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Abstract—This work proposes a distributed power alloca-
tion scheme for maximizing energy efficiency in the uplink of
OFDMA-based HetNets where a macro-tier is augmented with
small cell access points. Each user equipment (UE) in the nebrk
is modeled as a rational agent that engages in a non-coopenat
game and allocates its available transmit power over the sedf
assigned subcarriers to maximize its individual utility (defined as
the user’s throughput per Watt of transmit power) subject to a
target rate requirement. In this framework, the relevant sdution
concept is that of Debreu equilibrium, a generalization of he
concept of Nash equilibrium. Using techniques from fractimal
programming, we provide a characterization of equilibrial power
allocation profiles. In particular, Debreu equilibria are found
to be the fixed points of a water-filling best response operato
whose water level is a function of rate constraints and circit
power. Moreover, we also describe a set of sufficient condiths
for the existence and uniqueness of Debreu equilibria expiting
the contraction properties of the best response operator. fAis
analysis provides the necessary tools to derive a power aflation
scheme that steers the network to equilibrium in an iterative and
distributed manner without the need for any centralized process-
ing. Numerical simulations are used to validate the analysi and
assess the performance of the proposed algorithm as a funeti
of the system parameters.

Index Terms—Heterogeneous networks, 5G communications,
energy efficiency, area spectral efficiency, power allocatn policy,
distributed algorithms, game theory, Debreu equilibrium, rate
constraints.

I. INTRODUCTION

O

nication calls, the biggest challenge in the wireless itigus

today is to meet the soaring demand for wireless broadban

Veronica Belmegaylember, IEEE
and Luca SanguinettMember, IEEE

capacity by a thousandfold over the next few years [1], but
the resulting power consumption and energy-related pofiut
are expected to give rise to major societal, economic and
environmental issues that would render this growth unsus-
tainable [2]. Therefore, the information and communiaagio
technology (ICT) industry is faced with a formidable migsio
cellular network capacity must be increased significanly i
order to accommodate higher data rates, but this task must be
accomplished under an extremely tight energy budget.

A promising way out of this gridlock is the small-cell (SC)
network paradigm which builds on the premise of shrinking
wireless cell sizes in order to bring user equipment (UE) and
their serving stations closer to one another. From an opera-
tional standpoint, SC networks can be integrated seamlessl
into existing macro-cellular networks: the latter ensuidew
area coverage and mobility support, while the former carry
most of the generated data traffic [3].

Albeit promising, the deployment of this kind of networks,
commonly referred to as heterogeneous networks (HetNets),
poses several technical challenges mainly because differe
SCs are likely to be connected over unreliable infrastmastu
with widely varying features — such as error rate, outagye
and/or capacity specifications. Accordingly, the inhdgent
heterogeneous nature of these networks calls for flexibde an
decentralized resource allocation strategies that rely on
local channel state information (CSI) and require minimal
information exchange between network users and/or access

XVING to trée ErOI'f'C spread of ITternet;enag!led mobileyyints/hase stations. This framework is commonly refeteed
evices and the ever-growing volume of mobile commug yistripyted optimizationand it represents a crucial aspect

of scalable and efficient network operation.
n established theoretical tool for problems of this kind is

required to ensure consistent quality of service (QoS) in p%vided by the theory afion-cooperative gamdé]. Among

network. Rising to this challenge means increasing the ortw
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the early contributions in this area, [5, 6] investigatee th
rate maximization problem for autonomous digital subsarib
lines based on competitive optimality criteria. In the &pf
these works, a vast corpus of literature has since focused on
developing power control techniques for unilateral speaf-
ficiency maximization subject to individual power congtitai

For instance, [7, 8] proposed a game-theoretic approach to
energy-efficient power control in multi-carrier code digis
multiple access (CDMA) systems, [9-12] investigated the
problem of distributed power control in multi-user mulépl
input and multiple-output (MIMO) systems, [13, 14] studied
the interference relay channel, while two-tier CDMA nethsor
were examined in [15]. More recently, the authors of [16]duse

a variational inequality (VI) framework to model and analyz
the competitive spectral efficiency maximization probldine
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analogy between Nash equilibria and VIs was subsequentlyOur work builds on the game-theoretic analysis proposed
exploited in [17] to design distributed power control algoin [28] where a group of players aims at maximizing their
rithms for spectral efficiency maximization under inteefiece individual energy efficiency (EE) (measured in bits per Watt
temperature constraints in a cognitive radio context. of transmit power) subject to each user’s power constraints
Distributed power allocation policies as above have tHeespite this similarity, the analysis of [28] does not aqudor
important advantage of avoiding the waste of energy asatiaminimum rate requirements, thus the resulting game-thieore
with centralized algorithms requiring considerable infiar model is a standard Nash game with no QoS guarantees — in
tion exchange (and, hence, transmissions) between the ugarticular, the users’ rates at equilibrium could be faldw.
and/or the network administrator [16]. On the other hand, thncorporating QoS requirements changes the setting dadigti
users’ aggressive attitude towards interference fromratbers and takes us beyond the standard Nash framework because a
can lead to a cascade of power increases at the UE lewsder's admissible power allocation policy depends criycial
thereby leading to battery depletion and inefficient energyn the transmit powers of all other users. The energy-efficie
use. Consequently, solutions that focus exclusively octsple framework proposed in this paper represents a generalizati
efficiency maximization are not aligned with energy-efficig of the power minimization under minimum-rate constraints
requirements [18, 19] — which, as we mentioned above, drwestigated in [29], which is a special case that occursnwhe

crucial for the deployment and operation of HetNets. the minimum rates are achieved with equality. Preliminary
o versions of our results appeared in the conference papgr [30
A. Summary of contributions in contrast to this earlier paper, we provide here a complete

Our main goal in this paper is the analysis and desigmuilibrium analysis and characterization along with sigfit
of energy-efficient power allocation policies in a HetNetonditions that guarantee the convergence of the system to a
setting where SC networks coexist with macro-tier cellgi@- stable equilibrium state.
tems based on orthogonal frequency-division multiple ssce
(OFDMA) technology. In particular, focusing on the uplinkg. paper outline and notation
case, we propose a game-theoretic framework where each U

) . . . . |':I'he remainder of this paper is organized as follows. In
adjusts the allocation of its transmit power (over the aé pap g

beari ¢ ilaterall imize its individliak Section I, we introduce the system model and the EE
subcarriers) so as to unilaterally maximize its indivi maximization problem with minimum rate constraints. In

utility subject to a minimum rate requirement, SloeCiﬁc’a”ySection I, we first formulate the non-cooperative game and

each USErs energy-aware l_m“ty function is _deflned as t[Pﬁ"en study the existence and uniqueness of Debreu eqailibri
achieved throughput per unit power, accounting for both tql'{

. o . ection IV presents an iterative and distributed algorithm
power required for data transmission and that reg_ulred by reach the equilibrium point, whereas Section V reports
C|rc_lf||ttcompc(;n§{1ts szgagg UE (such as amplifiers, MX&{umerical results that are used to assess the performatioe of
Osgui Ot:; aenachl E;Se)r’[s r;te].constraints the resulting aa %oposed solution and to make comparisons with alterrative

. ’ 99 \f?onclusions and perspectives are presented in Section VI.
departs from the classical framework put forth by Nash [2 Matrices and vectors are denoted by bold lettdgs, 0,

and_ gives rise to a Debreu-type game [24] Where the aCtIOnr?dlL are thel x L identity matrix, thel x 1 all-zero column
available to each UE depend on the transmit power profile

of all other users in the network. In this setting, the reﬁﬂvavecmr’ qfnd thel XH1 all-one column vector, respectively, and
solution concept is that of Bebreu equilibrium(DE) [24] -1, (-)* and(:)" denote Euclidean norm of the enclosed
gléo Kkno npa‘ls a generall edu Ngls“hl elu ilibrium (GN ector, transposition and Hermitian conjugation respebti
B oW 9 'z . quitibnu he notation(z)* stands fotmax{0, x} wheread¥ (-) denotes
[25]. Drawing on fractional programming techniques [26g w . : .
: , o ' .- the Lamberti function [31], defined as the multiple-branch
characterize the system’s Debreu equilibria as fixed paihts

- . . solution of the equation = W (z)e"*), 2 € C. 1x denotes
a water-filling operator whose water level is a function o th - : . .
users’ minimum rate constraints and circuit power [22] sThIhe indicator function such thatx = 1 if X is true, and

L . po) .0 elsewhere. Finally, itd;, £ = 1,..., K, is a finite family
characterization is then used to provide sufficient coodgi . .

