13 research outputs found

    Achieving commutation control of an MRI-powered robot actuator

    No full text
    Actuators that are powered, imaged, and controlled by magnetic resonance (MR) scanners could inexpensively provide wireless control of MR-guided robots. Similar to traditional electric motors, the MR scanner acts as the stator and generates propulsive torques on an actuator rotor containing one or more ferrous particles. Generating maximum motor torque while avoiding instabilities and slippage requires closed-loop control of the electromagnetic field gradients, i.e., commutation. Accurately estimating the position and velocity of the rotor is essential for high-speed control, which is a challenge due to the low refresh rate and high latency associated with MR signal acquisition. This paper proposes and demonstrates a method for closed-loop commutation based on interleaving pulse sequences for rotor imaging and rotor propulsion. This approach is shown to increase motor torque and velocity, eliminate rotor slip, and enable regulation of rotor angle. Experiments with a closed-loop MR imaging actuator produced a maximum force of 9.4 N

    sCAM: An Untethered Insertable Laparoscopic Surgical Camera Robot

    Get PDF
    Fully insertable robotic imaging devices represent a promising future of minimally invasive laparoscopic vision. Emerging research efforts in this field have resulted in several proof-of-concept prototypes. One common drawback of these designs derives from their clumsy tethering wires which not only cause operational interference but also reduce camera mobility. Meanwhile, these insertable laparoscopic cameras are manipulated without any pose information or haptic feedback, which results in open loop motion control and raises concerns about surgical safety caused by inappropriate use of force.This dissertation proposes, implements, and validates an untethered insertable laparoscopic surgical camera (sCAM) robot. Contributions presented in this work include: (1) feasibility of an untethered fully insertable laparoscopic surgical camera, (2) camera-tissue interaction characterization and force sensing, (3) pose estimation, visualization, and feedback with sCAM, and (4) robotic-assisted closed-loop laparoscopic camera control. Borrowing the principle of spherical motors, camera anchoring and actuation are achieved through transabdominal magnetic coupling in a stator-rotor manner. To avoid the tethering wires, laparoscopic vision and control communication are realized with dedicated wireless links based on onboard power. A non-invasive indirect approach is proposed to provide real-time camera-tissue interaction force measurement, which, assisted by camera-tissue interaction modeling, predicts stress distribution over the tissue surface. Meanwhile, the camera pose is remotely estimated and visualized using complementary filtering based on onboard motion sensing. Facilitated by the force measurement and pose estimation, robotic-assisted closed-loop control has been realized in a double-loop control scheme with shared autonomy between surgeons and the robotic controller.The sCAM has brought robotic laparoscopic imaging one step further toward less invasiveness and more dexterity. Initial ex vivo test results have verified functions of the implemented sCAM design and the proposed force measurement and pose estimation approaches, demonstrating the technical feasibility of a tetherless insertable laparoscopic camera. Robotic-assisted control has shown its potential to free surgeons from low-level intricate camera manipulation workload and improve precision and intuitiveness in laparoscopic imaging

    From passive tool holders to microsurgeons: safer, smaller, smarter surgical robots

    No full text

    Laparoscopic Tissue Retractor Based on Local Magnetic Actuation

    Get PDF
    Magnetic instruments for laparoscopic surgery have the potential to enhance triangulation and reduce invasiveness, as they can be rearranged inside the abdominal cavity and do not need a dedicated port during the procedure. Onboard actuators can be used to achieve a controlled and repeatable motion at the interface with the tissue. However, actuators that can fit through a single laparoscopic incision are very limited in power and do not allow performance of surgical tasks such as lifting an organ. In this study, we present a tissue retractor based on local magnetic actuation (LMA). This approach combines two pairs of magnets, one providing anchoring and the other transferring motion to an internal mechanism connected to a retracting lever. Design requirements were derived from clinical considerations, while finite element simulations and static modeling were used to select the permanent magnets, set the mechanism parameters, and predict the lifting and supporting capabilities of the tissue retractor. A three-tier validation was performed to assess the functionality of the device. First, the retracting performance was investigated via a benchtop experiment, by connecting an increasing load to the lever until failure occurred, and repeating this test for different intermagnetic distances. Then, the feasibility of liver resection was studied with an ex vivo experiment, using porcine hepatic tissue. Finally, the usability and the safety of the device were tested in vivo on an anesthetized porcine model. The developed retractor is 154 mm long, 12.5 mm in diameter, and weights 39.16 g. When abdominal wall thickness is 2 cm, the retractor is able to lift more than ten times its own weight. The model is able to predict the performance with a relative error of 9.06 ± 0.52%. Liver retraction trials demonstrate that the device can be inserted via laparoscopic access, does not require a dedicated port, and can perform organ retraction. The main limitation is the reduced mobility due to the length of the device. In designing robotic instrument for laparoscopic surgery, LMA can enable the transfer of a larger amount of mechanical power than what is possible to achieve by embedding actuators on board. This study shows the feasibility of implementing a tissue retractor based on this approach and provides an illustration of the main steps that should be followed in designing a LMA laparoscopic instrument

