K (Lemma 21). Combined with the results
of Section 3 this leads to the main results of this section, Theorems 22 and 23, which show
how to efficiently construct a separation oracle using respectively classical and quantum
queries to a membership oracle.

Analogously to [LSV18, Lemma 12] we first show that our h is Lipschitz.

Lemma 19. For every δ ∈ (0, r), h is R
r−δ -Lipschitz on B(0, δ) ⊆ Rn−1, that is, we have

|h(y′)− h(y)| ≤ R

r − δ
∥∥y′ − y∥∥ for all y, y′ ∈ B(0, δ).

Proof. Observe that for all y ∈ B(0, r) we have −R ≤ h(y) ≤ 0, because B(0, r) ⊆ K ⊆
B(0, R). Let y, y′ ∈ B(0, δ) be arbitrary but distinct points. Due to symmetry it will
suffice to show that h(y′)− h(y) ≤ R

r−δ‖y
′ − y‖.

10For the query complexity this is without loss of generality, since we can always apply a rotation to
all the points such that this holds. If we instead consider the computational cost of our algorithm, then
we have to take into account the cost of this rotation and its inverse. Note, however, that this rotation
can always be written as the product of n rotations on only 2 coordinates, and hence can be applied in
Õ(n) additional steps. These rotations can also be found in Õ(n) time via a greedy algorithm: first find a
rotation on coordinates n and n− 1 that leaves coordinate n− 1 zero, then similarly for coordinates n− 2
and n, and so on.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 14

We will restrict our attention to the line through y and y′, i.e., the line given by y+λz
for z := y′−y

‖y′−y‖ . Define the point

p := y +
(∥∥y′ − y∥∥+ (r − δ)

)
z = y′ + (r − δ)z

on this line and note that p ∈ B(0, r). Since y′ lies between y and p on the line it is a
convex combination of these two points. In particular, since ‖p− y′‖ = r − δ, it is the
convex combination

y′ = ‖y′ − y‖
‖y′ − y‖+ (r − δ)p+ r − δ

‖y′ − y‖+ (r − δ)y.

Due to convexity we have

h(y′) ≤ ‖y′ − y‖
‖y′ − y‖+ (r − δ)h(p) + r − δ

‖y′ − y‖+ (r − δ)h(y),

which implies

h(y′)− h(y) ≤ ‖y′ − y‖
‖y′ − y‖+ (r − δ)(h(p)− h(y)) ≤ ‖y

′ − y‖
r − δ

R.

Now we show how to compute the value of h using membership queries to K.

Lemma 20. For all y ∈ B
(
0, r2

)
⊂ Rn−1 we can compute a δ-approximation of h(y) with

O
(
log
(
R
δ

))
queries to a MEMε,0(K) oracle, where ε ≤ r

3Rδ.

Proof. Let y ∈ B(0, r2), then (y, h(y)) is a boundary point of K by the definition of h.
Note that h(y) ∈ [−R,−r/2]. Our goal is to perform binary search over this interval to
find a good approximation of h(y). If we had access to a perfect membership oracle, then
this would be straightforward. However, since our membership oracle can give back a
wrong answer when queried with a point that is ε-close to the boundary of K, a more
careful analysis is needed.

Suppose yn ≤ − r
2 is our current guess for h(y). We first show that

(a) if (y, yn) ∈ B(K, ε), then yn ≥ h(y)− δ, and

(b) if (y, yn) 6∈ B(K,−ε), then yn ≤ h(y) + 2
3δ.

For the proof of (a) consider a g ∈ ∂h(y). Since g is a subgradient we have that
h(z) ≥ h(y) + 〈g, z − y〉 for all z ∈ Rn−1. Hence, for all z ∈ Rn−1 and zn such that
(z, zn) ∈ K we have〈(

−g
1

)
,

(
y

h(y)

)〉
≤
〈(
−g
1

)
,

(
z

h(z)

)〉
≤
〈(
−g
1

)
,

(
z
zn

)〉

where the first inequality is a rewriting of the subgradient inequality and the second
inequality uses that zn ≥ h(z) since (z, zn) ∈ K. Since (y, yn) ∈ B(K, ε) it follows from
the above inequality that〈(

−g
1

)
,

(
y
yn

)〉
≥
〈(
−g
1

)
,

(
y

h(y)

)〉
− ε

∥∥∥∥∥
(
−g
1

)∥∥∥∥∥ ≥
〈(
−g
1

)
,

(
y

h(y)

)〉
− ε(‖g‖+ 1).

Lemma 19 together with the argument of Equation (1) implies that ‖g‖ ≤ 2R
r . Since

ε(‖g‖+ 1) ≤ ε
(2R
r

+ 1
)
≤ ε3R

r
≤ δ,

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 15

we obtain the inequality of (a).
For (b), consider the convex set C which is the convex hull of B((y, 0), r/2) and

(y, h(y)). Note that B(C,−ε) is the convex hull of B((y, 0), r/2−ε) and
(
y, h(y)

(
1− 2ε

r

))
.

Since C ⊆ K, we have B(C,−ε) ⊆ B(K,−ε). Therefore (y, yn) 6∈ B(K,−ε) implies
(y, yn) /∈ B(C,−ε), and

yn ≤ h(y)
(

1− 2ε
r

)
= h(y)− ε2h(y)

r
≤ h(y) + ε

2R
r
≤ h(y) + 2

3δ.

Now we can analyze the binary search algorithm. By making O
(
log
(
R
δ

))
MEMε,0(K)

queries to points of the form (y, z), we can find a value yn ∈ [−R,− r
2] such that (y, yn) ∈

B(K, ε) but (y, yn − δ
3) 6∈ B(K,−ε). By (a)-(b) we get that |h(y)− yn| ≤ δ.

The following lemma shows how to convert an approximate subgradient of h to a
hyperplane that approximately separates x from K.

Lemma 21. Suppose −‖x‖en = x /∈ B(K,−ε), and g̃ ∈ Rn−1 is an approximate subgra-
dient of h at 0, meaning that for some a, b ∈ R and for all y ∈ Rn−1

h(y) ≥ h(0) + 〈g̃, y〉 − a‖y‖ − b,

then s := (−g̃,1)
‖(−g̃,1)‖ satisfies 〈s, z〉 ≥ 〈s, x〉 − aR+b

‖(−g̃,1)‖ −
2R
r

ε
‖(−g̃,1)‖ for all z ∈ K.