. ) L .of sets, andu, € Ay, we will use the notatior{a;;a_) €
for DE uniqueness and to derive a distributed power alloocati .

) .| [, Ax as shorthand for the profil.,...,ax,...,ax), and

algorithm that allows the network to converge to equilibmiu . -

. . ) : Ay | to denote its cardinality.
under minimal information assumptions. The performance Ef
the proposed solution is then validated by means of extensiv
numerical simulations modeling a HetNet where a macro-tier
is augmented with a certain number of low range small-cd} System model
access points (SCAs). As it turns out, the proposed solutionWe consider the uplink of a slowly-varying HetNet where
represents a scalable and flexible technique to meet the antbilow-range SCAs are adjoined to a macro-tier cell operat-
tious goals of 5G communications [27], such as extremell higng in an OFDMA-based open-access licensed spectrum. For
area spectral efficiency (ASE) (more th&n0b/s/Hz/kn?) notational compactness, we will reserve the index 0 for
with a reasonable amount of physical resources (bandwidkte macrocell base station (MBS), so ti&t= {0,1,...,5}
and power) and complexity at the network level (humber @épresents the set of HetNet receiving stations. FHé
SCs, signal processing burden, and number of transmit acell uses a set of orthogonal subcarriers to serve Ahe
receive antennas). user equipment (UE) falling within its coverage radips

Il. SYSTEM MODEL AND PROBLEM FORMULATION



For simplicity, we assume that the same set of subcarridédsing (3), the achievable rate (normalized to the subaarrie
N ={1,...,N}is used by both tiers. We also assume tNat bandwidth, and thus measured in b/s/Hz) of khth user will

is assigned by the network and cannot be controlled by the deé:
operators. Each cell access point (AP) is further equippéd w

N
M; receiving antennas, whereas a single antenna is employed ri(p) = 1 Z logs (1 4 Yn) (5)
at the UE to keep the complexity of the front-end limited. N n=1
The framework described in the paper can be generalized jferep, — (Pr1s- .., pen) denotes the power profile of user
the case of a multicellular HetNet scenario (including MIMQ. qver all subcarriers, — 1,...,N,andp = (p1,...,Px) €

configurations) in a straightforward manner.

KxNjs the corresponding power profile of all users (obvi-

. . +
Lethy;,, € C*v ! denote the uplink channel vector withg gy 1, = 0 if user k is not transmitting over subcarrier

entries [hy;» |, representing the (frequency) channel gaingy 1o simplify notation, the argument @fy,., andry, will be
over subcarrien from thej-th UE to them-th receive antenna suppressed in what follows.

of the serving APy (k) of userk, wherey(k) : K — S'is
a generic function that assigns each ukdts serving AP
In the following, K = {1,..., K} andK = Y7 | K, denote

B. Problem Formulation

the set and the number of UE in the network respectively, with AS mentioned in Section knergy-efficienhetwork design

K, representing the number of UE in theth cell: if s =0,

must take into account the energy consumption incurred by

the UE will be termed macrocell user equipment (MUE), ang@ch UE. To that end, note that, in _addition to the radiated
small-cell user equipment (SUE) otherwise, although tlierePOWers p;_at the output of the radio-frequency front-end,
no substantial distinction among the two classes of ushis (t€ach terminak also incurs circuit power consumption during
is clarified further in the rest of this paper). We also assurf@nsmission, mostly because of power dissipated at the UE
that the channels remain constant within a reasonable tigignal amplifier [20, 22, 32]. Therefore, the overall power

interval (for more quantitative details, see Section V).

We letz; ,, denote the data symbol of UFover subcarrien
and writep; ,, for its corresponding power. The vectey, ,, €
CMvm*1 collecting the samples received over subcarriat
the AP serving thé-th UE can then be written as

Xkn = /PlnBkknZkn + Lin + Win
wherewy, ,, ~ CN (0

1)

,0°Ia1,,,) is thermal noise and

P (k)
K
Ik,n = Z \/mhkj,nzj,n (2)
Jj=1,j#k

accounts for the multiple access interference (MAI) experi

enced by usek over subcarriem. Note thatl, , accounts
for both intra-cell interference (generated by other UEvadr

consumptionPr , of the k-th UE will be given by

N
Pri=pck+ Py =per + Zpk,m

n=1

(6)

whereP, = ij:l Dk, IS the transmitted power of usgrmover
the entire spectrum, whilg, ; represents the average power
consumed by the device electronics of th¢h UE (assumed
for simplicity to be independent of the transmission state)
Following [22, 33], theenergy efficiencyf the link can then
be measured (in b/J/Hz) by the utility function

Nil 27]:[:1 10g2 (1 + Hk,npk,n)
De,k + 27]:[:1 Pk,n
where the dependence on the transmit power vectors of all

Tk
Pr

ur(p) ()

by the same AP) and inter-cell interference (from UE serverdher users is subsumed in the gajps = {ux.}Y_; of
by all other APs). To keep the complexity at a tolerablgt). Accordingly, in data-oriented wireless networks, QoS
level, a simple linear detection scheme is employed for dateguirements take the form, > 6, wherefy, is the minimum

detection, although a generalization to nonlinear deted®
straightforward. This means that the entriexgpf, are linearly
combined to formyy, , = gé{nka whereg;, ,, is the vector
employed for recovering the data transmitted by usever

rate threshold required by uskr

To summarize, the design of an energy-efficient resource
allocation scheme which encompasses both subcarrier allo-
cation and power control amounts to solving the following

subcarriern. Then, the signal-to-interference-plus-noise ratimulti-agent, multi-objective optimization problem:

(SINR) over then-th subcarrier that is achieved by udeat
its serving AP takes the form:

Veon = Mk (P—k,n)Pkn (3)

where P—ktn = (pl,na <oy PE—1,n5PE+1,m5 - - - apK,n)T de-
notes the power profile of all users excdpbver subcarrier
n, and

2

H
‘gkmhkk.,n

/Lk,n(pfk.,n) - P}
Djn

(4)

1For a more detailed description of this assignment mapjgieg Section V.

2 K
lgk,nll” o + Zj:Lj;ék ‘glgnhkj,n

maximize wug(p),
subject to N! Zflvzl logy (14 piknPr,n) = Ok,

(8a)
(8b)

whereuy(p) is the energy efficiency utility function (7) and
(8b) represents the normalized rate requirement. Thugeunl
other OFDMA resource allocation problems (such as [34,,35])
subcarrier selection and power loading are tackled joirat
manner. Furthermore, inter- and intra-cell interferensmeen
UE transforms (8) into a game where each WE K aims

at unilaterally maximizing its individual link energy-effency
via an optimal choice of power allocation veciof — and, in

so doing, obviously affects the possible choices of all othe
UE in the network.
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Fig. 1. Normalized utility as a function of the normalizedrsmit powers

(N =1, 0, = 2b/s/Hz). Fig. 2. Normalized utility as a function of the normalizedrsmit powers

(N =2, 0, = 2bl/s/Hz).

