472 research outputs found

    An MPEG-7 scheme for semantic content modelling and filtering of digital video

    Get PDF
    Abstract Part 5 of the MPEG-7 standard specifies Multimedia Description Schemes (MDS); that is, the format multimedia content models should conform to in order to ensure interoperability across multiple platforms and applications. However, the standard does not specify how the content or the associated model may be filtered. This paper proposes an MPEG-7 scheme which can be deployed for digital video content modelling and filtering. The proposed scheme, COSMOS-7, produces rich and multi-faceted semantic content models and supports a content-based filtering approach that only analyses content relating directly to the preferred content requirements of the user. We present details of the scheme, front-end systems used for content modelling and filtering and experiences with a number of users

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    The TV-Trawler Project

    Get PDF
    In this paper, we describe a system which enables the filtering, recording and delivery of digital video broadcasts over satellite, by matching incoming content descriptions to pre-defined sets of personal user preferences which have been defined using MPEG-7. The system enables the automatic analysis, selection and flexible, customized delivery of relevant content extracted from potentially hundreds of concurrent video channels

    Interactive searching and browsing of video archives: using text and using image matching

    Get PDF
    Over the last number of decades much research work has been done in the general area of video and audio analysis. Initially the applications driving this included capturing video in digital form and then being able to store, transmit and render it, which involved a large effort to develop compression and encoding standards. The technology needed to do all this is now easily available and cheap, with applications of digital video processing now commonplace, ranging from CCTV (Closed Circuit TV) for security, to home capture of broadcast TV on home DVRs for personal viewing. One consequence of the development in technology for creating, storing and distributing digital video is that there has been a huge increase in the volume of digital video, and this in turn has created a need for techniques to allow effective management of this video, and by that we mean content management. In the BBC, for example, the archives department receives approximately 500,000 queries per year and has over 350,000 hours of content in its library. Having huge archives of video information is hardly any benefit if we have no effective means of being able to locate video clips which are of relevance to whatever our information needs may be. In this chapter we report our work on developing two specific retrieval and browsing tools for digital video information. Both of these are based on an analysis of the captured video for the purpose of automatically structuring into shots or higher level semantic units like TV news stories. Some also include analysis of the video for the automatic detection of features such as the presence or absence of faces. Both include some elements of searching, where a user specifies a query or information need, and browsing, where a user is allowed to browse through sets of retrieved video shots. We support the presentation of these tools with illustrations of actual video retrieval systems developed and working on hundreds of hours of video content

    state of the art analysis ; working packages in project phase II

    Get PDF
    In this report, we introduce our goals and present our requirement analysis for the second phase of the Corporate Semantic Web project. Corporate ontology engineering will improve the facilitation of agile ontology engineering to lessen the costs of ontology development and, especially, maintenance. Corporate semantic collaboration focuses the human-centered aspects of knowledge management in corporate contexts. Corporate semantic search is settled on the highest application level of the three research areas and at that point it is a representative for applications working on and with the appropriately represented and delivered background knowledge

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research
    • …
    corecore