Proof. Let us introduce the notation z = (y, zn) and s′ := (−g̃, 1) = ‖(−g̃, 1)‖s, then〈
s′, z

〉
= zn − 〈g̃, y〉
≥ h(y)− 〈g̃, y〉
≥ h(0)− a‖y‖ − b

≥ −‖x‖ − 2R
r
ε− aR− b

=
〈
s′, x

〉
− aR− b− 2R

r
ε,

where the last inequality used claim (b) from the proof of Lemma 20 with the point
(0,−‖x‖) and δ = 3R

r ε.

We now construct a separation oracle using Õ(n) classical queries to a membership or-
acle. In particular, to construct an η-precise separation oracle, we require an ε-precise
membership oracle with

ε = η

676n
−2
(
r

R

)3(η
R

)2
ρ

The analogous result in [LSV18, Theorem 14] uses the stronger assumption11

ε ≈ η

8 · 106n
− 7

2

(
r

R

)6(η
R

)2
ρ3.

Compared to this, our result scales better in terms of n, rR and ρ.

11It seems that Lee et al. [LSV18, Algorithm 1] did not take into account the change in precision
analogous to our Lemma 20, therefore one would probably need to worsen their exponent of r

R
from 6 to 7.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 16

Theorem 22. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R). For any η ∈ (0, R]
and ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K) using O

(
n log

(
n
ρ
R
η
R
r

))
classical

queries to a MEMε,0(K) oracle, where ε ≤ η(26n)−2(r
R

)3(η
R

)2
ρ.

Proof. Let x 6∈ B(K,−ε) be the point we want to separate fromK. Let δ := η n
−2

9·24
(
r
R ·

η
R

)2
ρ,

then ε ≤ r
3Rδ. By Lemma 19 we know that h is 2R

r -Lipschitz on B(0, r/2). By Lemma 20
we can evaluate h to within error δ using O

(
log
(
R
δ

))
queries to a MEMε,0(K) oracle.

Let us choose r1 := r
12
√
n
η
R , then r1

√
n ≤ r

4 , therefore B∞(0, 2r1) ⊆ B(0, r/2). Also note

that δ ≤ η
6ρ = 2r1

√
nR

ρr . Hence by Lemma 12, using O
(
n log

(
R
δ

))
queries to a MEMε,0(K)

oracle, we can compute an approximate subgradient g̃ such that with probability at least
1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − 3n
3
4

2

√
δ2R
ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉 − η
2R‖y‖ −

η
3 , which by

Lemma 21 gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6η −

2R
r ε ≥ 〈s, x〉 − η for all z ∈ K

Finally, we give a proof of our main result: we construct a separation oracle using Õ(1)
quantum queries to a membership oracle.

Theorem 23. Let K be a convex set satisfying B(0, r) ⊆ K ⊆ B(0, R). For any η ∈ (0, R]
and ρ ∈ (0, 1/3], we can implement the oracle SEPη,ρ(K) using O

(
log

(
n
ρ

)
log
(
n
ρ
R
η
R
r

))
quantum queries to a MEMε,0(K) oracle (and its inverse), where ε ≤ η(58n)−

9
2
(
r
R

)3(η
R

)2
ρ.

Proof. Let x 6∈ B(K,−ε) be the point that we want to separate from K. Let us define
δ := η 23−4

4·24 n
− 9

2
(
r
R ·

η
R

)2
ρ, then ε ≤ r

3Rδ. By Lemma 19 we know that h is 2R
r -Lipschitz on

B(0, r/2). By Lemma 20 we can evaluate h to within error δ using O
(
log
(
R
δ

))
queries to

a MEMε,0(K) oracle. Let us choose r1 := r
12
√
n
η
R , then r1

√
n ≤ r

4 , therefore B∞(0, 2r1) ⊆

B(0, r/2). Also note that δ ≤ η
6ρ = 2r1nR

ρr . Hence by Lemma 18, using O
(
log
(
n
ρ

)
log
(
R
δ

))
queries to a MEMε,0(K) oracle, we can compute an approximate subgradient g̃ such that
with probability at least 1− ρ we have

h(y) ≥ h(0) + 〈g̃, y〉 − (23n)2
√

2δR
ρr1r
‖y‖ − 4R

r

√
nr1 for all y ∈ Rn−1.

Substituting the value of r1 and δ we get h(y) ≥ h(0) + 〈g̃, y〉 − η
2R‖y‖ −

η
3 , which by

Lemma 21 gives an s such that 〈s, z〉 ≥ 〈s, x〉 − 5
6η −

2R
r ε ≥ 〈s, x〉 − η for all z ∈ K.

5 Lower bounds
For a convex set K satisfying B(0, r) ⊆ K ⊆ B(0, R), we have shown in Theorem 23 that
one can implement a SEP(K) oracle with Õ(1) quantum queries to a MEM(K) oracle
if the membership oracle is sufficiently precise. In this section we first show that this
is exponentially better than what can be achieved using classical access to a membership
oracle. We also investigate how many queries to a membership/separation oracle are needed
in order to implement an optimization oracle. Our results are as follows.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 17

• We show that Ω(n) classical queries to a membership oracle are needed to implement
a weak separation oracle.

• We show that Ω(n) classical (resp. Ω(
√
n) quantum) queries to a separation oracle

are needed to implement a weak optimization oracle; even when we know an interior
point in the set.

• We show an Ω(n) lower bound on the number of classical and/or quantum queries to
a separation oracle needed to optimize over the set when we do not know an interior
point.

In this section we will always assume that the input oracle is a strong oracle but the output
oracle is allowed to be a weak oracle with error ε. Furthermore, we will make sure that R,
1/r, and 1/ε are all upper bounded by a polynomial in n. This guarantees that the lower
bound is based on the dimension of the problem, not the required precision.

5.1 Classical lower bound on the number of MEM queries needed for SEP
Here we show that a separation query can provide Ω(n) bits of information about the
underlying convex set K; since a classical membership query returns a 0 or a 1 and hence
can give at most 1 bit of information,12 this theorem immediately implies a lower bound of
Ω(n) on the number of classical membership queries needed to implement one separation
query.

Theorem 24. Let ε ≤ 1
48 . There exist a set of m = 2Ω(n) convex sets K1, . . . ,Km and

points y, x0 ∈ Rn such that B(x0, 1/3) ⊆ Ki ⊆ B(x0, 2
√
n) for all i ∈ [m], and such that

the result of a classical query to SEPε,0(Ki) with the point y correctly identifies i.

Proof. Let h1, . . . , hm ∈ Rn be a set of m = 2Ω(n) entrywise non-negative unit vectors such
that 〈hi, hj〉 ≤ 0.51 for all distinct i, j ∈ [m].13

Now pick an i ∈ [m] and define K̂i := {x : 〈hi, x〉 ≤ 0} ∩B(0,
√
n) and Ki := B(K̂i, ε).