Remarkl. To visualize the impact of the rate constraints (8b)

on the optimization problem (8), Figs. 1 and 2 depict thgns0gous to what can be observed in Fig. 2 whire= 2
graph of the utility function (7) of usek (normallze(]:iv bY and 6, = 2b/s/Hz. When the channel conditions are not
pe,x) @s a function of the transmit powers. = {pi.nn—1 favorable (in Fig. 2(a)us - per = (1,2)), the optimal power
for a fixed mjgerfe_rence power vectpr; (and hence keeping giocation py, /p.., = (1.83,2.33) lies on the contour of the
{0 (P—1) Yoy fixed). For the sake of visualization, Fig. 1normalized) utility surface that guaranteegp) > 05, (when
depicts onlyN = 1 subcarrier. The dashed black line depicts (p) < 61, we assume here,(p) = 0 for the sake of
the unconstrained utility (7), whereas the solid black "nﬁraphical re,presentation) — thus gettingp) = 6. On the
reports u(p) for the values ofp,, such that (8b) holds, conirary, when the channel conditions are more favorable (i
assuming, = 2b/$/Hz (for convemer_me,_also the ratg is Fig. 2(0), px - pe = (10,20)), the utility is maximized by
reported with red lines)ux1 = 1/p.x in Fig. 1(a), whereas Il)k/Pc,k = (0.37,0.42), that yieldsry, (p) = 2.74 b/s/Hz> 0.

tr1 = 10/pc 1 in Fig. 1(b). As can be seen, the power leve . . _
that maximizesu,(p) (red dot) is on the left boundary of Remark2. Itis easy to see that a particular set of constraints

the feasible power set of Fig. 1(a): in this case, maximizing}r—, may affect thefeasibility of the problem in the sense
ux(p) corresponds to minimizing the power subject to raf§at there might not exisany power allocationp € R
constraints, e.g., as considered in [29]. In general howevihat allows all constraintg, to be metsimultaneously-

the maximization of energy eﬁiciency produces a diﬁeremssentia”y due to mutual interference in the netWOfk, Wwhic
optimal point, as reported in Fig. 1(b) where the focal uséhplies a dependence between the gaips/k. Necessary and
can exp|oit better channel conditions experienced to aEwe sufficient conditions that ensure the feaS|b|I|ty of thebjemn

its utility. This formulation is particularly appealing fmext- (8) in the single-carrier cas&/ = 1 can be found in [21].
generation wireless systems [27], as it captures the tfade@n the other hand, analogous conditions for the general case
between Obtaining a Satisfactory Spectrai efficiency and‘iga of N > 1 subcarriers are very difficult to Obtain, and future
as much energy as possible [19, 22, 33]. This behavior ifyvestigations will focus on addressing this issue.



I1l. GAME-THEORETICRESOURCEALLOCATION gameg, leaving the question of uniqueness and convergence

As mentioned earlier, mutual interference in the network
introduces interactions among the users that aim at ogtigniz B. Problem feasibility and equilibrium existence

their utilities (8). A natural framework for studying such pebreu's original analysis [24] provides a general equilib
strategic inter-user interactions is offered by the thedmyon- rjum existence result under the following assumptions:

cooperative games with continuous (and action-depende ) The players' feasible action s& (p_) are nonempty,

action sets. Thus, following Debreu [24] (see also [25]), closed, convex, and contained in some compacCgset
we will formulate the problem as a non-cooperative game for a”i) - P,k = 1, Pe
. . = Z?ékf .

G=G(K,P,u) conS|st|ng_of the following componef]ts: (D2) The setsPy(p_x) vary continuously withp_x (in the
a) The set ofplayersof G is the setC of the network’s UE. sense that the graph of the set-valued correspondence
b) A priori, each player can choose any transmit power vector p_j, — Pr(p_) is closed).
in P, = RY. However, given a power profile_x € P} = (p3) Each users payoff functionu(p;p_s) is quasi-
[Tesr Py of the opponents of playek, the feasible action concave inpy, for all p_y € P_y.
setof playerk in the presence of the rate requirements (8b) In our setting s (

o Pr; P—k) in (B) is concave inp, and un-

bounded from above, sBy(p_&) is convex and nonempty for
Pr(p—r) = {Pr € PY :7(p) > 61} . (9) all p_; € PP. Moreover,Py(p_) varies continuously with
. . p_r because the constraints (8b) are themselves continuous
¢) The utility u(py; p-x) of playerk is given by (7). in p_g. Finally, it is easy to show that,(px;p_x) is quasi-
In this framework, the most widely used solution concept igoncave inp;,: sinceu,(px; p—x) > a if and only if
a generalization of the notion of Nash equilibrium [4], knmow

asDebreu equilibrium(DE) [24] and sometimes also referred 1 (PR P_i) —a (pc N ZN . n) >0, (1)
to asgeneralized Nash equilibriufGNE) [25]. Formally: n=1""") 7

Definition 1. A power profilep* is a Debreu equilibriumof ~and the set defined by this inequality is convex for every

the energy-efficiency gam@ if pP-« € P_j (recall thatr, is concave inp;), quasi-concavity
) ) of ui(-,p—x) follows.
P € Pe(PZy) VkEK, (10a)  However, even though the users’ best response sets
and Pi(p-k) = arg max ug(Pr;P-k) (12)
* * * kEPK(P-k
un(p*) > ur(prip*y) VP € Pe(p™y), k€ K. (10D) prePup)

L ..., are nonempty, convex, closed and bounded for eyery,
. The main dlfferenc_e betW(_aen Debreu and Nash ?qu'l'brt'l;?ey might (and typically do) run off to infinity — i.e. theyear
is that the latter notion posits that players can unilalgral, uniformly bounded. To understand this, simply consider
deviate toany feasible action, irrespective of whether thi?he case of two UE transmitting over a single channel: if
act!on satisfies the (cou_pled) constraints imposgd on&PRY e of the UE transmits at very high power, the other UE
actlo;_ﬁset t|>y the hactlonsd OT c-)ther. pIIayders n the_bgamg'forced to transmit at a commensurately high power in order
PUt. ! erently, N«":ls_-ty_p_e eviations include any acti at_t to meet its rate requirement. This leads to a cascade of power
satisfies a player’s individualyncoupledconstraints, even if increases that makes each UE's feasible actiorPsép_;)
so doing vi_olates the playertsnupledcon_strgints. In the case and, henceP; (p_) as well) escape to infinity as the other
at hand, this means that, at Nash eq“"'b”“m users would increases its individual power. Formally, this meang tha
allowed to transmit at any power level, even if this violaties the UE's feasible action setBx(p_x) are not contained in
system’s transmission rate requirements. On the other,hacnlf:T enveloping bounded se. Thus, Debreu’s equilibrium
these feasibility constraints are already ingrained in Eie ' ’

i . e ; _ existence theorem [24] does not apply.
concept: the only unilateral deviations considered in &0k From a power control perspective, this is not surprising: as
those for which the rate constraints are satisfied. '

is well known [36], the problem (8) may fail to be feasible,

As such, Debreu equilibria are of particular interest in tfﬁ(_ee_ there may be no power profige— (p, .. ., px) such that

context of distributed systems because they offer a stable € Py(p_) for all k. Obviously, in this case, the energy-

solution of the game from which players (in this case, U fficiency gameG does not admit an equilibrium either. On
the other hand, at a purely formal level, equilibrium exise

