16,717 research outputs found

    Portfolio selection problems in practice: a comparison between linear and quadratic optimization models

    Full text link
    Several portfolio selection models take into account practical limitations on the number of assets to include and on their weights in the portfolio. We present here a study of the Limited Asset Markowitz (LAM), of the Limited Asset Mean Absolute Deviation (LAMAD) and of the Limited Asset Conditional Value-at-Risk (LACVaR) models, where the assets are limited with the introduction of quantity and cardinality constraints. We propose a completely new approach for solving the LAM model, based on reformulation as a Standard Quadratic Program and on some recent theoretical results. With this approach we obtain optimal solutions both for some well-known financial data sets used by several other authors, and for some unsolved large size portfolio problems. We also test our method on five new data sets involving real-world capital market indices from major stock markets. Our computational experience shows that, rather unexpectedly, it is easier to solve the quadratic LAM model with our algorithm, than to solve the linear LACVaR and LAMAD models with CPLEX, one of the best commercial codes for mixed integer linear programming (MILP) problems. Finally, on the new data sets we have also compared, using out-of-sample analysis, the performance of the portfolios obtained by the Limited Asset models with the performance provided by the unconstrained models and with that of the official capital market indices

    Portfolio selection models: A review and new directions

    Get PDF
    Modern Portfolio Theory (MPT) is based upon the classical Markowitz model which uses variance as a risk measure. A generalization of this approach leads to mean-risk models, in which a return distribution is characterized by the expected value of return (desired to be large) and a risk value (desired to be kept small). Portfolio choice is made by solving an optimization problem, in which the portfolio risk is minimized and a desired level of expected return is specified as a constraint. The need to penalize different undesirable aspects of the return distribution led to the proposal of alternative risk measures, notably those penalizing only the downside part (adverse) and not the upside (potential). The downside risk considerations constitute the basis of the Post Modern Portfolio Theory (PMPT). Examples of such risk measures are lower partial moments, Value-at-Risk (VaR) and Conditional Value-at-Risk (CVaR). We revisit these risk measures and the resulting mean-risk models. We discuss alternative models for portfolio selection, their choice criteria and the evolution of MPT to PMPT which incorporates: utility maximization and stochastic dominance

    Mean-risk models using two risk measures: A multi-objective approach

    Get PDF
    This paper proposes a model for portfolio optimisation, in which distributions are characterised and compared on the basis of three statistics: the expected value, the variance and the CVaR at a specified confidence level. The problem is multi-objective and transformed into a single objective problem in which variance is minimised while constraints are imposed on the expected value and CVaR. In the case of discrete random variables, the problem is a quadratic program. The mean-variance (mean-CVaR) efficient solutions that are not dominated with respect to CVaR (variance) are particular efficient solutions of the proposed model. In addition, the model has efficient solutions that are discarded by both mean-variance and mean-CVaR models, although they may improve the return distribution. The model is tested on real data drawn from the FTSE 100 index. An analysis of the return distribution of the chosen portfolios is presented

    Local Search Techniques for Constrained Portfolio Selection Problems

    Full text link
    We consider the problem of selecting a portfolio of assets that provides the investor a suitable balance of expected return and risk. With respect to the seminal mean-variance model of Markowitz, we consider additional constraints on the cardinality of the portfolio and on the quantity of individual shares. Such constraints better capture the real-world trading system, but make the problem more difficult to be solved with exact methods. We explore the use of local search techniques, mainly tabu search, for the portfolio selection problem. We compare and combine previous work on portfolio selection that makes use of the local search approach and we propose new algorithms that combine different neighborhood relations. In addition, we show how the use of randomization and of a simple form of adaptiveness simplifies the setting of a large number of critical parameters. Finally, we show how our techniques perform on public benchmarks.Comment: 22 pages, 3 figure

    Optimally chosen small portfolios are better than large ones

    Get PDF
    One of the fundamental principles in portfolio selection models is minimization of risk through diversification of the investment. However, this principle does not necessarily translate into a request for investing in all the assets of the investment universe. Indeed, following a line of research started by Evans and Archer almost fifty years ago, we provide here further evidence that small portfolios are sufficient to achieve almost optimal in-sample risk reduction with respect to variance and to some other popular risk measures, and very good out-of-sample performances. While leading to similar results, our approach is significantly different from the classical one pioneered by Evans and Archer. Indeed, we describe models for choosing the portfolio of a prescribed size with the smallest possible risk, as opposed to the random portfolio choice investigated in most of the previous works. We find that the smallest risk portfolios generally require no more than 15 assets. Furthermore, it is almost always possible to find portfolios that are just 1% more risky than the smallest risk portfolios and contain no more than 10 assets. Furthermore, the optimal small portfolios generally show a better performance than the optimal large ones. Our empirical analysis is based on some new and on some publicly available benchmark data sets often used in the literature
    corecore