Then K̂i = B(Ki,−ε). Note that for x0 = −e/3 we have B(x0, 1/3) ⊆ Ki ⊆ B(x0, 2
√
n).

We claim that a query to SEPε,0(Ki) with the point y = 3εe ∈ Rn will identify hi. First
note that y 6∈ B(Ki, ε), since K̂i does not contain any entrywise positive vectors and y
has distance at least 3ε from all vectors that have at least one non-positive entry. Hence
a separation query with y must return a unit vector g that describes a valid separating
hyperplane for Ki.

On the other, if g describes a valid separating hyperplane for Kj , then

∀x ∈ K̂j : 〈g, x〉 ≤ 〈g, y〉+ ε ≤ ‖g‖ · ‖y‖+ ε ≤ (3
√
n+ 1)ε ≤ 4

√
nε. (8)

Now consider the specific point x that is the projection of g onto h⊥j (the hyperplane
orthogonal to hj) scaled by a factor

√
n, i.e., x =

√
n(g − 〈g, hj〉hj). Since 〈hj , x〉 = 0 and

12This is not true for quantum membership queries!
13We can show that such a set of vectors exists as follows. Let n = ck for sufficiently large constant c.

Choose m = 2k (which is 2Ω(n)) uniformly random vectors v1, . . . , vm in {0, 1}n. Note that the expected
Hamming weight of one such vector is n/2, and the expected inner product between two vectors is n/4
(the inner product just counts for how many of the n bit-positions both vectors have a 1). By a standard
calculation (Chernoff bound plus a union bound), one can show that with high probability these 2k vectors
each have Hamming weight ≥ 0.495n, and the inner product between any two of them is ≤ 0.252n. Fix
2k such vectors with these properties, and define hi := vi/‖vi‖. These are unit vectors with non-negative
entries, and pairwise inner products 〈hi, hj〉 = 〈vi, vj〉/(‖vi‖‖vj‖) ≤ 0.252n/(0.495n) < 0.51.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 18

‖x‖ ≤
√
n, we have x ∈ K̂j . Choosing this x in (8) gives the following inequality

√
n(1− 〈g, hj〉2) = 〈g, x〉 ≤ 4

√
nε.

Hence (8) implies |〈g, hj〉| ≥
√

1− 4ε ≥
√

11
12 ≥

19
20 .

Since (8) holds for j = i, it follows that at least one of the two vectors g − hi and
g + hi has length at most

√
2(1− |〈g, hi〉|2) ≤

√
8ε; assume the former for simplicity. If

(8) would also hold for j 6= i, then we would get a contradiction:

19
20 ≤ |〈g, hj〉| ≤ |〈g − hi, hj〉|+ |〈hi, hj〉| ≤

√
8ε+ 0.51 < 19

20 .

Hence g uniquely identifies hi.

5.2 Lower bound on number of SEP queries for OPT (given an interior point)
We now consider lower bounding the number of quantum queries to a separation oracle
needed to do optimization. In fact, we prove a lower bound on the number of separation
queries needed for validity, which implies the same bound on optimization. We will use a
reduction from a version14 of the well-studied search problem:

Given z ∈ {0, 1}n such that either |z| = 0 or |z| = 1, decide which of the two holds.

It is not hard to see that if the access to z is given via classical queries, then Ω(n) queries
are needed. It is well known [BBBV97] that if we allow quantum queries, then Ω(

√
n)

queries are needed (i.e., Grover’s quantum search algorithm [Gro96] is optimal). We use
this problem to show that there exist convex sets for which it is hard to construct a weak
validity oracle, given a strong separation oracle. Since a separation oracle can be used as
a membership oracle, this gives the same hardness result for constructing a weak validity
oracle from a strong membership oracle.

Theorem 25. Let 0 < ρ ≤ 1/3. Let A be an algorithm that implements a VAL(5n)−1,ρ(K)
oracle for every convex set K (with B(x0, r) ⊆ K ⊆ B(x0, R)) using only queries to a
SEP0,0(K) oracle, and unitaries that are independent of K. Then the following statements
are true, even when we restrict to convex sets K with r = 1/3 and R = 2

√
n:

• if the queries to SEP0,0(K) are classical, then the algorithm uses Ω(n) queries.

• if the queries to SEP0,0(K) are quantum, then the algorithm uses Ω(
√
n) queries.

Proof. Let z ∈ {0, 1}n have Hamming weight |z| = 0 or |z| = 1. We construct a set Kz

in such a way that solving the weak validity problem solves the search problem for z,
while separation queries for Kz can be answered using a single query to z. The known
classical and quantum lower bounds on the search problem then imply the two claims of
the theorem, respectively.

Define Kz :=
∏n
i=1[−1, zi]. Observe that if we set x0 = (−1/2, . . . ,−1/2), then

B(x0,
1
3) ⊆ Kz ⊆ B(x0, 2

√
n).

We first show how to implement a strong separation oracle using a single query to z.
Suppose the input is the point y. The strong separation oracle works as follows:

1. If y ∈ [−1, 0]n, then return the statement that y ∈ B(Kz, 0) = Kz.

14Note that this is a slightly different version from the one used in Section 2.1.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 19

2. If y 6∈ [−1, 1]n, then return a hyperplane that separates y from [−1, 1]n (and hence
from Kz).

3. Otherwise, let i be such that yi > 0. Query zi.

(a) If zi = 1 and i is the only index such that yi > 0, then return that y ∈
B(Kz, 0) = Kz.

(b) If zi = 1 and there is a j 6= i such that yj > 0, return the separating hyperplane
corresponding to xj ≤ yj .

(c) If zi = 0, then return the separating hyperplane xi ≤ yi.

We show that a validity query over Kz with the direction c = 1√
n

(1, . . . , 1) ∈ Rn, value
γ = 1

2
√
n
and error ε = 1

5n solves the search problem:

• If |z| = 0, then for all points x ∈ K0 we have 〈c, x〉 ≤ 0. Thus, for all points
x ∈ B(K0, ε) we have 〈c, x〉 ≤ ε < γ − ε. Hence the validity oracle will have to
return that 〈c, x〉 ≤ γ + ε holds for all x ∈ B(K0,−ε), since the other possible
output is not true.

• If |z| = 1, then the point z ∈ Kz satisfies 〈z, c〉 = 1√
n
and therefore x = z − εe ∈

B(Kz,−ε) satisfies 〈c, x〉 = 1√
n
−
√
nε > γ + ε. Hence the validity oracle will have

to return that 〈c, x〉 ≥ γ − ε holds for some x ∈ B(Kz, ε), since the other possible
output is not true.