have no incentive to deviate (and thus destabilize the sysfe
Zveryc()jne TIS? m?:m?'r;ls their chpsen powerslloce}tmnlpsoﬁ and problem feasibility are restored if we assume that users

ccordingly, In what follows, we investigate the existe can transmit with infinitely high power, i.e. each UEe K
chooses its total transmit power from the compactified half-

characterization of DE in the energy-efficient power altama
2The difference between Nash and Debreu equilibria is hgleid further line [07.“‘00]- m. th'§ eXtended_ setgp, there are two points
if each player's transmit power is also constrained by a pedtie (see below where indeterminacies may arise: first, the utility of plaie
for more details): in this case, each user’s individual poeemstraints would s not well-defined ifpr.. = +oo for somen; second, the rate
have to be satisfied by Nash-type deviations (and, of coldsbreu-type . ’ . . . .
requirement (8b) of uset is also ill-defined ifp,,,, = +oo

deviations as well), but Nash-type deviations would notessarily satisfy !
the users’ coupled QoS constraints. for some/? # k. To address these problems, note first that



the utility function (7) of playerk decreases td) when 1) The energy-efficiency gamg@ admits a DE withfinite
prn — +oo for some channek = 1,..., N, reflecting the transmit powers (Section 11I-C).

fact thatlim, . 2~ !log, x = 0. Thus, by continuity, the 2) This equilibrium is unique (Section II-C).

utility of player k£ for infinite transmit powersgp, , may be  3) Users converge to equilibrium by following an adaptive,
defined as: distributed algorithm (Section V).

u =0 wheneverpy,, = +oo for somen. 13 o L ,
+(p) P, (13) C. Equilibrium characterization and uniqueness

The goal of this section is to characterize the game’s DE by
exploiting the fact that they are the fixed points of a certain
N vo best-response mapping.

H (1 + pk,nprn) = 277% (14)

n=1

or, after substituting foy:;, , and rearranging:

As for the rate requirements of ugera simple exponentiation
of (8b) for finite p yields the equivalent expression:

Proposition 1. A transmit power profilep* is at Debreu
equilibrium if and only if its componenis; ,, satisfy:

N K Py = ( ! 1 )+ a7
2 kn — \ Y%
1T {lgrnl®o® + > |efbujn| pin | > A i
n=1 j=1 where
N ) _
2 Ap =min { Ag, Ax - (18)
250 T [ llginl?o* + 3 et b i |- @15) b= min Qe A
n=1 £k In the above,
Since both sides of (15) are well-defined for all, € A W (o - e+ 1) (19)
[0, +0o¢], (15) provides a reformulation of (8b) that remains B g
meaningful even in the extended arithmetic[@f+oc]. is the water level of the water-filling (WF) operati7) when
In this infinite-power framework, any power profif#* = he problem(8) is solvedwithoutthe minimum-rate constraints

* * 1 N * 1
(T, -, Px) With 32 pi, = +oo for all k € K is (gp) (i.e. whend, = 0 for all k € K), W(-) denotes the
feasible with respect to (15). Furthermore, if plajedeviates | gmperti function [31], while

unilaterally and starts transmitting with finite total power, its

raF(_e requirement (15) will be automatically wola?ed ans_i.|t ap = |Sk|_l (pc,k . Z MEL) (20)
utility equals 0. Consequently, no player can gain a utility '

greater than0 by deviating fromp*. This shows that the neSk

resulting infinite-power gamé with utility functions and rate and

requirements extended as in (13) and (15) above always sidmit 1

a DE - and trivially so. However, any such equilibrium is B = |Sk| Z In pug,n (21)
clearly unreasonable from a practical standpoint as iterepr n€Sk

sents a cascade of power increases that escapes to infinitwhere S, = {n € N : u,, > A} denotes the subset of ac-
players try to meet their power constraints. tive subcarriers when using the uncostrained energy-efftci

In view of the above, we could consider an alternativiermulation. Similarly:
formulation of G in which the usersuncoupledaction sets _ Vo V5N
(i.e. unadjusted for the actions of other users) are of the fo e = (27" [Tes, trn) " (22)

PY = {pk c Rf 10 < pen < ﬁk.,mz Pim < pk} (16) is the water Ieyel of(17) Whenf_zlll minim_um-_rate constraints
n (8b) are met simultaneously with equality (i) reduces to
for given maximum per-subcarrier transmit power levgls, a power minimization problem with equality rate constraint
and total power constrainiy. In this case however, a crucialr, = 6;,), and, as aboveS;, = {n EN: pn > Xk} denotes
arising problem is that the resulting system could be evée subset of active subcarriers.
unilaterally infeasiblein the sense that the admissible action Proof: The proof is given in Appendix A and relies

Setpk(.p*k) of play_erk may be empty for a \.N'de range Ofon defining the best-response mapping and using fractional
transmit power profilep ;. of the other users in the system. ; NN .
rogramming to characterize its fixed points. [ ]

Put differently, in the presence of maximum power constsain’

(a case that will be discussed at the end of Section IV), aRRgmark3. Proposition 1 does not provide a way to calculate

given user may not be able to even participate in the game (lng water levels\, and \;. For an iterative computational

stark contrast with the formulation (9) &9, thus exacerbating Method, the reader is referred to Section IV.

the equilibrium existence problem. Despite its convoluted appearance, Proposition 1 is of crit
Of course, given that actual wireless devices cannot trancal importance from both a theoretical and practical point

mit at arbitrarily high levels, it is still crucial to deteine view. Indeed, it is the basic step to derive sufficient candi

under which conditions the gan® admits a realizable DE. ensuring the existence and uniqueness of the DE and also to

Therefore, in what follows, we will focus on conditions andlevelop a distributed and scalable power allocation algari

scenarios, which guarantee that: that steers the network to a stable equilibrium state.



To that end, note that the equilibrium characterization dfligorithm 1 Iterative algorithm to solve problem (8).
Proposition 1 may be vacuous if the game does not admit afse.t.t = 0
DE to begin with — for instance, if the original power control initialize py[t] = 0y for all usersk € K

problem is not feasible. On that account, we have: repeat
for k=1to K do

{loop over the usets
receive {7y ,[t]}Y_; from the serving AP

Proposition 2. The energy-efficiency gandeadmits a unique
DE p* whenevelvk € K:

K N 1 compute )\, using Algorithm 2 and\; using inverse
SN wiinsup |5 Y wid, (Rt —26m) | <1 water-filling
j=1n=1 €. | Ok neS} ' set \; = min {/\k,xk}
ik (23) for n=1to N do
{loop over the carriefs
where€, = [T32, (0,0 %wik,n], <t = S, update py,n[t + 1] = (1/Xf = pr.n[t]/vrn[t])
9 end for
’gﬁnhkj_,n end for
Wrjn = ———5— (24) update t =t + 1
gk until pft] = pxlt — 1] for all k € K
and
N Sk if A\ > A
S = {Sk if A < g (25) IV. DISTRIBUTED IMPLEMENTATION
uk,nX;Zl if X < Ay andn € Sf fTo deri\(/je a %ract(ijc?l pr:ocn(\a,((juhre aIIowir:jg UE to regch the DE
Y BT N * of G in a distributed fashionwithoutany distinction between
Sk = Xt ff Ak > A andn € 5 (26) SUE and MUE), we start by focusing on a specific WE K
0 if n ¢ S§ and assume that all other UE # k have already chosen
with v = —In A\, + (Br — 1). their optimal transmit powerp_, = p*, (in a possibly

