2,892 research outputs found

    Adaptive interval type-2 fuzzy logic systems for vehicle handling enhancement by new nonlinear model of variable geometry suspension system

    Get PDF
    This research examines the emerging role of adaptive interval type-2 fuzzy logic systems (AIT2FLS) versus adaptive type-1 fuzzy logic system (AT1FLS) in vehicle handling by a new nonlinear model of the variable geometry suspension system (VGS) as a vehicle active suspension system. A proper controller is needed in order to have soft response and robustness against challenging vehicle maneuvers. Two controllers, including AT1FLS and AIT2FLS have been used in the paper. The proposed AIT2FLS can efficiently handle system uncertainties, especially in the presence of most difficult challenging vehicle maneuvers in comparison with AT1FLS. The interval type-2 fuzzy adaptation law adjusts the consequent parameters of the rules constructed on the Lyapunov synthesis approach. For this purpose, the kinematic equations are obtained for the vehicle double wishbone suspension system and they are substituted in a nonlinear vehicle handling model with eight degrees of freedoms (8DOFs). Thereby, a new nonlinear model for the analysis of VGS is obtained. The results indicate that between the two controllers, the proposed AIT2FLS has better overall vehicle handling, robustness and soft response

    Design and Evaluation of an Optimal Fuzzy PID Controller for an Active Vehicle Suspension System

    Get PDF
    The goal of studying the vehicle suspension systems is to reduce the vehicle vibrations which are due to the irregularities of road levels and the fluctuations in the vehicle velocity. These vibrations are transferred to the body and occupants of vehicles through the suspension system. In general, the main function of an active suspension system is to support the vehicle body by reducing the input vibrations and to provide a safe and smooth ride on a bumpy road surface. In this research, a quarter vehicle model has been employed for designing a suspension system. The road level irregularities have been considered as disturbances to this system. The optimal fuzzy PID (OFPD+I) controller has been used to optimize the performance of the suspension system in reducing the adverse effects resulting from road level irregularities, vehicle braking, and moving around the road curves. To verify the efficacy of the optimal fuzzy PID controller, its performance has been evaluated and compared with the performances of three separate controllers (PID, fuzzy, and fuzzy PID) and a system without any controller. The findings indicate the advantage of the optimal fuzzy PID controller over the other systems. Thus, in the integral of the absolute error criterion for the vehicle body velocity and displacement changes, the OFPD+I controller has a superior performance relative to the other systems

    Advanced suspension system using magnetorheological technology for vehicle vibration control

    Get PDF
    In the past forty years, the concept of controllable vehicle suspension has attracted extensive attention. Since high price of an active suspension system and deficiencies on a passive suspension, researchers pay a lot attention to semi-active suspension. Magneto-rheological fluid (MRF) is always an ideal material of semi-active structure. Thanks to its outstanding features like large yield stress, fast response time, low energy consumption and significant rheological effect. MR damper gradually becomes a preferred component of semi-active suspension for improving the riding performance of vehicle. However, because of the inherent nonlinear nature of MR damper, one of the challenging aspects of utilizing MR dampers to achieve high levels of performance is the development of an appropriate control strategy that can take advantage of the unique characteristics of MR dampers. This is why this project has studied semi-active MR control technology of vehicle suspensions to improve their performance. Focusing on MR semi-active suspension, the aim of this thesis sought to develop system structure and semi-active control strategy to give a vehicle opportunity to have a better performance on riding comfort. The issues of vibration control of the vehicle suspension were systematically analysed in this project. As a part of this research, a quarter-car test rig was built; the models of suspension and MR damper were established; the optimization work of mechanical structure and controller parameters was conducted to further improve the system performance; an optimized MR damper (OMRD) for a vehicle suspension was designed, fabricated, and tested. To utilize OMRD to achieve higher level of performance, an appropriate semi-active control algorithm, state observer-based Takagi-Sugeno fuzzy controller (SOTSFC), was designed for the semi-active suspension system, and its feasibility was verified through an experiment. Several tests were conducted on the quarter-car suspension to investigate the real effect of this semiactive control by changing suspension damping. In order to further enhance the vibration reduction performance of the vehicle, a fullsize variable stiffness and variable damping (VSVD) suspension was further designed, fabricated, and tested in this project. The suspension can be easily installed into a vehicle suspension system without any change to the original configuration. A new 3- degree of freedom (DOF) phenomenological model to further accurately describe the dynamic characteristic of the VSVD suspension was also presented. Based on a simple on-off controller, the performance of the variable stiffness and damping suspension was verified numerically. In addition, an innovative TS fuzzy modelling based VSVD controller was designed. The TS fuzzy modelling controller includes a skyhook damping control module and a state observer based stiffness control module which considering road dominant frequency in real-time. The performance evaluation of the VSVD control algorithm was based on the quarter-car test rig which equipping the VSVD suspension. The experiment results showed that this strategy increases riding comfort effectively, especially under off-road working condition. The semi-active control system developed in this thesis can be adapted and used on a vehicle suspension in order to better control vibration