    Monolithic self-supportive bi-directional bending pneumatic bellows catheter

    Get PDF
    The minimally invasive surgery has proven to be advantageous over conventional open surgery in terms of reduction in recovery time, patient trauma, and overall cost of treatment. To perform a minimally invasive procedure, preliminary insertion of a flexible tube or catheter is crucial without sacrificing its ability to manoeuvre. Nevertheless, despite the vast amount of research reported on catheters, the ability to implement active catheters in the minimally invasive application is still limited. To date, active catheters are made of rigid structures constricted to the use of wires or on-board power supplies for actuation, which increases the risk of damaging the internal organs and tissues. To address this issue, an active catheter made of soft, flexible and biocompatible structure, driven via nonelectric stimulus is of utmost importance. This thesis presents the development of a novel monolithic self-supportive bi-directional bending pneumatic bellows catheter using a sacrificial molding technique. As a proof of concept, in order to understand the effects of structural parameters on the bending performance of a bellows-structured actuator, a single channel circular bellows pneumatic actuator was designed. The finite element analysis was performed in order to analyze the unidirectional bending performance, while the most optimal model was fabricated for experimental validation. Moreover, to attain biocompatibility and bidirectional bending, the novel monolithic polydimethylsiloxane (PDMS)-based dual-channel square bellows pneumatic actuator was proposed. The actuator was designed with an overall cross-sectional area of 5 x 5 mm2, while the input sequence and the number of bellows were characterized to identify their effects on the bending performance. A novel sacrificial molding technique was adopted for developing the monolithic-structured actuator, which enabled simple fabrication for complex designs. The experimental validation revealed that the actuator model with a size of5 x 5 x 68.4 mm3 i.e. having the highest number of bellows, attained optimal bi-directional bending with maximum angles of -65° and 75°, and force of 0.166 and 0.221 N under left and right channel actuation, respectively, at 100 kPa pressure. The bending performance characterization and thermal insusceptibility achieved by the developed pneumatic catheter presents a promising implementation of flexibility and thermal stability for various biomedical applications, such as dialysis and cardiac catheterization

    Enabling automated magnetic resonance imaging-based targeting assessment during dipole field navigation

    Get PDF
    The magnetic navigation of drugs in the vascular network promises to increase the efficacy and reduce the secondary toxicity of cancer treatments by targeting tumors directly. Recently, dipole field navigation (DFN) was proposed as the first method achieving both high field and high navigation gradient strengths for whole-body interventions in deep tissues. This is achieved by introducing large ferromagnetic cores around the patient inside a magnetic resonance imaging (MRI) scanner. However, doing so distorts the static field inside the scanner, which prevents imaging during the intervention. This limitation constrains DFN to open-loop navigation, thus exposing the risk of a harmful toxicity in case of a navigation failure. Here, we are interested in periodically assessing drug targeting efficiency using MRI even in the presence of a core. We demonstrate, using a clinical scanner, that it is in fact possible to acquire, in specific regions around a core, images of sufficient quality to perform this task. We show that the core can be moved inside the scanner to a position minimizing the distortion effect in the region of interest for imaging. Moving the core can be done automatically using the gradient coils of the scanner, which then also enables the core to be repositioned to perform navigation to additional targets. The feasibility and potential of the approach are validated in an in vitro experiment demonstrating navigation and assessment at two targets

    Magnetic Medical Capsule Robots

    Get PDF

    Guidage magnétique par champs de dipôles pour l’administration ciblée d’agents thérapeutiques