5.3 Lower bound on number of SEP queries for OPT (without interior point)
We now lower bound the number of quantum queries to a separation oracle needed to solve
the optimization problem, if our algorithm does not already know an interior point of K.
In fact we prove a lower bound on finding a point close toK using separation queries, which
implies the lower bound on the number of separation queries needed for optimization since
OPT returns a point close to the set K.

We prove our lower bound by a reduction to the problem of learning z with first-
difference queries. Here one needs to find an initially unknown n-bit binary string z via
a guessing game. For a given guess g ∈ {0, 1}n a query returns the first index in [n] for
which the binary strings z and g differ (or it returns n+ 1 if z = g). The goal is to recover
z with as few guesses as possible. First we prove an Ω(n) quantum query lower bound for
this problem.15

Theorem 26 (Quantum lower bound for learning z with first-difference queries). Let
z ∈ {0, 1}n be an unknown string accessible by an oracle acting as Oz|g, b〉 = |g, b⊕f(g, z)〉,
where f(g, z) is the first index for which z and g differ, more precisely f(g, z) = min{i ∈
[n] : gi 6= zi} if g 6= z and f(g, z) = n+ 1 otherwise. Then every quantum algorithm that
outputs z with high probability uses at least Ω(n) queries to Oz.

15Note that this is a strengthening of the Ω(n) quantum query lower bound for binary search on a space
of size 2n by Ambainis [Amb99], since first-difference queries are at least as strong as the queries one makes
in binary search.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 20

Proof. We will use the general adversary bound [HLŠ07]. For this problem, we call Γ ∈
R2n×2n an adversary matrix if it is a non-zero matrix with zero diagonal whose rows and
columns are indexed by all z ∈ {0, 1}n. For g ∈ {0, 1}n let us define ∆g ∈ {0, 1}2

n×2n such
that the [z, z′] entry of ∆g is 0 if and only if f(g, z) = f(g, z′). The general adversary
bound tells us that for any adversary matrix Γ, the quantum query complexity of our
problem is

Ω
(

‖Γ‖
maxg∈{0,1}n‖Γ ◦∆g‖

)
, (9)

where “◦” denotes the Hadamard product and ‖·‖ the operator norm.
We claim that Equation (9) gives a lower bound of Ω(n) for the adversary matrix Γ

defined as

Γ[z, z′] =
{

2f(z,z′) if z 6= z′

0 if z = z′

It is easy to see that Γ is indeed an adversary matrix since it is zero on the diagonal and
non-zero everywhere else. Furthermore, the all-one vector e is an eigenvector of Γ with
eigenvalue n2n:

(Γe)z =
∑

z′∈{0,1}n
Γ[z, z′] =

n∑
d=1

2d · |{z′ ∈ {0, 1}n : f(z, z′) = d}| =
n∑
d=1

2d2n−d = n2n.

So Γe = n2ne and hence ‖Γ‖ ≥ n2n.
From the definition of ∆g it follows that

(Γ ◦∆g)[z, z′] = 2f(z,z′)χ[f(g,z)6=f(g,z′)],

where χ[f(g,z)6=f(g,z′)] stands for the indicator function of the condition f(g, z) 6= f(g, z′).
Let Γg := Γ ◦ ∆g. We will show an upper bound on ‖Γg‖. We decompose Γg in an
“upper-triangular” and a “lower-triangular” part:

ΓUg [z, z′] := 2f(z,z′)χ[f(g,z)<f(g,z′)] = 2f(g,z)χ[f(g,z)<f(g,z′)], (10)

ΓLg [z, z′] := 2f(z,z′)χ[f(g,z′)<f(g,z)] = 2f(g,z′)χ[f(g,z′)<f(g,z)].

So Γg = ΓUg + ΓLg and ΓUg = (ΓLg)T . Hence by the triangle inequality we have

‖Γg‖ ≤
∥∥∥ΓUg ∥∥∥+

∥∥∥ΓLg ∥∥∥ = 2
∥∥∥ΓUg ∥∥∥. (11)

It thus suffices to upper bound
∥∥∥ΓUg ∥∥∥. Notice that as (10) shows, ΓUg [z, z′] only depends

on the values f(g, z), f(g, z′). Since the range of f(g, ·) is [n+ 1], we can think of ΓUg as
an (n+ 1)× (n+ 1) block-matrix, where the blocks are determined by the values of f(g, z)
and f(g, z′), and within a block all matrix elements are the same. Also observe that for all
k ∈ [n] there are 2n−k bitstrings y ∈ {0, 1}n such that f(g, y) = k, which tells us the sizes
of the blocks are 2n−k × 2n−k. Motivated by these observations we define an orthonormal
set of vectors in R2n by vn+1 := eg, and for all k ∈ [n]

vk :=
∑

y:f(g,y)=k

ey√
2n−k

.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 21

Since the row and column spaces of ΓUg are spanned by {vk : k ∈ [n+ 1]}, we can reduce
ΓUg to an (n+ 1)× (n+ 1)-dimensional matrix G:

ΓUg =
(
n+1∑
k=1

vkv
T
k

)
ΓUg

(
n+1∑
`=1

v`v
T
`

)
=
(
n+1∑
k=1

vke
T
k

)(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)
︸ ︷︷ ︸

G:=

(
n+1∑
`=1

e`v
T
`

)
.

It follows from the above identity, together with the orthonormality of {v1, . . . , vn, vn+1},
that ∥∥∥ΓUg ∥∥∥ =

∥∥∥∥∥
(
n+1∑
k=1

ekv
T
k

)
ΓUg

(
n+1∑
`=1

v`e
T
`

)∥∥∥∥∥ = ‖G‖. (12)

G ∈ R(n+1)×(n+1) is a strictly upper-triangular matrix, with the following entries for
k, ` ∈ [n]:

G[k, `] = vTk ΓUg v`

=

 ∑
z:f(g,z)=k

eTz√
2n−k

ΓUg

 ∑
z′:f(g,z′)=`

ez′√
2n−`

= 2

k+`
2

2n

 ∑
z:f(g,z)=k

eTz

ΓUg

 ∑
z′:f(g,z′)=`

ez′

= 2

k+`
2

2n
∑

z:f(g,z)=k

∑
z′:f(g,z′)=`

ΓUg [z, z′]

By Equation (10) this is further equal to

G[k, `] = 2
k+`

2

2n
∑

z:f(g,z)=k

∑
z′:f(g,z′)=`

2kχ[k<`]

= 2
k+`

2

2n 2n−k2n−`2kχ[k<`]

= 2n−
`−k

2 χ[k<`].

