618 research outputs found

    Review of Electric Vehicle Charging Technologies, Configurations, and Architectures

    Full text link
    Electric Vehicles (EVs) are projected to be one of the major contributors to energy transition in the global transportation due to their rapid expansion. The EVs will play a vital role in achieving a sustainable transportation system by reducing fossil fuel dependency and greenhouse gas (GHG) emissions. However, high level of EVs integration into the distribution grid has introduced many challenges for the power grid operation, safety, and network planning due to the increase in load demand, power quality impacts and power losses. An increasing fleet of electric mobility requires the advanced charging systems to enhance charging efficiency and utility grid support. Innovative EV charging technologies are obtaining much attention in recent research studies aimed at strengthening EV adoption while providing ancillary services. Therefore, analysis of the status of EV charging technologies is significant to accelerate EV adoption with advanced control strategies to discover a remedial solution for negative grid impacts, enhance desired charging efficiency and grid support. This paper presents a comprehensive review of the current deployment of EV charging systems, international standards, charging configurations, EV battery technologies, architecture of EV charging stations, and emerging technical challenges. The charging systems require a dedicated converter topology, a control strategy and international standards for charging and grid interconnection to ensure optimum operation and enhance grid support. An overview of different charging systems in terms of onboard and off-board chargers, AC-DC and DC-DC converter topologies, and AC and DC-based charging station architectures are evaluated

    A review on power electronics technologies for electric mobility

    Get PDF
    Concerns about greenhouse gas emissions are a key topic addressed by modern societies worldwide. As a contribution to mitigate such effects caused by the transportation sector, the full adoption of electric mobility is increasingly being seen as the main alternative to conventional internal combustion engine (ICE) vehicles, which is supported by positive industry indicators, despite some identified hurdles. For such objective, power electronics technologies play an essential role and can be contextualized in different purposes to support the full adoption of electric mobility, including on-board and off-board battery charging systems, inductive wireless charging systems, unified traction and charging systems, new topologies with innovative operation modes for supporting the electrical power grid, and innovative solutions for electrified railways. Embracing all of these aspects, this paper presents a review on power electronics technologies for electric mobility where some of the main technologies and power electronics topologies are presented and explained. In order to address a broad scope of technologies, this paper covers road vehicles, lightweight vehicles and railway vehicles, among other electric vehicles.This work has been supported by FCT – Fundação para a Ciência e Tecnologia with-in the Project Scope: UID/CEC/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017, and by the FCT Project new ERA4GRIDs PTDC/EEI-EEE/30283/2017. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by FCT

    E-Mobility -- Advancements and Challenges

    Get PDF
    Mobile platforms cover a broad range of applications from small portable electric devices, drones, and robots to electric transportation, which influence the quality of modern life. The end-to-end energy systems of these platforms are moving toward more electrification. Despite their wide range of power ratings and diverse applications, the electrification of these systems shares several technical requirements. Electrified mobile energy systems have minimal or no access to the power grid, and thus, to achieve long operating time, ultrafast charging or charging during motion as well as advanced battery technologies are needed. Mobile platforms are space-, shape-, and weight-constrained, and therefore, their onboard energy technologies such as the power electronic converters and magnetic components must be compact and lightweight. These systems should also demonstrate improved efficiency and cost-effectiveness compared to traditional designs. This paper discusses some technical challenges that the industry currently faces moving toward more electrification of energy conversion systems in mobile platforms, herein referred to as E-Mobility, and reviews the recent advancements reported in literature

    A review on power electronics technologies for power quality improvement

    Get PDF
    Nowadays, new challenges arise relating to the compensation of power quality problems, where the introduction of innovative solutions based on power electronics is of paramount importance. The evolution from conventional electrical power grids to smart grids requires the use of a large number of power electronics converters, indispensable for the integration of key technologies, such as renewable energies, electric mobility and energy storage systems, which adds importance to power quality issues. Addressing these topics, this paper presents an extensive review on power electronics technologies applied to power quality improvement, highlighting, and explaining the main phenomena associated with the occurrence of power quality problems in smart grids, their cause and effects for different activity sectors, and the main power electronics topologies for each technological solution. More specifically, the paper presents a review and classification of the main power quality problems and the respective context with the standards, a review of power quality problems related to the power production from renewables, the contextualization with solid-state transformers, electric mobility and electrical railway systems, a review of power electronics solutions to compensate the main power quality problems, as well as power electronics solutions to guarantee high levels of power quality. Relevant experimental results and exemplificative developed power electronics prototypes are also presented throughout the paper.This work has been supported by FCT-Fundação para a Ciência e Tecnologia within the R&D Units Project Scope: UIDB/00319/2020. This work has been supported by the FCT Project DAIPESEV PTDC/EEI-EEE/30382/2017 and by the FCT Project newERA4GRIDs PTDC/EEIEEE/30283/2017

    An Isolated Integrated Charger for Electric or Plug-in Hybrid Vehicles

    Get PDF
    For electric and hybrid vehicles using grid power to charge the battery, traction circuit components are not normally engaged during the charging time, so there is a possibility to use them in the charger circuit to have an on-board integrated charger.In this Licentiate thesis, an isolated high power integrated charger is proposed, designed and constructed based on a special ac machine with a double set of stator windings called motor/generator.The charger is capable of unit power factor operation as well as bi-directional power operation for grid to vehicle application.The mathematical electromechanical model of the motor/generator is derived and presented. Based on the developed model, new controller schemes are developed and designed for the grid synchronization and charge control. The machine windings are re-arranged for the traction and charging by a controllable relay-based switching device that is designed for this purpose.A laboratory system is designed and implemented based on a 44 pole 25 kW25~kW interior permanent magnet synchronous motor and a frequency converter considering the integrated charging features for winding re-configuration. The practical results will be added in the next step of the project. The charging power is limited to 12.5 kW12.5~kW due to the machine thermal limit (half of the motor full power in the traction mode) for this system.The whole system is simulated in Matlab/Simulink based on the developed model and controllers to verify the system operation for the charge control. Simulation results show that the system has good performance during the charging time for a load step change. The simulation results show also a good performance of the controllers leading to machine speed stability and smooth grid synchronization. Moreover, the unit power factor operation is achieved for battery charging in the simulations

