47,509 research outputs found

    Randomness in topological models

    Full text link
    p. 914-925There are two aspects of randomness in topological models. In the first one, topological idealization of random patterns found in the Nature can be regarded as planar representations of three-dimensional lattices and thus reconstructed in the space. Another aspect of randomness is related to graphs in which some properties are determined in a random way. For example, combinatorial properties of graphs: number of vertices, number of edges, and connections between them can be regarded as events in the defined probability space. Random-graph theory deals with a question: at what connection probability a particular property reveals. Combination of probabilistic description of planar graphs and their spatial reconstruction creates new opportunities in structural form-finding, especially in the inceptive, the most creative, stage.Tarczewski, R.; Bober, W. (2010). Randomness in topological models. Editorial Universitat Politècnica de València. http://hdl.handle.net/10251/695

    A Spectral Lower Bound for the Divisorial Gonality of Metric Graphs

    No full text

    On Topological Properties of Wireless Sensor Networks under the q-Composite Key Predistribution Scheme with On/Off Channels

    Full text link
    The q-composite key predistribution scheme [1] is used prevalently for secure communications in large-scale wireless sensor networks (WSNs). Prior work [2]-[4] explores topological properties of WSNs employing the q-composite scheme for q = 1 with unreliable communication links modeled as independent on/off channels. In this paper, we investigate topological properties related to the node degree in WSNs operating under the q-composite scheme and the on/off channel model. Our results apply to general q and are stronger than those reported for the node degree in prior work even for the case of q being 1. Specifically, we show that the number of nodes with certain degree asymptotically converges in distribution to a Poisson random variable, present the asymptotic probability distribution for the minimum degree of the network, and establish the asymptotically exact probability for the property that the minimum degree is at least an arbitrary value. Numerical experiments confirm the validity of our analytical findings.Comment: Best Student Paper Finalist in IEEE International Symposium on Information Theory (ISIT) 201

    Topological Graph Polynomials in Colored Group Field Theory

    Full text link
    In this paper we analyze the open Feynman graphs of the Colored Group Field Theory introduced in [arXiv:0907.2582]. We define the boundary graph \cG_{\partial} of an open graph \cG and prove it is a cellular complex. Using this structure we generalize the topological (Bollobas-Riordan) Tutte polynomials associated to (ribbon) graphs to topological polynomials adapted to Colored Group Field Theory graphs in arbitrary dimension

    The Tensor Track, III

    Full text link
    We provide an informal up-to-date review of the tensor track approach to quantum gravity. In a long introduction we describe in simple terms the motivations for this approach. Then the many recent advances are summarized, with emphasis on some points (Gromov-Hausdorff limit, Loop vertex expansion, Osterwalder-Schrader positivity...) which, while important for the tensor track program, are not detailed in the usual quantum gravity literature. We list open questions in the conclusion and provide a rather extended bibliography.Comment: 53 pages, 6 figure

    Correlation of Automorphism Group Size and Topological Properties with Program-size Complexity Evaluations of Graphs and Complex Networks

    Get PDF
    We show that numerical approximations of Kolmogorov complexity (K) applied to graph adjacency matrices capture some group-theoretic and topological properties of graphs and empirical networks ranging from metabolic to social networks. That K and the size of the group of automorphisms of a graph are correlated opens up interesting connections to problems in computational geometry, and thus connects several measures and concepts from complexity science. We show that approximations of K characterise synthetic and natural networks by their generating mechanisms, assigning lower algorithmic randomness to complex network models (Watts-Strogatz and Barabasi-Albert networks) and high Kolmogorov complexity to (random) Erdos-Renyi graphs. We derive these results via two different Kolmogorov complexity approximation methods applied to the adjacency matrices of the graphs and networks. The methods used are the traditional lossless compression approach to Kolmogorov complexity, and a normalised version of a Block Decomposition Method (BDM) measure, based on algorithmic probability theory.Comment: 15 2-column pages, 20 figures. Forthcoming in Physica A: Statistical Mechanics and its Application

    Density theorems for bipartite graphs and related Ramsey-type results

    Full text link
    In this paper, we present several density-type theorems which show how to find a copy of a sparse bipartite graph in a graph of positive density. Our results imply several new bounds for classical problems in graph Ramsey theory and improve and generalize earlier results of various researchers. The proofs combine probabilistic arguments with some combinatorial ideas. In addition, these techniques can be used to study properties of graphs with a forbidden induced subgraph, edge intersection patterns in topological graphs, and to obtain several other Ramsey-type statements
    corecore