Similarly for ` = n+ 1 we get that G[k, `] =
√

2 2n−
`−k

2 χ[k<`] for all k ∈ [n+ 1]. For each
d ∈ [n] define Gd ∈ R(n+1)×(n+1) such that Gd[k, `] = G[k, `]χ[d=`−k]. This Gd is only
non-zero on one non-main diagonal (namely the (k, `)-entries where d = ` − k), and its
non-zero entries are all upper bounded by

√
2 2n2−

d
2 . We have G =

∑n
d=1Gd and therefore

‖G‖ ≤
n∑
d=1
‖Gd‖ ≤

n∑
d=1

√
2 2n2−

d
2 = 2n

n−1∑
d=0

(
√

2)−d ≤ 2n

1− 1/
√

2
≤ 2n+2. (13)

Inequalities (11)-(13) give that ‖Γg‖ ≤ 2n+3 and hence (9) yields a lower bound of
Ω
(
n2n
2n+3

)
= Ω(n) on the number of quantum queries to Oz needed to learn z.

Theorem 27. Finding a point in B∞(K, 1/7) for an unknown convex set K such that
K ⊆ B∞(0, 2) ⊆ Rn requires Ω(n) quantum queries to a separation oracle SEP0,0(K),
even if we are promised there exists some unknown x ∈ Rn such that B∞(x, 1/3) ⊆ K.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 22

Proof. We will prove an Ω(n) quantum query lower bound for this problem by a reduction
from learning with first-difference queries. Let z ∈ {0, 1}n be an unknown binary string,
and let us defineKz := B∞(z, 1/3) ⊂ Rn as a small box around the corner of the hypercube
corresponding to z. Then clearly Kz ⊂ B∞(0, 2), and finding a point close enough to Kz

is enough to recover z.
We can easily reduce a separation oracle query to a first-difference query to z, as

follows. Suppose y is the vector for which we need to answer a SEP query:

1. If y is outside [−1/3, 4/3]n, then output a hyperplane separating y from [−1/3, 4/3]n.

2. If y is in [−1/3, 4/3]n, then let g be the nearest corner of the hypercube.

3. Let i be the result of a first-difference query to z with g.

(a) If i = n+ 1, indicating that z = g, then we know Kz exactly, so we can find a
separating hyperplane or conclude that y ∈ Kz.

(b) If z 6= g, then return ei if gi = 1, and −ei if gi = 0.

Hence our Ω(n) quantum lower bound on learning z with first-difference queries implies
an Ω(n) lower bound on the number of quantum queries to a separation oracle needed for
finding a point close to a convex set.

Since optimization over a set K gives a point close to the set K, this also implies a
lower bound on the number of separation queries needed for optimization. This theorem
is tight up to logarithmic factors, since it is known that Õ(n) classical separation queries
suffice for optimization, even without knowing a point in the convex set [LSW15]. Finally
we remark that, due to our improved algorithm for optimization using validity queries (by
combining Section 6 with Theorem 23), this also gives an Ω̃(n) lower bound on the number
of separation queries needed to implement validity.16

6 Consequences of convex polarity
Here we justify the central symmetry of Figure 1 using the results of Grötschel, Lovász,
and Schrijver [GLS88, Section 4.4]. We first need to recall the definition and some basic
properties of the polar K∗ of a set K ⊆ Rn. This is the closed convex set defined as follows:

K∗ = {y ∈ Rn : 〈y, x〉 ≤ 1 for all x ∈ K}.

It is straightforward to verify that if B(0, r) ⊆ K ⊆ B(0, R), then B(0, 1/R) ⊆ K∗ ⊆
B(0, 1/r), moreover (K∗)∗ = K for closed convex sets.17 For the remainder of this section
we assume that K is a closed convex set such that B(0, r) ⊆ K ⊆ B(0, R).

We will observe that for the polar K∗ of a set K the following holds:

MEM(K∗)↔ VAL(K), SEP(K∗)↔ VIOL(K), (14)

where MEM(K∗)↔ VAL(K) means we can implement a weak validity oracle for K using
a single query to a weak membership oracle for K∗, and vice versa. Since VIOL(K)

16It is easy to modify Theorem 26 to prove a lower bound on computing the majority function applied
to z, which would imply an Ω(n) lower bound on the number of separation queries needed to implement
a validity oracle, without the log factors.

17Note that K∗ is a dual representation of the convex set K. Each point in K∗ corresponds to a
(normalized) valid inequality for K. This duality is not to be confused with Lagrangian duality.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 23

and OPT(K) are equivalent up to reductions that use Θ̃(1) queries (via binary search),
this justifies the central symmetry of Figure 1, because it shows that algorithms that
implement VIOL(K) given VAL(K) are equivalent to algorithms that implement SEP(K∗)
given MEM(K∗), and similarly algorithms that implement SEP(K) given VIOL(K) are
equivalent to algorithms that implement VIOL(K∗) given SEP(K∗).

Grötschel, Lovász, and Schrijver [GLS88, Section 4.4] showed that the weak membership
problem for K∗ can be solved using a single query to a weak validity oracle for K, and that
the weak separation problem for K∗ can be solved using a single query to a weak violation
oracle for K. Using similar arguments one can show the reverse directions as well, which
justifies (14). Here we only motivate the equivalences between the above-mentioned weak
oracles by showing the equivalence of the strong oracles (i.e., where ρ and ε are 0).

Strong membership on K∗ is equivalent to strong validity on K. First, for a
given vector c ∈ Rn and a γ > 0 observe the following:

c

γ
6∈ int(K∗) ⇐⇒ ∃y ∈ K s.t. 〈c/γ, y〉 ≥ 1 ⇐⇒ ∃y ∈ K s.t. 〈c, y〉 ≥ γ.

Hence, a strong membership query to K∗ with a point c can be implemented by querying
a strong validity oracle for K with the vector c and the value 1. Likewise, a strong validity
query toK with a point c and value18 γ > 0 can be implemented using a strong membership
query to K∗ with c/γ.

Strong separation on K∗ is equivalent to strong violation on K. To implement a
strong separation query on K∗ for a vector y ∈ Rn we do the following. Query the strong
violation oracle for K with y and the value 1. If the answer is that 〈y, x〉 ≤ 1 for all x ∈ K,
then y ∈ K∗. If instead we are given a vector x ∈ K with 〈y, x〉 ≥ 1, then x separates y
from K∗ (indeed, for all z ∈ K∗, we have 〈z, x〉 ≤ 1 ≤ 〈y, x〉).

