6 research outputs found

    A survey of techniques for reducing interference in real-time applications on multicore platforms

    Get PDF
    This survey reviews the scientific literature on techniques for reducing interference in real-time multicore systems, focusing on the approaches proposed between 2015 and 2020. It also presents proposals that use interference reduction techniques without considering the predictability issue. The survey highlights interference sources and categorizes proposals from the perspective of the shared resource. It covers techniques for reducing contentions in main memory, cache memory, a memory bus, and the integration of interference effects into schedulability analysis. Every section contains an overview of each proposal and an assessment of its advantages and disadvantages.This work was supported in part by the Comunidad de Madrid Government "Nuevas Técnicas de Desarrollo de Software de Tiempo Real Embarcado Para Plataformas. MPSoC de Próxima Generación" under Grant IND2019/TIC-17261

    A survey on scheduling and mapping techniques in 3D Network-on-chip

    Full text link
    Network-on-Chips (NoCs) have been widely employed in the design of multiprocessor system-on-chips (MPSoCs) as a scalable communication solution. NoCs enable communications between on-chip Intellectual Property (IP) cores and allow those cores to achieve higher performance by outsourcing their communication tasks. Mapping and Scheduling methodologies are key elements in assigning application tasks, allocating the tasks to the IPs, and organising communication among them to achieve some specified objectives. The goal of this paper is to present a detailed state-of-the-art of research in the field of mapping and scheduling of applications on 3D NoC, classifying the works based on several dimensions and giving some potential research directions

    Application-specific thermal management of computer systems

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Methoden und Beschreibungssprachen zur Modellierung und Verifikation vonSchaltungen und Systemen: MBMV 2015 - Tagungsband, Chemnitz, 03. - 04. März 2015

    Get PDF
    Der Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2015) findet nun schon zum 18. mal statt. Ausrichter sind in diesem Jahr die Professur Schaltkreis- und Systementwurf der Technischen Universität Chemnitz und das Steinbeis-Forschungszentrum Systementwurf und Test. Der Workshop hat es sich zum Ziel gesetzt, neueste Trends, Ergebnisse und aktuelle Probleme auf dem Gebiet der Methoden zur Modellierung und Verifikation sowie der Beschreibungssprachen digitaler, analoger und Mixed-Signal-Schaltungen zu diskutieren. Er soll somit ein Forum zum Ideenaustausch sein. Weiterhin bietet der Workshop eine Plattform für den Austausch zwischen Forschung und Industrie sowie zur Pflege bestehender und zur Knüpfung neuer Kontakte. Jungen Wissenschaftlern erlaubt er, ihre Ideen und Ansätze einem breiten Publikum aus Wissenschaft und Wirtschaft zu präsentieren und im Rahmen der Veranstaltung auch fundiert zu diskutieren. Sein langjähriges Bestehen hat ihn zu einer festen Größe in vielen Veranstaltungskalendern gemacht. Traditionell sind auch die Treffen der ITGFachgruppen an den Workshop angegliedert. In diesem Jahr nutzen zwei im Rahmen der InnoProfile-Transfer-Initiative durch das Bundesministerium für Bildung und Forschung geförderte Projekte den Workshop, um in zwei eigenen Tracks ihre Forschungsergebnisse einem breiten Publikum zu präsentieren. Vertreter der Projekte Generische Plattform für Systemzuverlässigkeit und Verifikation (GPZV) und GINKO - Generische Infrastruktur zur nahtlosen energetischen Kopplung von Elektrofahrzeugen stellen Teile ihrer gegenwärtigen Arbeiten vor. Dies bereichert denWorkshop durch zusätzliche Themenschwerpunkte und bietet eine wertvolle Ergänzung zu den Beiträgen der Autoren. [... aus dem Vorwort

    Many-core architectures with time predictable execution Support for hard real-time applications

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (p. 183-193).Hybrid control systems are a growing domain of application. They are pervasive and their complexity is increasing rapidly. Distributed control systems for future "Intelligent Grid" and renewable energy generation systems are demanding high-performance, hard real-time computation, and more programmability. General-purpose computer systems are primarily designed to process data and not to interact with physical processes as required by these systems. Generic general-purpose architectures even with the use of real-time operating systems fail to meet the hard realtime constraints of hybrid system dynamics. ASIC, FPGA, or traditional embedded design approaches to these systems often result in expensive, complicated systems that are hard to program, reuse, or maintain. In this thesis, we propose a domain-specific architecture template targeting hybrid control system applications. Using power electronics control applications, we present new modeling techniques, synthesis methodologies, and a parameterizable computer architecture for these large distributed control systems. We propose a new system modeling approach, called Adaptive Hybrid Automaton, based on previous work in control system theory, that uses a mixed-model abstractions and lends itself well to digital processing. We develop a domain-specific architecture based on this modeling that uses heterogeneous processing units and predictable execution, called MARTHA. We develop a hard real-time aware router architecture to enable deterministic on-chip interconnect network communication. We present several algorithms for scheduling task-based applications onto these types of heterogeneous architectures. We create Heracles, an open-source, functional, parameterized, synthesizable many-core system design toolkit, that can be used to explore future multi/many-core processors with different topologies, routing schemes, processing elements or cores, and memory system organizations. Using the Heracles design tool we build a prototype of the proposed architecture using a state-of-the-art FPGA-based platform, and deploy and test it in actual physical power electronics systems. We develop and release an open-source, small representative set of power electronics system applications that can be used for hard real-time application benchmarking.by Michel A. Kinsy.Ph.D