_ _ . ) asynchronous fashion). From (4), we then see that the gains
I_3roof. The main steps for the_proof are given in Ap-ﬂ.k,n(Pikn) needed to implement (17) are simply
pendices B and C; for a more detailed version, the reader is '

referred to the online technical report [37]. ] * _ kn >
. - y . Hen(PLin) = (27)
Remark4. Notice that these sufficient conditions are similar Pkn

to the well-known conditions ensuring the uniqueness of g, 4| ;, ¢ A/, This means that the only information that is
Nash equilibrium in the non-cooperative rate maximizatiog,; locally available at thé-th UE to compute the optimal
game studied by [9] in the context of the interference Chh””Bowers{p* } is the set of SINRS[~..} measured at the
Intuitively, (23) means that if the interfering connectidior a serving 58& of thek-th UE. and which can be sent with a
user are sufficiently far away and the resulting SINR is highogest feedback rate requirement on the return channel (a

enough, then the DE exists and is unique. However, theggcyssion on the impact of a limited feedback can be adapted
conditions include a non-trivial optimization step w.ri to this specific scenario from [38]).

that depends on the actual opponents’ power,. Indeed,
the variables of the problem impact the values\pf S; and
all functions¢;, ,, making the conditions rather difficult to be

exploited. To tackle this issue, the online technical refr] system of equations (17) with a low-complexity, scalable an
provides a set of sufficient conditions that are simplersTi&i adaptive procedure. The pseudocode for the whole network
achieyed by ob_serving that the UPpef'bOU”O,' of the supremyg,mmarized in Algorithm 1. Note that, in practice, each
term in (23) boils down to computing afuncuoq of the SYSteyE 1 ¢ K only needs to implement the steps for only one
parameters only. The downside is that these simple cone_ht|q/a|ue in the user loop (i.e., its own index), so the algoriism

are more stringent than (23). Nevertheless, itis worth@in g ,irapje for asynchronous implementation in dynamic netwo

out that the users of the network are never required to COPUL gy rations where each UE only requires the SINRS to be
thege conditions: (2,3) is only meant asa safety featuredouey pack by the serving SCA, without any further information
against catastrophic system instabilities, to be caledldty on the network.

the network administrator based on expected network USa9%-, the sake of clarity, the algorithm to compue for

scenarios. each UEE € K as in (19) is reported in Algorithm 2,
Remark5. Since the conditions of PrOpOSition 2 are Onlwvhereasxk can eas"y be Computed using standard inverse
sufficient, DE might exist even in the case where (23) does R@hter-filling (IWF) methods [26]. Note that, although (19)
hold for somek € K. As a matter of fact, when (8) is feasiblejs derived analytically in closed form and can be computed
the distributed algorithm that we present in Section IV iairecﬂy, it is still appea"ng to use the iterative procmju
observed to converge to a DE in all the numerical simulatioggtiined in Algorithm 2, which takes advantage of the Dinkel
performed and for every network scenario considered.  pach approach [39] based on Newton’s method. The latter is

Based on the above considerations, we can derive an it-
erative and fully decentralized algorithm to be adopted by
each UEk at each time step to solve the fixed-point



Algorithm 2 Iterative algorithm to compute;, as in (19). that: i) Algorithm 1 can easily accommodafé’; }rcx and

seta tolerance < 1 {Dr.n trek,nenr, by settingA; = max {min {\x, \x}, A}
{initialization of the Dinkelbach metho}: where ), is computed using direct WF [26] (by maximizing
repeat the rater; (p) under the constraianLV:l pe.n = Pi), and by
selecta random\;, € R setting
forn=1to N do (L . n
setprn = (1/\k — palt]/1nlt]) Pkt + 1] = min {pk,n, (1/ AL = prnlt]/vh,n[t]) } ; (28)
end for

i) reasonable values d¢fP;,} e and {Pr.n}kex nen do not
modify the optimal power allocatiop* in practice. In the
interest of providing a practical algorithm that can be uged
real-world scenarios, our extensive simulations in Seclo
make use of the modified algorithm, in which we observe that
the selected values for the power constraints are neveednti
practice, so the theoretical results of Section Il remaifidv

compute ¢(px) and x(px) using (31) (see Appendix A)
set®(\x) = ¢(Pr) — Aex(Pk)
until ®(A;) >0
{Dinkelbach method:
while ®(\;) > ¢ do
set A\, = ¢(pr)/x(Pk)
for n=1to N do

setpin = (1/M = penlt)/yenlt])” V. NUMERICAL RESULTS

end for

update o (py) and x(px) using (31) Numerical simulations are now used to assess the perfor-

set®(\,) = o(pr) — Aex(Pr) mance of the proposed algorithm under different operating
end while conditions. To keep the complexity of the simulations e

while considering a significantly loaded system, we focus
on the scenario reported in Fig. 3, where a square-shaped
gjacrocell with an area a200 x 200m? centered around its

known to converge superlinearly for convex nonlinear fra o
g P y BS accommodateS randomly distributed small cells, each

tional programming problems [39], and leads to substant

computational savings compared to evaluating the Lanibert with a radius prs = Ps = 20 m. Throughout the S|mulat|9ns,
function directly. Interestingly, the Dinkelbach algbit can unless otherwise specified, we adopt the parameters rejporte

also be properly modified to address the computation of tﬂ'gble | (see [20] and references therein), where, for siritpli

IWF-based quantity\, thus saving the complexity required]e\f[lCh SdC IS assumhed to have thg sar]pe ;Jml?\;zr of antennas
for sorting the coefficient§ . ,}2 ; in a descending order - ¢ and to serve the same number of usars. Moreover,

[40]. For the sake of brevity, Algorithm 2 makes use of som%|I UE are assumed to have the same noq—rg@atlve_power
and the same power limit8; = P

functions that are introduced in the proof of Proposition ionslumpﬂciryoqk = Pe dqf Il sub . R K7
(Appendix A). For future reference, throughout the simiotes  21dPk.» =P are imposed for all subcarriers (see Remark 7).

reported in Section V, the convergence tolerance is set 18 include the ef_fects of fad?ng and shadowing, we use the
; pﬁ\th-loss model introduced in [41], using24-tap channel

model to reproduce multipath effects. We also assume pgerfec
channel estimation at the receiver end and the use of maximum
Proposition 3. The iterates of Algorithm 1 converge to Debreuatio combining (MRC) techniques, which amounts to setting
equilibrium wheneve(23) holds. grn = hyp, forall k € K andn € M. The UEL € K is
mthen assigned to APs< S following the mapping:

is a DE by testing the characterization of Proposition 1.

Proof: The convergence of Algorithm 1 to an equilibriu
point follows from the contraction properties of the best- ok = {s ds>0s.t.dgs < ps

response mapping investigated in Section IlI-C. [ | 0 otherwise (29)

Remark6. Although the contraction properties of the best;, .o d, . denotes the distance between UEand SCA

response _rrjapping are_conting_ent on the sufficient consition \jinoyt joss of generality, we measure the performance
of Proposmon_ 2, Algorithm 1 is stlll_ seen _to converge to_ For a specific user (say usep within either an SC or a
DE of g, prowded_ that the proble_m is feasible to b_egm Wltf;lnacroce”, by averaging over all possible positions of thers,
(see the next section for a numerical assessment via exenginitormiy randomizing their minimum-rate constrairts in
numerical simulations). [0, 2] [b/s/HzZ] for k # 1.