For the reverse direction, to implement a strong violation oracle for K on the vector
c and value18 γ > 0 we do the following. Query the strong separation oracle for K∗ with
the point c/γ. If the answer is that c/γ ∈ K∗ then 〈c, x〉 ≤ γ for all x ∈ K. If instead
we are given a non-zero vector y ∈ Rn that satisfies 〈c/γ, y〉 ≥ 〈z, y〉 for all z ∈ K∗, then
ỹ = y/〈c/γ, y〉 will be a valid answer for the strong violation oracle for K. Indeed, we have
ỹ ∈ K because 〈z, ỹ〉 ≤ 1 for all z ∈ K∗ and K = (K∗)∗, and by construction 〈c, ỹ〉 = γ.

7 Discussion and future work
We mention several open problems for future work:

• Our current implementation of an optimization query using Õ(n) quantum mem-
bership queries is quadratically better than the best known classical randomized
algorithm, which uses roughly n2 membership queries. However, to the best of our
knowledge it is open whether this quadratic classical bound is optimal (a quadratic
classical lower bound is known for deterministic algorithms [Yao75]).

• Can we improve our Ω(
√
n) lower bound on the number of separation (or member-

ship) queries needed to implement an optimization oracle when our algorithm knows
a point in K? We conjecture that the correct bound is Θ̃(n), in which case knowing
a point in K does not confer much benefit for query complexity.

18Observe that validity queries with value γ ≤ 0 can be answered trivially, since 0 ∈ K.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 24

• Are there interesting convex optimization problems where separation is much harder
than membership for classical computers?19 Such problems would be good candi-
dates for quantum speed-up in optimization in the real, non-oracle setting of time
complexity. It is known that given a deterministic algorithm for function evaluation,
an algorithm with roughly the same complexity can be constructed to compute the
gradient of that function [GW08]. Hence for strong, deterministic oracles, separa-
tion is not much harder than membership queries. This, however, still leaves weak /
randomized / quantum membership oracles to be considered.

• The algorithms that give an Õ(n) upper bound on the number of separation queries
for optimization (for example [LSW15, Theorem 42]) give the best theoretical results
for many convex optimization problems. However, due to the large constants in these
algorithms they are rarely used in a practical setting. A natural question is whether
the algorithms used in practice lend themselves to quantum speed-ups. Very recent
work by Kerenidis and Prakash [KP18] on quantum interior point methods is a first
step in this direction.

Acknowledgments. We thank Shouvanik Chakrabarti, Andrew Childs, Tongyang Li,
and Xiaodi Wu for sending us a preliminary version of their paper [CCLW18], and for
useful comments and coordination between our two papers. AG thanks Márió Szegedy for
insightful discussions. Many thanks to the anonymous referees of QIP’19 and Quantum
for their constructive comments.

JvA and SG are supported by the Netherlands Organization for Scientific Research
(NWO), grant number 617.001.351. AG and RdW are supported by ERC Consolidator
Grant 615307-QPROGRESS. RdW is also partially supported by NWO through Gravitation-
grant Quantum Software Consortium - 024.003.037, and through QuantERA project Quant-
Algo 680-91-034.

References
[Amb99] Andris Ambainis. A better lower bound for quantum algorithms search-

ing an ordered list. In Proceedings of the 40th IEEE Symposium on
Foundations of Computer Science (FOCS), pages 352–357, 1999. arXiv:
quant-ph/9902053

[vAG19] Joran van Apeldoorn and András Gilyén. Improvements in quantum SDP-
solving with applications. In Proceedings of the 46th International Collo-
quium on Automata, Languages, and Programming (ICALP), pages 99:1–
99:15, 2019. arXiv: 1804.05058

[vAGGdW17] Joran van Apeldoorn, András Gilyén, Sander Gribling, and Ronald de Wolf.
Quantum SDP-solvers: Better upper and lower bounds. In Proceedings of
the 58th IEEE Symposium on Foundations of Computer Science (FOCS),
pages 403–414, 2017. arXiv: 1705.01843

[AŠ06] Andris Ambainis and Robert Špalek. Quantum algorithms for matching
and network flows. In Proceedings of the 23rd Symposium on Theoreti-

19Moment polytopes are promising candidates for such examples. Recently an efficient weak membership
oracle was constructed by Bürgisser et al. [BFG+18] for a class of these polytopes. However, to the best
of our knowledge it is unknown how to directly implement separation oracles for them, so one might get
a quantum speed-up for implementing separation oracles using few queries to their membership oracle.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 25

http://dx.doi.org/10.1109/SFFCS.1999.814606
http://dx.doi.org/10.1109/SFFCS.1999.814606
https://arxiv.org/abs/quant-ph/9902053
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.99
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.99
https://arxiv.org/abs/1804.05058
http://dx.doi.org/10.1109/FOCS.2017.44
https://arxiv.org/abs/1705.01843
http://dx.doi.org/10.1007/11672142_13
http://dx.doi.org/10.1007/11672142_13

cal Aspects of Computer Science (STACS), pages 172–183, 2006. arXiv:
quant-ph/0508205

[BBBV97] Charles H. Bennett, Ethan Bernstein, Gilles Brassard, and Umesh Vazi-
rani. Strengths and weaknesses of quantum computing. SIAM Journal on
Computing, 26(5):1510–1523, 1997. arXiv: quant-ph/9701001

[BFG+18] Peter Bürgisser, Cole Franks, Ankit Garg, Rafael Oliveira, Michael Wal-
ter, and Avi Wigderson. Efficient algorithms for tensor scaling, quantum
marginals, and moment polytopes. In Proceedings of the 59th IEEE Sym-
posium on Foundations of Computer Science (FOCS), pages 883–897, 2018.
arXiv: 1804.04739

[BKL+19] Fernando G. S. L. Brandão, Amir Kalev, Tongyang Li, Cedric Yen-Yu Lin,
Krysta M. Svore, and Xiaodi Wu. Quantum SDP solvers: Large speed-ups,
optimality, and applications to quantum learning. In Proceedings of the
46th International Colloquium on Automata, Languages, and Programming
(ICALP), pages 27:1–27:14, 2019. arXiv: 1710.02581

[BS17] Fernando G. S. L. Brandão and Krysta M. Svore. Quantum speed-ups for
solving semidefinite programs. In Proceedings of the 58th IEEE Symposium
on Foundations of Computer Science (FOCS), pages 415–426, 2017. arXiv:
1609.05537

[Bub15] Sébastien Bubeck. Convex optimization: Algorithms and complexity. Foun-
dations and Trends in Machine Learning, 8(3–4):231–357, 2015. arXiv:
1405.4980

[CCLW18] Shouvanik Chakrabarti, Andrew M. Childs, Tongyang Li, and Xiaodi Wu.
Quantum algorithms and lower bounds for convex optimization. arXiv:
1809.01731, 2018.

