476 research outputs found

    Energy-Efficient Heterogeneous Cellular Networks with Spectrum Underlay and Overlay Access

    Full text link
    In this paper, we provide joint subcarrier assignment and power allocation schemes for quality-of-service (QoS)-constrained energy-efficiency (EE) optimization in the downlink of an orthogonal frequency division multiple access (OFDMA)-based two-tier heterogeneous cellular network (HCN). Considering underlay transmission, where spectrum-efficiency (SE) is fully exploited, the EE solution involves tackling a complex mixed-combinatorial and non-convex optimization problem. With appropriate decomposition of the original problem and leveraging on the quasi-concavity of the EE function, we propose a dual-layer resource allocation approach and provide a complete solution using difference-of-two-concave-functions approximation, successive convex approximation, and gradient-search methods. On the other hand, the inherent inter-tier interference from spectrum underlay access may degrade EE particularly under dense small-cell deployment and large bandwidth utilization. We therefore develop a novel resource allocation approach based on the concepts of spectrum overlay access and resource efficiency (RE) (normalized EE-SE trade-off). Specifically, the optimization procedure is separated in this case such that the macro-cell optimal RE and corresponding bandwidth is first determined, then the EE of small-cells utilizing the remaining spectrum is maximized. Simulation results confirm the theoretical findings and demonstrate that the proposed resource allocation schemes can approach the optimal EE with each strategy being superior under certain system settings

    Flexible resource allocation for joint optimization of energy and spectral efficiency in OFDMA multi-cell networks

    No full text
    The radio resource allocation problem is studied, aiming to jointly optimize the energy efficiency (EE) and spectral efficiency (SE) of downlink OFDMA multi-cell networks. Different from existing works on either EE or SE optimization, a novel EE-SE tradeoff (EST) metric, which can capture both the EST relation and the individual cells’ preferences for EE or SE performance, is introduced as the utility function for each base station (BS). Then the joint EE-SE optimization problem is formulated, and an iterative subchannel allocation and power allocation algorithm is proposed. Numerical results show that the proposed algorithm can exploit the EST relation flexibly and optimize the EE and SE simultaneously to meet diverse EE and SE preferences of individual cells.<br/

    Radio resource allocation for multicarrier-low density spreading multiple access

    Get PDF
    Multicarrier-low density spreading multiple access (MC-LDSMA) is a promising multiple access technique that enables near optimum multiuser detection. In MC-LDSMA, each user’s symbol spread on a small set of subcarriers, and each subcarrier is shared by multiple users. The unique structure of MC-LDSMA makes the radio resource allocation more challenging comparing to some well-known multiple access techniques. In this paper, we study the radio resource allocation for single-cell MC-LDSMA system. Firstly, we consider the single-user case, and derive the optimal power allocation and subcarriers partitioning schemes. Then, by capitalizing on the optimal power allocation of the Gaussian multiple access channel, we provide an optimal solution for MC-LDSMA that maximizes the users’ weighted sum-rate under relaxed constraints. Due to the prohibitive complexity of the optimal solution, suboptimal algorithms are proposed based on the guidelines inferred by the optimal solution. The performance of the proposed algorithms and the effect of subcarrier loading and spreading are evaluated through Monte Carlo simulations. Numerical results show that the proposed algorithms significantly outperform conventional static resource allocation, and MC-LDSMA can improve the system performance in terms of spectral efficiency and fairness in comparison with OFDMA

    Energy-Aware Competitive Power Allocation for Heterogeneous Networks Under QoS Constraints

    Get PDF
    This work proposes a distributed power allocation scheme for maximizing energy efficiency in the uplink of orthogonal frequency-division multiple access (OFDMA)-based heterogeneous networks (HetNets). The user equipment (UEs) in the network are modeled as rational agents that engage in a non-cooperative game where each UE allocates its available transmit power over the set of assigned subcarriers so as to maximize its individual utility (defined as the user's throughput per Watt of transmit power) subject to minimum-rate constraints. In this framework, the relevant solution concept is that of Debreu equilibrium, a generalization of Nash equilibrium which accounts for the case where an agent's set of possible actions depends on the actions of its opponents. Since the problem at hand might not be feasible, Debreu equilibria do not always exist. However, using techniques from fractional programming, we provide a characterization of equilibrial power allocation profiles when they do exist. In particular, Debreu equilibria are found to be the fixed points of a water-filling best response operator whose water level is a function of minimum rate constraints and circuit power. Moreover, we also describe a set of sufficient conditions for the existence and uniqueness of Debreu equilibria exploiting the contraction properties of the best response operator. This analysis provides the necessary tools to derive a power allocation scheme that steers the network to equilibrium in an iterative and distributed manner without the need for any centralized processing. Numerical simulations are then used to validate the analysis and assess the performance of the proposed algorithm as a function of the system parameters.Comment: 37 pages, 12 figures, to appear IEEE Trans. Wireless Commu
    corecore