    Techniques d'analyse et d'optimisation pour la synthèse architecturale de systèmes temps réel embarqués distribués : problèmes de placement, de partitionnement et d'ordonnancement

    Get PDF
    Modern development methodologies from the industry and the academia exploit more and more the ”model” concept to address the complexity of critical real-time systems. These methodologies define a key stage in which the functional model, designed as a network of function blocks communicating through exchanged data signals, is deployed onto a hardware execution platform model and implemented in a software model consisting of a set of tasks and messages. This stage so-called deployment stage allows establishment of an operational architecture of the system, thus it requires evaluation and validation of the temporal properties of the system. In the context of event-driven real-time systems, the verification of temporal properties is performed using the schedulability analysis based on the response time analysis. Each deployment choice has an essential impact on the validity and the quality of the system. However, the existing methodologies do not provide supportto guide the designer of applications in the exploration of the operational architectures space. The objective of this thesis is to develop techniques for analysis and automatic synthesis of a valid operational architecture optimized with respect to the system performances. Our proposition is dedicated to the exploration of architectures space considering at the same time the four degrees of freedom determined during the deployment phase, (i) the placement of functional elements on the computing and communication resources of the execution platform, (ii) the partitioning of function elements into real time tasks and data signals into messages, (iii) the priority assignment to system tasks and messages and (iv) the assignment of shared data protection mechanism for periodic real-time systems. We are mainly interested in meeting temporal constraints and memory capacity of the target platform. In addition, we are focusing on the optimization of end-to-end latency and memory consumption. The design space exploration approaches presented in this thesis are based on the MILP (Mixed Integer Linear programming) optimization technique and concern at the same time time-driven and data-driven applications. Unlike many earlier approaches providing a partial solution to the deployment problem, our methods consider the whole deployment problem. The proposed approaches in this thesis are evaluated using both synthetic and industrial applications.Dans le cadre industriel et académique, les méthodologies de développement logiciel exploitent de plus en plus le concept de “modèle” afin d’appréhender la complexité des systèmes temps réel critiques. En particulier, celles-ci définissent une étape dans laquelle un modèle fonctionnel, conçu comme un graphe de blocs fonctionnels communiquant via des échanges de signaux de données, est déployé sur un modèle de plateforme d’exécution matérielle et un modèle de plateforme d’exécution logicielle composé de tâches et de messages. Cette étape appelée étape de déploiement, permet d’établir une architecture opérationnelle du système nécessitant une validation des propriétés temporelles du système. Dans le contexte des systèmes temps réel dirigés par les évènements, la vérification des propriétés temporelles est réalisée à l’aide de l’analyse d’ordonnançabilité basée sur l’analyse des temps de réponse. Chaque choix de déploiement effectué a un impact essentiel sur la validité et la qualité du système. Néanmoins, les méthodologies existantes n’offrent pas de support permettant de guider le concepteur d’applications durant l’exploration de l’espace des architectures possibles. L’objectif de ces travaux de thèse consiste à mettre en place des techniques d’analyse et de synthèse automatiques permettant de guider le concepteur vers une architecture opérationnelle valide et optimisée par rapport aux performances du système. Notre proposition est dédiée à l’exploration de l’espace des architectures en tenant compte à la fois des quatre degrés de liberté déterminés durant la phase de déploiement, à savoir (j) le placement des éléments fonctionnels sur les éléments de calcul et de communication de la plateforme d’exécution, (ii) le partitionnement des éléments fonctionnels en tâches temps réel et des signaux de données en messages, (iii) l’affectation de priorités d’exécution aux tâches et aux messages du système et (iv) l’attribution du mécanisme de protection des données partagées pour les systèmes temps réel périodiques. Nous nous intéressons principalement à la satisfaction des contraintes temporelles et celles liées aux capacités des ressources de la plateforme cible. De plus, nous considérons l’optimisation des latences de bout-en-bout et la consommation mémoire. Les approches d’exploration architecturale présentées dans cette thèse sont basées sur la technique d’optimisation PLNE (programmation linéaire en nombres entiers) et concernent à la fois les applications activées périodiquement et celles dont l’activation est pilotée par les données. Contrairement à de nombreuses approches antérieures fournissant une solution partielle au problème de déploiement, les méthodes proposées considèrent l’ensemble du problème de déploiement. Les approches proposées dans cette thèse sont évaluées à l’aide d’applications génériques et industrielles
    corecore