[DH96] Christoph Dürr and Peter Høyer. A quantum algorithm for finding the
minimum. arXiv: quant-ph/9607014, 1996.

[DHHM06] Christoph Dürr, Mark Heiligman, Peter Høyer, and Mehdi Mhalla. Quan-
tum query complexity of some graph problems. SIAM Journal on Comput-
ing, 35(6):1310–1328, 2006. arXiv: quant-ph/0401091

[GAW19] András Gilyén, Srinivasan Arunachalam, and Nathan Wiebe. Optimizing
quantum optimization algorithms via faster quantum gradient computation.
In Proceedings of the 30th ACM-SIAM Symposium on Discrete Algorithms
(SODA), pages 1425–1444, 2019. arXiv: 1711.00465

[GLS88] Martin Grötschel, László Lovász, and Alexander Schrijver. Geometric Al-
gorithms and Combinatorial Optimization. Springer, 1988.

[Gro96] Lov K. Grover. A fast quantum mechanical algorithm for database search.
In Proceedings of the 28th ACM Symposium on the Theory of Computing
(STOC), pages 212–219, 1996. arXiv: quant-ph/9605043

[GW08] Andreas Griewank and Andrea Walther. Evaluating Derivatives: Principles
and Techniques of Algorithmic Differentiation. SIAM, second edition, 2008.

[HLŠ07] Peter Høyer, Troy Lee, and Robert Špalek. Negative weights make adver-
saries stronger. In Proceedings of the 39th ACM Symposium on the Theory
of Computing (STOC), pages 526–535, 2007. arXiv: quant-ph/0611054

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 26

https://arxiv.org/abs/quant-ph/0508205
http://dx.doi.org/10.1137/S0097539796300933
https://arxiv.org/abs/quant-ph/9701001
http://dx.doi.org/10.1109/FOCS.2018.00088
http://dx.doi.org/10.1109/FOCS.2018.00088
https://arxiv.org/abs/1804.04739
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.27
http://dx.doi.org/10.4230/LIPIcs.ICALP.2019.27
https://arxiv.org/abs/1710.02581
http://dx.doi.org/10.1109/FOCS.2017.45
http://dx.doi.org/10.1109/FOCS.2017.45
https://arxiv.org/abs/1609.05537
http://dx.doi.org/10.1561/2200000050
https://arxiv.org/abs/1405.4980
https://arxiv.org/abs/1809.01731
https://arxiv.org/abs/quant-ph/9607014
http://dx.doi.org/10.1137/050644719
http://dx.doi.org/10.1137/050644719
https://arxiv.org/abs/quant-ph/0401091
http://dx.doi.org/10.1137/1.9781611975482.87
http://dx.doi.org/10.1137/1.9781611975482.87
https://arxiv.org/abs/1711.00465
http://dx.doi.org/10.1145/237814.237866
https://arxiv.org/abs/quant-ph/9605043
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1137/1.9780898717761
http://dx.doi.org/10.1145/1250790.1250867
http://dx.doi.org/10.1145/1250790.1250867
https://arxiv.org/abs/quant-ph/0611054

[Jor05] Stephen P. Jordan. Fast quantum algorithm for numerical gradi-
ent estimation. Physical Review Letters, 95(5):050501, 2005. arXiv:
quant-ph/0405146

[Jor08] Stephen P. Jordan. Quantum Computation Beyond the Circuit Model. PhD
thesis, Massachusetts Institute of Technology, 2008. arXiv: 0809.2307

[KP18] Iordanis Kerenidis and Anupam Prakash. A quantum interior point method
for LPs and SDPs. arXiv: 1808.09266, 2018.

[LSV18] Yin Tat Lee, Aaron Sidford, and Santosh S. Vempala. Efficient convex
optimization with membership oracles. In Proceedings of the 31st Conference
On Learning Theory (COLT), pages 1292–1294, 2018. arXiv: 1706.07357

[LSW15] Yin Tat Lee, Aaron Sidford, and Sam Chiu-wai Wong. A faster cutting plane
method and its implications for combinatorial and convex optimization.
In Proceedings of the 56th IEEE Symposium on Foundations of Computer
Science (FOCS), pages 1049–1065, 2015. arXiv: 1508.04874

[NC00] Michael A. Nielsen and Isaac L. Chuang. Quantum computation and quan-
tum information. Cambridge University Press, 2000.

[Szeg04] Márió Szegedy. Quantum speed-up of Markov chain based algorithms. In
Proceedings of the 45th IEEE Symposium on Foundations of Computer Sci-
ence (FOCS), pages 32–41, 2004. arXiv: quant-ph/0401053

[Yao75] Andrew Chi-Chih Yao. On computing the minima of quadratic forms (pre-
liminary report). In Proceedings of the 7th ACM Symposium on the Theory
of Computing (STOC), pages 23–26, 1975.

A Quantum gradient computation using relational oracles
In this appendix we extend the result of Corollary 15 to functions given by a relational
input oracle. As a direct consequence this shows that the algorithm from Theorem 23 also
works when the input is given as a relational membership oracle instead of a standard
oracle.

Definition 28 (Unitary δ-approximator). Let X be a finite set and let Y denote a set
of fixed-point b-bit numbers. Let f : X → Y be a function. We say that a relational
quantum oracle U on X is a b-bit unitary δ-approximator of f if the valid answers for
each x ∈ X differ at most δ from f(x) (i.e., F(x) = {y ∈ Y : |f(x) − y| ≤ δ}), and the
success probability is at least 2

3 .