    Get PDF
    Les chimiothérapies modernes utilisées pour le traitement des cancers consistent souvent à l’injection systémique de molécules toxiques dont généralement une infime partie atteint la tumeur. Pour augmenter l’efficacité de ces traitements et réduire leurs effets secondaires, une solution consiste à guider magnétiquement des agents thérapeutiques afin de les diriger dans le réseau vasculaire, à partir du point d’injection directement vers la zone à traiter. Ceci peut être accompli en appliquant des champs et des gradients magnétiques de manière contrôlée sur les agents, qui sont alors soumis à des forces de propulsion permettant de les attirer à travers les bifurcations artérielles désirées. Pour le guidage de micro-agents, cette approche requiert des champs et des gradients magnétiques forts. Le champ permet de magnétiser les agents et doit idéalement être suffisamment fort pour les amener à saturation magnétique. Les gradients (variations spatiales du champ) peuvent alors induire des forces magnétiques de propulsion, mais doivent atteindre une certaine amplitude pour que ces forces soient suffisantes. Avec les limites technologiques actuelles, il est difficile de rencontrer ces deux critères pour le guidage de micro-agents à l’échelle humaine. Dans les tissus profonds, les méthodes existantes sont généralement limitées à des champs de <0.1T et des gradients de <400 mT/m, ou peuvent générer un champ assez fort pour obtenir une magnétisation à saturation mais au détriment de gradients faibles (e.g. <100mT/m ou typiquement <40 mT/m). Dans le cadre de ce projet de recherche, une nouvelle méthode de guidage magnétique, baptisée guidage par champs de dipôles, ou Dipole Field Navigation (DFN), est proposée et étudiée pour surmonter les limitations des méthodes précédentes pour le guidage de micro-agents. Contrairement aux autres méthodes de guidage magnétique, DFN bénéficie à la fois d’un champ magnétique fort et de gradients d’amplitudes élevées dans les tissus profonds chez l’humain. Ceci est accompli à l’aide de corps ferromagnétiques précisément positionnés autour du patient à l’intérieur d’un appareil clinique d’imagerie par résonance magnétique. Ces appareils génèrent un puissant champ magnétique, typiquement de 1.5-3 T, qui est suffisant pour atteindre la saturation magnétique des agents. Les corps ferromagnétiques ont pour effet de distordre le champ de l’appareil de sorte que des gradients excédant 400mT/m peuvent être générés à une profondeur de 10 cm dans le patient. Grâce aux distorsions complexes du champ autour de ceux-ci, il est théoriquement possible d’induire, dans une certaine mesure, les forces magnétiques nécessaires au guidage des agents le long de trajectoires prédéfinies dans le réseau vasculaire. Le paramétrage adéquat d’une disposition de corps ferromagnétiques, dont le nombre requis est a priori inconnu, est toutefois complexe et doit être effectué en fonction de la trajectoire vasculaire désirée, spécifique à chaque patient. Différentes contraintes reliées à l’environnement d’IRM, dont l’espace restreint à l’intérieur de l’appareil, doivent également être prises en compte. Ainsi, des modèles et algorithmes d’optimisation permettant de résoudre ce problème sont développés et présentés. Le fonctionnement de la méthode est validé in vitro par le guidage de particules à travers des réseaux ayant jusqu’à trois bifurcations consécutives avec un taux de ciblage supérieur à 90%. Il est démontré que la taille et la forme des corps ferromagnétiques peuvent être variées afin d’augmenter les capacités de génération de gradients. En particulier, les formes de disque et de demie-sphère sont identifiées comme étant les plus efficaces. Par ailleurs, l’environnement d’IRM n’étant typiquement pas compatible avec la présence de matériaux magnétiques, les effets des corps ferromagnétiques sur l’imagerie sont étudiés. Il est démontré que l’imagerie demeure possible, dans une certaine mesure malgré les distorsions, dans des régions spécifiques autour d’une sphère magnétisée à l’intérieur de l’appareil. La qualité des images obtenues dans ces conditions est suffisante pour permettre de valider le succès du ciblage. Ainsi, des vérifications périodiques du déroulement de l’intervention seraient possibles en éloignant momentanément le ou les corps ferromagnétiques du patient. D’autre part, à cause des forces magnétiques exercées sur ceux-ci, le nombre et la taille des corps ferromagnétiques doivent être limités afin de faciliter leur insertion et leur positionnement sécuritaire dans l’appareil. Bien que certaines trajectoires puissent nécessiter plusieurs corps ferromagnétiques de grande taille, un certain compromis doit donc être recherché par rapport à la qualité des gradients générés. Enfin, le potentiel de la méthode pour le guidage de microagents dans les tissus profonds chez l’humain est évalué en utilisant un modèle du réseau vasculaire du foie d’un patient. Les résultats indiquent que, pour des trajectoires vasculaires multi-bifurcations relativement complexes, un compromis est inévitable entre les amplitudes et la précision angulaire des gradients générés. Par exemple, des gradients d’environ 150mT/m ont été obtenus pour le guidage à travers trois bifurcations consécutives dans ce modèle, mais avec une erreur angulaire moyenne d’environ 20_. Finalement, les capacités de DFN à générer des gradients forts dépendent de nombreux paramètres, comme la complexité et la profondeur de la trajectoire vasculaire visée, mais peuvent, selon les conditions, surpasser grandement celles des méthodes existantes pour le guidage de micro-agents dans les tissus profonds. À la lumière des résultats présentés dans cette thèse, le potentiel de la méthode est prometteur et justifie la poursuite du projet, notamment vers la réalisation des premiers essais in vivo. À ce titre, différentes pistes de recherches et de travaux futurs sont discutées.