    An Isolated Integrated Charger for Electric or Plug-in Hybrid Vehicles

    Get PDF
    For electric and hybrid vehicles using grid power to charge the battery, traction circuit components are not normally engaged during the charging time, so there is a possibility to use them in the charger circuit to have an on-board integrated charger.In this Licentiate thesis, an isolated high power integrated charger is proposed, designed and constructed based on a special ac machine with a double set of stator windings called motor/generator.The charger is capable of unit power factor operation as well as bi-directional power operation for grid to vehicle application.The mathematical electromechanical model of the motor/generator is derived and presented. Based on the developed model, new controller schemes are developed and designed for the grid synchronization and charge control. The machine windings are re-arranged for the traction and charging by a controllable relay-based switching device that is designed for this purpose.A laboratory system is designed and implemented based on a 44 pole 25 kW25~kW interior permanent magnet synchronous motor and a frequency converter considering the integrated charging features for winding re-configuration. The practical results will be added in the next step of the project. The charging power is limited to 12.5 kW12.5~kW due to the machine thermal limit (half of the motor full power in the traction mode) for this system.The whole system is simulated in Matlab/Simulink based on the developed model and controllers to verify the system operation for the charge control. Simulation results show that the system has good performance during the charging time for a load step change. The simulation results show also a good performance of the controllers leading to machine speed stability and smooth grid synchronization. Moreover, the unit power factor operation is achieved for battery charging in the simulations

    Vehicle electrification: technologies, challenges and a global perspective for smart grids

    Get PDF
    Nowadays, due to economic and climate concerns, the private transportation sector is shifting for the vehicle electrification, mainly supported by electric and hybrid plug-in vehicles. For this new reality, new challenges about operation modes are emerging, demanding a cooperative and dynamic operation with the electrical power grid, guaranteeing a stable integration without omitting the power quality for the grid-side and for the vehicle-side. Besides the operation modes, new attractive and complementary technologies are offered by the vehicle electrification in the context of smart grids, which are valid for both on-board and off-board systems. In this perspective, this book chapter presents a global perspective and deals with challenges for the vehicle electrification, covering the key technologies toward a sustainable future. Among others, the flowing topics are covered: (1) Overview of power electronics structures for battery charging systems, including on-board and off-board systems; (2) State-of-the-art of communication technologies for application in the context of vehicular electrification, smart grids and smart homes; (3) Challenges and opportunities concerning wireless power transfer with bidirectional interface to the electrical grid; (4) Future perspectives about bidirectional power transfer between electric vehicles (vehicle-to-vehicle operation mode); (5) Unified technologies, allowing to combine functionalities of a bidirectional interface with the electrical grid and motor driver based on a single system; and (6) Smart grids and smart homes scenarios and accessible opportunities about operation modes.Fundação para a Ciência e Tecnologia (FCT

    Split converter-fed SRM drive for flexible charging in EV/HEV applications

    Get PDF
    Electric vehicles (EVs) and hybrid EVs are the way forward for green transportation and for establishing low-carbon economy. This paper presents a split converter-fed four-phase switched reluctance motor (SRM) drive to realize flexible integrated charging functions (dc and ac sources). The machine is featured with a central-tapped winding node, eight stator slots, and six rotor poles (8/6). In the driving mode, the developed topology has the same characteristics as the traditional asymmetric bridge topology but better fault tolerance. The proposed system supports battery energy balance and on-board dc and ac charging. When connecting with an ac power grid, the proposed topology has a merit of the multilevel converter; the charging current control can be achieved by the improved hysteresis control. The energy flow between the two batteries is balanced by the hysteresis control based on their state-of-charge conditions. Simulation results in MATLAB/Simulink and experiments on a 150-W prototype SRM validate the effectiveness of the proposed technologies, which may provide a solution to EV charging issues associated with significant infrastructure requirements

    Unified power converters for battery charging and traction drive systems for electric vehicles: cost and performance analysis

    Get PDF
    Electric vehicles (EVs) are a promising solution to mitigate the emission of greenhouse gases and atmospheric pollution. Although EVs existence spans from more than one century, only in the recent years there has been a considerable development in the electric mobility paradigm. This development is also verified in the operation modes for the EV, giving it an important role in smart grids. Moreover, the implementation of unified power converters for battery charging and traction drive systems is also a key topic about EVs, allowing at the same time a hardware reduction and an increasing in its functionalities. However, no economic studies about the practical feasibility of these unified systems for EVs have been reported in the literature. In this context, this paper presents a cost assessment of unified battery charging and traction drive systems for EVs focusing on practical aspects. An economic comparison is performed between a traditional EV and a unified system in order to attain a cost/performance analysis for the unified power converters that can be used in EVs.This work has been supported by FCT – Fundação para a Ciência e Tecnologia within the Project Scope: UID/CEC/00319/2019. This work has been supported by FCT within the Project Scope DAIPESEV – Development of Advanced Integrated Power Electronic Systems for Electric Vehicles: PTDC/EEI-EEE/30382/2017. This work is part of the FCT project 0302836 NORTE-01-0145-FEDER-030283. Mr. Tiago Sousa is supported by the doctoral scholarship SFRH/BD/134353/2017 granted by the Portuguese FCT agency
    corecore