Remark?. In the theoretical analysis of Section Il (as well To evaluate the proposed algorithm in a practical setting,
as in Algorithm 1), we consider neither total maximum powef¥ig. 3 reports a random realization of the network with the
constraintsP;,, such that,P, < P;, nor per-subcarrier maxi- parameters described above, in which the following quiastit
mum power constraintg, ,,, such thapy. ., < py ,,. Although have been reduced for the sake of graphical representation:
power masks are usually required by wireless standardsAg = 3, Ko = 6, and N = 12, 6, = 1.5b/s/Hz for
meet out-of-band emission policies, the power linfif%, } rcxx  SUE, andd;, = 0.5 b/s/Hz for the MUE. Using the distributed
and{py. , } rex nen Significantly impact the analytical charac-algorithm described in Section 1V, after rougtly iterations
terization of the DEp*. For the sake of theoretical correctnesaye get the solution to (8), representing the users’ power
they are thus not included in the present work and are left pofile at the DE ofG, and reported in Fig. 4. Here, the
a future direction of research. However, it is worth stmegsi first five subplots correspond to the powers allocated in the



Table |

GENERAL SYSTEM PARAMETERS

Parameter Value Parameter Value
Bandwidth B =11.2 MHz Carrier spacing Af = 10.9375 kHz
Carrier frequency fe=2.4 GHz Macro-cell area 0.04 km?
Total number of small cells S=5 Small-cell radius ps =20m
Number of antennas (MBS, SCA) My = 16, Mg =4 Density of population 1,000 users/km
Number of SUE per small cell Kg=4 Number of MUE Ko =20
Number of subcarriers N =96 Noise power Bo? = —103.3 dBm
Non-radiative power pe = 20dBm Path-loss exponent (=35
Cut-off parameter dref = 35 M Average path-loss attenuation &ts Lret = —84.0 dB
Maximum total power P =40dBm Maximum per-subcarrier power p =30dBm
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Fig. 3. Random realization of a network wih = 5 small cells,Kg = 3
SUE, andK(y = 6 MUE, sharingN = 12 subcarriers.

Fig. 4. Outcome of the resource allocation for the scenafi&ig. 3. The

subcarriers are allocated exclusively when the MAI wittie small cell is

large. All users achieve their rate requirements. Userls faitorable channels
increase their powers to maximize their own utilities.

small cells (thes-th subplot depicts the powers allocated by

the users in thes-th small cell, with colors matching the order of few milliseconds (which is reasonable for LTE/LTE-
ones used in Fig. 3), whereas the last two subplots shéwstandards [42]). In these circumstances, the average con-
the powers selected by the MUE labeldd6,17,18} (in vergence time of the proposed solution turns out to be in the
the sixth subplot) and 19, 20,21} (in the seventh subplot), order of tens of milliseconds (since convergence is achieve
respectively. As can be seen in Fig. 4, this method tend#er approximately 20 iterations): such interval is sigfitly

to allocate the subcarriers in an exclusive manner wheneggorter than typical channel coherence times, especidinw
the MAI across UE within the same small cell is too largeonsidering usual SC scenarios with pedestrian users.

(e.g., see thetth small cell, in which only5 subcarriers  To assess the robustness of the proposed solution to network
are shared by thé users), and to share the same subcarriperturbations, we depict in Fig. 5 the total power consuampti
when the MAI across users is at a tolerable level (which alss a function of the iteration step for the network setting of
includes the interference generated by SUE from neighgorikig. 3 (lines are identified by UE labels, using the numbering
cells and the MUE). On the right hand side, we report tredopted in Fig. 3). In particular, for the sake of claritycs all
achieved rates at the DE in b/s/Hz. As can be verified, ather users show similar results, we only report the behavio
users achieve their minimum demands, while for users witi SUE in small cellss = 1 ands = 4, and the MUE19
particularly favorable channel conditions (in this cassers and21, when, att = 25, two cell-edge users (namely, users
no.1, 11, 19, and21), it is convenient to increase their transmi 3, 12}) simultaneously change their receiver association: both
power so as to obtain better performance in terms of EBecome served by the MBS, due to a variation in the received
As we mentioned in Section Il, we assume the channel s@nal strength (with ensuing reduction of their data rate
be weakly time-varying. Otherwise stated, we assume thatjuirements td).5 b/s/Hz, like all other MUE). As can be
the convergence of the proposed algorithm is achieved defseen, the algorithm is very robust to network perturbations
significant channel variations, as is customarily assunmed dand guarantees fast convergence for all users in the network
all closed-loop resource allocation schemes. To supp@t thto the new equilibrium point. In this particular exampleclea
assume that the uplink and downlink slot durations are in tl#E’s power decrease is due to a lower interference generated
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Fig. 5. UE total power consumption as a function of the iterastep. The
power allocation fastly converge even in the presence oflaucthanges in

the network configuration, e.g., due to UE mobility or chdrfhectuations.
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Fig. 6. Average utility at the equilibrium as a function oftminimum rate
6. Compared to an IWF-based solution, the Debreu equilibricaly perform

worse in terms of overall network utility. However, the IWigsed solution
is not a stable operating point: user 1 has always an ineetideviate and

highly increase its own utility.
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Fig. 7. Average transmit power at the equilibrium as a fuorctf the distance
from the receiver. The HetNet configuratiof & 5) significantly reduces the
power consumption of the UE compared to the macro-cell idalsscenario
(S = 0) for any rate requirements.

rated;, using the parameters reported in Tabldnterestingly,
there exists a criticafl, (in this case(.28 b/s/Hz), for which
the EE of IWF is higher than that achieved by the proposed
formulation, mainly due to a weaker MAI caused by the IWF
users, that transmit at lower powers than energy-efficiaaso
(not reported for the sake of brevity). However, IWF polgie
are not stable: if the network’s UE adopt an IWF approach,
then a UE that deviates from this criterion woudpleatly
increase its EE(represented by the green line in Fig. 6).
This situation is reminiscent of the well-known prisoner’s
dilemma [4] where there exist states with higher average
utility, but which are obviously abandoned once a user desia
in order to maximize his individual benefits — and, hence,
are inherently unstable in a non-cooperative, decengaliz
setting. In addition to this, the proposed approach shows tw
interesting properties compared to IWH) averaging over
all network realizations and all minimum rates, Algorithm 1
achieves an average utility af76 Mb/J, which is larger than
the IWF-based one, equal 169 Mb/J; andii) it introduces
fairness among the users, as its performance in terms of EE
is weakly dependent on the QoS requirem@nt

To measure the benefits of a HetNet configuration with
respect to a classical macrocellular architectuse € 0),
Figs. 7 and 8 depict the average total transmit powers and
the achievable rates at equilibrium in terms of the distance

by the “new” MUE — which, in turn, is a consequence of theifepyeen the observed user and its receiver, averaged over

lower target rates.

To the best of our knowledge, there are no resource aII-Eh

cation algorithms that address the energy-efficient foatnorh

(8) subject to the minimum-rate demands (8b). To evalu

the improvement in terms of EE of the proposed techni

q

2,000 independent feasible network realizations per marker.
e green and red lines represent the performance in the case
of S = 5 small cells,Ks = 4 SUE, andK, = 20 MUE,
zfghieved by an SUE and an MUE, respectively, whereas blue

?}Qes show the performance obtained by an MUE in the case

(red)’ we thus compar(_e its perforrnancg with that aCr.]ieVGd‘Throughout all the simulations in the present and subseqgeaphs,
by an IWF-based solution (blue), in which all users aim aifie selected parameters yield an occurrence of feasibleasos, assessed
meeting@k with equality [29]_ Fig. 6 reports the average utilitya posteriori by letting each UE achieve their minimum-rat@straint (8b)

achieved by averaging over all possible positions of a @arti,

with equality, larger thar99%. Once the scenario is checked to be feasible,
e convergence of Algorithm 1 to a stationary point (a DEyurs with

ular MUE (say userl) as a function of a specific minimum probability 1.
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Fig. 9. Average rate at the equilibrium (left axis) and agergpower
Fig. 8. Average rate at the equilibrium as a function of tretatice from the consumption (right axis) as functions of the number of smells. Introducing
receiver. The HetNet configuratiors (= 5) significantly increases the rates more small cells increases the average rate and reduceseitzg@ power con-
of the UE compared to the macro-cell classical scenaie=(0) for any rate sumption in the network while guaranteeing the minimum ratpirements.
requirements.