----------ABSTRACT Modern chemotherapies used in cancer treatment often involve the systemic administration of toxic molecules, of which usually a tiny fraction reaches the tumor. To increase the efficacy of these treatments while significantly reducing their secondary effects, a solution consists in magnetically guiding therapeutic agents in the vascular network, from an injection point directly towards the diseased site. This can be accomplished by applying controlled combinations of magnetic fields and gradients on the agents, which are then subjected to propulsive directional forces that can be used to steer them through the desired arterial bifurcations. For the navigation of micro-agents, this approach requires both a strong magnetic field and high gradients. The field strength is required to magnetize the agents and is ideally high enough to bring them at saturation magnetization. The gradients (spatial variations of the field) can then induce magnetic propulsion forces, but must reach a certain magnitude so that these forces are sufficient. Because of current technological limitations, it is challenging to meet both criteria for the navigation of micro-agents at the human scale. In deep tissues, current methods are in fact usually limited to <0.1T fields and <400mT/m gradients, or can provide the field to reach saturation magnetization but at the expense of weak gradients (e.g. <100mT/m or typically <40 mT/m). In this research project, a new method dubbed Dipole Field Navigation (DFN) is proposed and studied to overcome the limitations of existing magnetic navigation methods for guiding micro-agents. Unlike other methods, DFN can provide both a strong magnetic field and high gradients in deep tissues for whole-body interventions. This is achieved by precisely positioning ferromagnetic cores around the patient inside a clinical magnetic resonance imaging scanner. Conventional scanners generate a strong magnetic field, typically of 1.5-3 T, which is sufficient to bring the agents at saturation magnetization. The ferromagnetic cores distort the scanner’s field such that gradients exceeding 400mT/m can be generated at a 10 cm depth inside the patient. Due to the complex distortion patterns around the cores, it is theoretically possible to induce, to a certain extent, the magnetic forces required for navigating agents along predefined vascular routes. The parameterization of core configurations, in which the required number of cores is a priori unknown, is however complex and must be performed according to the specific vasculature of a given patient. Several constraints related to the MRI environment must also be considered, such as the limited space inside the scanner. Therefore, models and optimization algorithms are developed and presented for solving this problem. The feasibility of the method is validated in vitro by guiding particles through up to three consecutive bifurcations, achieving a targeting efficiency of over 90%. It is shown that the size and shape of the cores can be varied to increase the capabilities of the method for generating gradients. In particular, discs and hemispheres are shown to be the most effective shapes. Moreover, the MRI environment typically no being compatible with the presence of magnetic materials, the effects of the cores on imaging are studied. It is shown that, despite distortions, imaging is still possible, to a certain extent, in specific regions around a magnetized sphere placed in the scanner. The images obtained in these conditions are of sufficient quality for targeting assessment. Thus, periodic validations of the procedure could be achieved by momentarily moving the cores away from the patient. On another hand, due to the potentially strong magnetic forces exerted on the cores, their number and sizes must be limited to ensure their safe insertion and positioning in the scanner. Consequently, although the navigation in some vascular routes may require several large ferromagnetic cores, a certain compromise must be made with respect to the quality of the gradients generated. Finally, the potential of the method for guiding micro-agents in a human vasculature in deep tissues is evaluated using the vascular model of a patient liver. The results indicate that, for relatively complex vascular routes having multiple bifurcations, a compromise is also required between the amplitudes and the angular precision of the gradients. For example, gradient strengths around 150mT/m were obtained for routes having three consecutive bifurcations in this model, but with an average angular error of about 20_. Overall, the capabilities of DFN for generating strong gradients depend on several parameters, such as the complexity and depth of the desired vascular route, but can in a range of cases greatly exceed those achievable by previous methods for the navigation of micro-agents in deep tissues. In view of the results presented in this thesis, the promising potential of DFN motivates the continuation of this project, in particular towards the first in vivo experiments. As such, different avenues of research and future works are discussed
    corecore