Corollary 29 (Gradient computation using a unitary δ-approximator). Let δ,B, r, c ∈ R,
ρ ∈ (0, 1/3]. Let x0, g ∈ Rn with ‖g‖∞ ≤

B
r . Let m :=

⌈
log2

(
B

28πδ

)⌉
and suppose

f : (x0 + rGnm)→ R is such that

|f(x0 + rx)− 〈g, rx〉 − c| ≤ δ

for 99.9% of the points x ∈ Gnm, and we have access to U , an O
(
log
(
B
δ

))
-bit unitary

δ-approximator of f over the domain (x0 + rGnm). Then we can compute a vector g̃ ∈ Rn
such that

Pr
[
‖g̃ − g‖∞ >

8 · 42πδ
r

]
≤ ρ,

with O
(
log
(
n
ρ

))
queries to U and U † and gate complexity O

(
n log

(
n
ρ

)
log
(
B
δ

)
loglog

(
n
ρ

)
loglog

(
B
δ

))
.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 27

http://dx.doi.org/10.1103/PhysRevLett.95.050501
http://dx.doi.org/10.1103/PhysRevLett.95.050501
https://arxiv.org/abs/quant-ph/0405146
http://web.mit.edu/2.111/www/2010/MIT-stephen-jordan-phd-thesis-may08.pdf
https://arxiv.org/abs/0809.2307
https://arxiv.org/abs/1808.09266
http://proceedings.mlr.press/v75/lee18a.html
http://proceedings.mlr.press/v75/lee18a.html
https://arxiv.org/abs/1706.07357
http://dx.doi.org/10.1109/FOCS.2015.68
http://dx.doi.org/10.1109/FOCS.2015.68
https://arxiv.org/abs/1508.04874
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1017/CBO9780511976667
http://dx.doi.org/10.1109/FOCS.2004.53
https://arxiv.org/abs/quant-ph/0401053
http://dx.doi.org/10.1145/800116.803749
http://dx.doi.org/10.1145/800116.803749

Proof. The algorithm is the same as in the less general Corollary 15 presented in Sec-
tion 3.2, we just need to analyze it a bit more carefully. The main idea is still to im-
plement an approximate version of the phase oracle O : |x, 0, 0〉 7→ e2πi M3B f(x0+rx)|x, 0, 0〉,
and then use Jordan’s gradient computation algorithm. We approximate O by first ap-
proximately computing f using U , then applying20 a controlled phase operation cP acting
as cP: |y〉 7→ e2πi M3B y|y〉 (where M = 3B

84πδ as in the proof of Corollary 15), and finally
applying U † to approximately uncompute f .

We can assume without loss of generality that our unitary δ-approximator is such that
the probability of |f(x)− y| > δ is at most 1

1200 . If this is not the case, we can improve
the success probability by querying U a few times and taking the median of the results.

Let us define F(x) := {y ∈ Y : |f(x)− y| ≤ δ} as in Definition 28. Observe that∥∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉
∥∥∥2

=
∥∥∥(I ⊗ (e2πi M3B f(x0+rx)I − cP)⊗ I

)
U |x, 0, 0〉

∥∥∥2

=

∥∥∥∥∥∥
∑
y∈Y

(
e2πi M3B f(x0+rx) − e2πi M3B y

)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

.

We bound the above quantity in two parts using the triangle inequality as follows:∥∥∥∥∥∥
∑

y∈Y \F(x)

(
e2πi M3B f(x0+rx) − e2πi M3B y

)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑

y∈Y \F(x)
|2αx,y|2 ≤

1
300;

∥∥∥∥∥∥
∑

y∈F(x)

(
e2πi M3B f(x0+rx) − e2πi M3B y

)
αx,y|x, y, ψx,y〉

∥∥∥∥∥∥
2

≤
∑

y∈F(x)

∣∣∣∣2πi M3B (f(x0 + rx)− y)αx,y
∣∣∣∣2

≤
∑
y∈Yx

∣∣∣∣2πi M3Bδ
∣∣∣∣2|αx,y|2

≤
∣∣∣∣2πi M3Bδ

∣∣∣∣2 = 1
422 .

Thus for all x ∈ Gnm we have that∥∥∥O|x, 0, 0〉 − U †(I ⊗ cP⊗ I)U |x, 0, 0〉
∥∥∥ ≤ √ 1

300 + 1
422 <

1
16 . (15)

We can assume without loss of generality that our approximate phase oracle does not
change the value of the input register. Otherwise we can just copy |x〉 to another register,
then apply our approximate phase oracle on the second copy, then (approximately) erase
the second copy of |x〉 using mod 2 bitwise addition with the first copy. Under this
assumption by (15) we get that∥∥∥O|ψ〉 − U †(I ⊗ cP⊗ I)U |ψ〉

∥∥∥ < 1
16 , for any quantum state |ψ〉 =

∑
x∈Gnm

αx|x, 0, 0〉. (16)

From now on the proof is the same as the proof of Corollary 15. In that proof we
showed that if we use the phase oracle O in Jordan’s gradient computation algorithm,

20If y is a b-bit fixed-point binary number, then this can be implemented using b single-qubit phase gates
as follows: we can assume without loss of generality that y = a0 + a ·

∑b

j=1 yj2
j for some fixed a0, a ∈ R.

Then e2πi M3B y = e2πi M3B a0
∏b

j=1 e
2πi M3B ayj2

j

. The global phase is irrelevant, and the other phase factors
can be implemented by using b single-qubit phase gates, each acting as |yj〉 7→ e2πi M3B ayj2

j

|yj〉.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 28

then we would get a gradient estimate where each individual coordinate has the required
approximation quality with probability at least 2

3 . Equation (16) implies that if instead
we use our approximate implementation of the phase oracle, U †(I ⊗ cP ⊗ I)U , then the
outcome probability distribution changes by at most 1

16 in total variation distance. So
one run of Jordan’s algorithm using this approximate phase oracle still outputs a vector
v ∈ Rn such that

Pr
[∣∣∣∣gi − 3B

r
vi

∣∣∣∣ > 8 · 42πδ
r

]
≤ 1

3 + 1
16 <

2
5 for every i ∈ [n].

As in the proof of Corollary 15, repeating the whole procedure O
(
log(nρ)

)
times, and

taking the median of the resulting vectors coordinatewise, gives a gradient approximator
g̃ of the desired quality. The gate complexity analysis follows from [GAW19, Theorem 21],
noting that each controlled phase operation cP can be implemented using O

(
log
(
B
δ

))
single-qubit phase gates.

Accepted in Quantum 2019-12-03, click title to verify. Published under CC-BY 4.0. 29

	1 Introduction
	2 Preliminaries
	2.1 Oracles for convex sets

	3 Computing approximate subgradients of convex Lipschitz functions
	3.1 Classical approach
	3.2 Quantum improvements

	4 Algorithms for separation using membership queries
	5 Lower bounds
	5.1 Classical lower bound on the number of MEM queries needed for SEP
	5.2 Lower bound on number of SEP queries for OPT (given an interior point)
	5.3 Lower bound on number of SEP queries for OPT (without interior point)

	6 Consequences of convex polarity
	7 Discussion and future work
	A Quantum gradient computation using relational oracles