©
=]
S

S = 0. We consider three different minimum demands forg
the SUE (, 0.75, and 1.5 b/s/Hz, represented by circular,
square, and upward-pointing arrowheads), and three difter
demands for the MUE(( 0.25, and0.5 b/s/Hz, represented by
circular, downward-pointing arrowheads, and diamond markg
ers respectively). As can be seen, the HetNet configuratio®
introducessignificant gains in both the achievable rates and%
the power consumptiocompared to the classical scenario:
by averaging over all possible positions of SUE and MUE
across the macrocell area, the MUE getp*) = 0.68 b/s/Hz
with a power consumptio; = 27.5dBm (566 mW) when
placing#; = 0.5 b/s/Hz?# compared tor; (p*) = 0.63 b/s/Hz
with Py =~ 29.1dBm §13mW) for the same minimum
demand in the casé = 0. The HetNet configuration is also  *% 1 2 s 4 5 & 71 &
beneficial in terms of ASEusing these parameters, we get number of small cellsy
on average slightly more thaén0 b/s/Hz/kn?, compared to Fig. 10. Average area spectral efficiency as a function of thmber of
500 b/s/Hz/knt for S = 0. small cells. Introducing more small cells increases theage area spectral
Introducing small cells has a negative impact in terms of tfdicency as well
algorithm’s convergence rate: here, on averddeiterations

are required for the casé = 5, compared t03.5 for the g arger number of antennass(versust). However, this does
case S = 0. This is due to decentralizing the resourc@ot hoid true as the MUE distance increases: averaging over
allocation at each receiving station, thus slightly slayvthe 4, positions, SUE obtain an average rajép*) = 1.51 b/s/Hz
convergence of the algorithm. However, this provides aelnett(more than twice the MUE's one) using; ~ 28.6dBm

MAI managemgnt ensure_d by S_CAs, that allow SUE to obta(932 mW, slightly higher than MUE’s one).

higher rates with lower interfering powerst the MBS. As ~ emphasize the impact of small cells on the system per-

can be seen, due to the path-loss model employed, whichdgnance, Figs. 9 and 10 compare the performance, averaged
roughly constant for distances withitter > ps, the SUE qyer 105 independent network realizations, achieved by an
performance isindependent of the distance from the SCAyE ysingg, = 0.25 b/s/Hz in the same network as before,
When SUE placed; = 1.5b/s/Hz, the spectral efhf'C'enCyPopulated by = 40 users, as a function of the number of SCs

is similar to that achieved by MUE located at comparable oach havingk's = 4 SUE, ranging froms = 0 (classical
distance from the MBS (see Fig. 8), but at the cost of a 'argﬁ‘{acrocell) toS = 10 (only SCs — in this case, the MUE of

power consumption (see Fig. 7): this is due to a better diyersjyerest hecomes an SUE). Fig. 9 depicts the achievable rate

at the receiver obtained by the MUE, since the MBS employggq jine, left axis) and the total power consumption (biae|

. _ _right axis), whereas Fig. 10 shows the ASE. As is apparent,
4Note that such minimum demand is about one order of magnitude

larger than the one considered for cell-edge users in 4Gankswequal to introducing SCs in th_e S_yStem hasignificant b_eneflt n terms
0.07 b/s/Hz [42] for a scarcely populated cell (at mast users). of all performance indicatorsOf course, this comparison
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Fig. 11. Average rate (left axis) and average ASE (right)aassfunctions of . ) )
the number user per small cell. The average rate decreasieghsinumber Fi9- 12. Average power at the equilibrium as a function of¢heuit power.
of users per small cell because of the MAI. However, the ASEdseasing The average power consumption scales linearly with thesitigower in the
with the the number of users per small cell. Moreover, ingireathe number EE formulation.
of receiving antennas at the SCA improves both, the aver@igeand average
ASE.

seen, the total power consumption at the equilibrietpgp™)

is directly proportional top.. Put differently, the energy-

does not account for the additional complexity and drawbackfficient equilibrium point is highly impacted by the non-
introduced by increasing (to mention a few, initial cost of radiative power, and the bit-per-Joule metric suggests the
network deployment and maintenance, and complexity of thse a radiative power which is comparable with the non-
system). However, although a suitable tradeoff needs to tasliative one. Interestingly, the (normalized) achiegataltes
sought, our analysis confirms thagtwork densification is one at equilibrium (not reported for concision) do not depend on
of the key technologies to meet 5G requirem¢atg. p. (1.1 and0.6 b/s/Hz for SUE and MUE, respectively). This

To verify the scalability of the proposed solution, we aiso i confirms a result which is well-known in the literature (e.g.
vestigate the impact of the number of receiving antennaseat €€ [22]):EE increases as the circuit (non-radiative) power
SCA Msg. In Fig. 11, we plot the spectral efficiency (red linesflecreases Hence, reducing., which is one of the main
left axis) and the ASE (blue lines, right axis) as a functioflrivers in the device design further boosting the researthis
of the number of users per small cdlls. Circular, squared, field, can achieve a two-fold goal: not only is it expedient to
and triangular markers represent the casesMigr= {2, 4, 8} reduce the constant power consumption (from an electronics
antennas at the SCA. The ASE is averaged over all us@gint of view), but also it leads energy-aware terminals to
K = Ko+ 5S-Kg, whereas the achievable rate is computed fégduce their radiative power when they aim at maximizing
an SUE of interest using; = 1b/s/Hz, averaging ovet0® their bit-per-Joule performance (from an informationettegic
independent network realizations. As can be seen, incrgasand resource-allocation perspective).
the number of antennas yields significant performance gains
thus representing a design parameter that can be exploited VI. CONCLUSIONS AND PERSPECTIVES
to boost the performance. Not only the spectral efficiensy, a In this paper, we proposed a distributed power allocation
expected, benefits from increasings (as an example, we canscheme for energy-aware, non-cooperative wireless usérs w
move from500 b/s/Hz/knt, achieved when using antennas, minimum-rate constraints in the uplink of a multicarriet-he
to 1,000 b/s/Hz/knt, by increasing the number of receivingerogeneous network. The major challenge in this formuatio
antennas up t8, supportingk’ = 60 users), butlso does the is represented by the minimum-rate requirements that bast t
EE, confirming a recent result available in [32]: here, wheproblem into a non-cooperative game in the sense of Debreu,
Ks =7, moving fromMg = 2 to 8 yields more than &-fold in which the actions sets of the players are coupled (and not
increase in the utility. independent as in the case of Nash-type games). We used