    Robust Adaptive Controls of a Vehicle Seat Suspension System

    Get PDF
    This work proposes two novel adaptive fuzzy controllers and applies them to vibration control of a vehicle seat suspension system subjected to severe road profiles. The first adaptive controller is designed by considering prescribed performance of the sliding surface and combined with adaptation laws so that robust stability is guaranteed in the presence of external disturbances. As for the second adaptive controller, both the H-infinity controller and sliding mode controller are combined using inversely fuzzified values of the fuzzy model. In order to evaluate control performances of the proposed two adaptive controllers, a semi-active vehicle suspension system installed with a magneto-rheological (MR) damper is adopted. After determining control gains, two controllers are applied to the system and vibration control performances such as displacement at the driver’s position are evaluated and presented in time domain. In this work, to demonstrate the control robustness two severe road profiles of regular bump and random step wave are imposed as external disturbances. It is shown that both adaptive controllers can enhance ride comfort of the driver by reducing the displacement and acceleration at the seat position. This excellent performance is achieved from each benefit of each adaptive controller; accurate tracking performance of the first controller and fast convergence time of the second controller

    A review of convex approaches for control, observation and safety of linear parameter varying and Takagi-Sugeno systems

    Get PDF
    This paper provides a review about the concept of convex systems based on Takagi-Sugeno, linear parameter varying (LPV) and quasi-LPV modeling. These paradigms are capable of hiding the nonlinearities by means of an equivalent description which uses a set of linear models interpolated by appropriately defined weighing functions. Convex systems have become very popular since they allow applying extended linear techniques based on linear matrix inequalities (LMIs) to complex nonlinear systems. This survey aims at providing the reader with a significant overview of the existing LMI-based techniques for convex systems in the fields of control, observation and safety. Firstly, a detailed review of stability, feedback, tracking and model predictive control (MPC) convex controllers is considered. Secondly, the problem of state estimation is addressed through the design of proportional, proportional-integral, unknown input and descriptor observers. Finally, safety of convex systems is discussed by describing popular techniques for fault diagnosis and fault tolerant control (FTC).Peer ReviewedPostprint (published version

    An investigation into the roll control of vehicles with hydraulically interconnected suspensions

    Full text link
    University of Technology Sydney. Faculty of Engineering and Information Technology.This thesis presents the investigation into a roll-plane hydraulically interconnected suspension (HIS), which is safety-oriented and designed for the vehicle with a high centre of gravity (CG) and a low rollover threshold. As a potential replacement of anti-roll bars, the HIS possesses the ability to resist the roll motion of the vehicle body during cornering or sharp turning by improving the vehicle roll stiffness. The previous research has concluded that the HIS is superior to the anti-roll bars in terms of the anti-roll performance, but its road holding performance has not been thoroughly studied. In this research, the modelling, modal analysis and simulations are conducted to compare the road holding ability of the HIS and anti-roll bars. A multi-function HIS test rig is developed and mounted on a typical Sports Utility Vehicle (SUV). The related experiments are implemented on a four-post test rig. Both the simulation and experiment results confirmed that the HIS is better than anti-roll bars from the perspective of the road holding performance. To overcome the drawback of the HIS that it is unable to handle the large roll motion and the vehicle roll caused by uneven roads, the HIS is then developed to be actively controlled by a control unit. Only one servo valve is included in the control unit of the active HIS so that the system’s cost and energy consumption are much lower in comparison with the conventional active suspensions with four independent motor-actuators. An output feedback H∞ controller is developed based on an empirically estimated active HIS model at a half-car level. The active HIS controlled by the designed H∞ controller is experimentally validated on the test rig with considerable roll angle reductions. For further verifying the controllability of the active HIS and also comparing the effect of different categories of control methods on the active HIS, other three representative control algorithms are also applied to the active HIS equipped vehicle. They are the classic control methods: proportional-integral-derivative (PID) control, the optimal control algorithm: linear-quadratic regulator (LQR) control and the intelligent control algorithm: fuzzy logic control. The obtained fuzzy, fuzzy-PID and LQR controllers are implemented in simulations. The experiments of the fuzzy and fuzzy-PID controllers are also conducted. The fuzzy-PID controller presents the most promising and stable control performance among these three controllers. After that, an attempt is made to improve the control performance of the model-based controllers to enhance the roll resistance ability of the active HIS further. A nine-degrees-of-freedom (nine-DOF) model that can capture the physical characteristics of the active HIS more accurately is developed. The new system model that addresses the relation between the flow change and pressure variation of the hydraulic system, and the viscous resistance of the fluid is also included. Then an H∞ controller and an LQR controller are designed based on the new model and validated in simulations. The experiment of the H∞ controller is also performed on the test rig and the H∞ controller derived from the new model is compared with the H∞ controller derived from the old model. The results show that the H∞ controller based on the new model improves the control performance slightly. Lastly, an effort is made to reduce the effects of the time delay caused by the fluid system by considering the system time delay when developing the controller. Delay-independent and delay-dependent H∞ state feedback controllers are designed and applied to the half car model. The simulation validations of the obtained controllers are carried out in MATLAB. It is found that the developed delay-dependent H∞ controller can provide stable and acceptably good control performance even with system time delay
    corecore