Finally, to evaluate the impact of the circuit powgr on fractional programming techniques to characterize theegmm
the EE of the system, we show in Fig. 12 the performance efuilibrium states (when they exist) as the fixed points of a
the proposed algorithm as a functionzof averaged over0> water-filling operator. To attain this equilibrium in a distted
independent network realizations, where the red line sefdashion, we also proposed an adaptive, distributed algarit
to an SUE usingd, = 1b/s/Hz, and the blue line refershased on an iterative water-filling best response proceds an
to an MUE using#, = 0.25b/s/Hz. For all selected non-we provided sufficient conditions for its convergence. The
radiative powerg,. € [0,20] dBm, the hypothesip. > o> convergence and performance of the proposed solution were
holds, which is in line with the state of the art for radiofurther assessed by numerical simulations: our resultsvsho
frequency and baseband transceiver modeling [20]. As canthat reducing the non-radiative power consumed by the user
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device electronics, offloading the macrocell traffic througis replaced by\,. By plugging (33) back into (32), we can
small cells, and increasing the number of receive antennéisally compute the optimal power leval:
are critical to improve the performance of mobile termirials B
terms ofboth energy efficiency and spectral efficiendging — A+ (B — 1) = ard (34)
a realistic simulation setup, we showed that the proposg@here the functions;, and; are defined as in (20) and (21),
framework is able to achieve significantly high area spéefra respecuvely To provide a better insight on (34), let usrdefi
ficiencies (higher than, 000 b/s/Hz/kn?), peak and cell-edge v, = —In), + (Bx — 1), so that (34) can be rewritten as
spectral efficiencies (up tob/s/Hz and around.5 b/s/Hz, re- , e¥» = ae+ 1. Using the Lambert functiofil’(-) we can
spectively), and energy efficiencies (several Mb/J), wbda- obtain the expression of; as in (19).
sidering dense populations of users (arown@b0 users/kr), Introducing back the constraint (8b) simply places a lower
low power consumptions (at most a few Watts), a limitegound ony(pr): ©(pr) > b. Following [22], this is equiva-
number of antennas (at mdsfor the small-cell access pointsjent to setting an upper bour, on )., that comes out of the
and 16 for the macrocell base station), and simplified sign@lV/F criterion that minimizesy(px) given o(px) = 6y, and
processing at the receiver (maximal ratio combining). is equal to (22). Hence, the solution to (8) is given by (17),
The system model adopted in this work encompasses a mafth \; computed as in (18).
generalmulti-cellular and multi-tier network, and the derived
approach can be automatically adapted to such scenarios. APPENDIX B
Moreover, distinguishing features of the proposed distst PROOF OFPROPOSITION2
algorithm are itsscalability and flexibility, which make it
suitable for emerging 5G technologies [27], such as ulzasée o : -
e BE) = B ), By ) i B ) -
Challenging open issues for further work includé} as- ex%sts sgrkxfgkép[ok)l) suc];1 It)hat o
sessing the feasibility of the problem given a particulat- ne
work realization for the multicarrier casé; evaluating the  ||B(p1) — B(p2)|| < ¢||p1 — p2|| Vpi,p2 € P, (35)
impact of different receiver architectures (such as msitiu % ’
zero-forcing, and interference cancellation techniquesjhe Where P = [Ti—1 Px- The nth component of usek’s best
spectral and energy efficiency of the netwoiik} accounting €SPONSe is given b (p* ;) = [Bk(p* ;)] = P, @S in
for highly time-varying scenarios in which users move aurfl7)- e begin by rewriting. . (p—x.») in (4) as follows:
the network with high speeds. Wkk,n

There exists a unique DEp* if the best response

n\P—kn) = 55 36
ke (P—k,n) P (36)
APPENDIXA where I}, , = Z#k WijnPin, and the quantitiess; , are
PROOF OFPROPOSITION1 defined in (24). Using [28, Theorem 4], the QE is unique
First, note that (8) can be expressed in the Ianguage'foffor any UE £,
fractional programming as: H o1, OBL(P-k) ‘ <1 (37)
Bp k IkERN aIk

pj, = arg max #(Px) (30)
PrEPL(P—k) X(Pk)

with Iy = [I1.1, . .., I v]T. The first term of (37) is explicitly
computed in [28, Eq. (19)], and it is equal “)ﬂ’ =

\/Zj:L#k anlwkj_’n. As for the second term, we have:

wherePy(p_y) is defined as in (9), and

N N
p(Pr) =Y (14 ptknprn) ANAX(PR) =Pek+ D Phin- (31) N v 2
n=1 n=1 0Bk (p-x)/ OLk|| = \/Zl_l Don=1 ‘api,n [0l | . (38)

From [22, Sect. 1I.A] solving (30) is equivalent to findingeth
root of the following nonlinear function:

D(N\g) = L ©(Pr) — \ex(Pk) (32) Phn = (LN = 1/ i) Ly at), (39)

where )\, € R. To compute the solution of (30), let us first After some derivation steps, we obtain the norm of its phrtia
use (31), but without the constraint (8b), so thpat € RY derivative w.r.t.J; , as follows:

where the optimal (best-responding) transmit power leyg|s
are:

(i.e., only nonnegative powers are considered). The slantlty opr 12 1 N
condition, given by%p’ﬂpk =t~k 85;;’:) g n=py . =0 ‘ 81’“’" — e >Aid [ﬁw + (( 02— 2<;§§k,e) l{n:e}]
Vn, using (31) becomes kit Wikke (Ck) o)
Hi,n _
1+ pknf =0 v (33) where, for convenience, we denote §y= |S;| and
Hence, consideringy , > 0, the optimal power allocation Epo = (/A0 ) (41)

= =Sk
becomes the WF criterion (17), in which the water lexgl § H Opu.e



Summing ovem = 1,..., N then yields: ]
OBk (P—k) ’ 1 1 ,
T oL, Il T Al e : +¢r—2 42

H o1y, o %;g s (gk.,z k &c,e) (42)

[6]
so it remains to show that the terrfis, in (41) are equivalent

to (26) in Proposition 2 (see Appendix C). As a final stef7)
in the proof, notice that the function to be optimized in (23)
depends only omy, , Which is an invertible, bijective function (8]
of I, > 0 (since it is a strictly decreasing function w.r.t.
I »). Therefore, we can take the supremum oygr, €
(0, Wy /%], ¥n directly. [9]

APPENDIXC

In this section, we computé,, in two different cases [10]
depending on the relative order betwekpn and ). Let us
start from the minimum-rate WF criterion, in which UEs
water level is computed using (18). In this caseyif, > Ak

_ __ 1/3k
(ie., if £ € Sy)° we have), ' = (2N9k I,es, u,;_;) )

(11]

[12]

%k _q/e -
(QN"’“ [Le5, nee M;Z,i) ' /Lk_;/q", whereg;, = [Sy|. From
this, we getag%:;) = -z #1 = and thus, using (41), [13]
s kHE, AR

we finally obtain&, , = MM/X;C, corresponding to the first

subcase of (26). [14]
Let us now focus on the energy-efficient WF, in which each

UE k’s water level is computed using (19).. » > A, then:

a(l/Ak) == L 9 Br—1\ _ _
e = ey W (ene™ ) = (B~ 1)]

1 |oW (ake'@"_l) 8[‘3k

B /\_k 3Mk,e - 3#%1

[15]

[16]

(43) [17]
On one hand, using (20) and (21), we can compute the

i vatvegdos 1 9B, _ 1 ;
partial derlvatlve‘,auw = Sl and B = o with  [1g]

sz = |Sk|- On the other hand, using the properties of the
Lambert functions, we get [19]
W (agePr1) - 2]

Opk.¢

ow (akeﬁk_l) (O‘keﬁrl)

= 44
Ot e (apefr=1) [1 + W (agele—1)] (44) [20]
and hence:
d(1/\ w Br—1) —
( / k) - (ake ) Ok k.t (45) [21]

Otk N §k/‘i,w\kak [1 + W (akeﬁk—l)]-

Noting that, by inverting (19W (axe® 1) = B —1—In Ay,
and using simple mathematical steps,= — ln A\t + (B — 1)
can be rewritten as;, = W (aie’ 1) = apAi. Using (41),
&,.¢ corresponds to the second subcase of (26).
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