87,122 research outputs found

    Micro-Anthropic Principle for Quantum theory

    Full text link
    Probabilistic models (developped by workers such as Boltzmann, on foundations due to pioneers such as Bayes) were commonly regarded merely as approximations to a deterministic reality before the roles were reversed by the quantum revolution (under the leadership of Heisenberg and Dirac) whereby it was the deterministic description that was reduced to the status of an approximation, while the role of the observer became particularly prominent. The concomitant problem of lack of objectivity in the original Copenhagen interpretation has not been satisfactorily resolved in newer approaches of the kind pioneered by Everett. The deficiency of such interpretations is attributable to failure to allow for the anthropic aspect of the problem, meaning {\it a priori} uncertainty about the identity of the observer. The required reconciliation of subjectivity with objectivity is achieved here by distinguishing the concept of an observer from that of a perceptor, whose chances of identification with a particular observer need to be prescribed by a suitable anthropic principle. It is proposed that this should be done by an entropy ansatz according to which the relevant micro-anthropic weighting is taken to be proportional to the logarithm of the relevant number of Everett type branch-channels.Comment: 29 pages Latex, 1 figure. Contribution to `Universe or Multiverse?' ed. B.J. Carr, for Cambridge U.

    Maximum Entropy Kernels for System Identification

    Full text link
    A new nonparametric approach for system identification has been recently proposed where the impulse response is modeled as the realization of a zero-mean Gaussian process whose covariance (kernel) has to be estimated from data. In this scheme, quality of the estimates crucially depends on the parametrization of the covariance of the Gaussian process. A family of kernels that have been shown to be particularly effective in the system identification framework is the family of Diagonal/Correlated (DC) kernels. Maximum entropy properties of a related family of kernels, the Tuned/Correlated (TC) kernels, have been recently pointed out in the literature. In this paper we show that maximum entropy properties indeed extend to the whole family of DC kernels. The maximum entropy interpretation can be exploited in conjunction with results on matrix completion problems in the graphical models literature to shed light on the structure of the DC kernel. In particular, we prove that the DC kernel admits a closed-form factorization, inverse and determinant. These results can be exploited both to improve the numerical stability and to reduce the computational complexity associated with the computation of the DC estimator.Comment: Extends results of 2014 IEEE MSC Conference Proceedings (arXiv:1406.5706

    La entropía como creadora de orden

    Get PDF
    7 págs, 7 figs.-- Número monográfico de la Revista dedicado al Centenario de Ludwig Boltzmann (1844-1906).In spite of the identification between entropy and disorder, there are many phase transitions in which an ordered phase emerges and at the same time entropy increases. In this article it will be shown that this paradox gets resolved by making a literal interpretation of the famous Boltzmann's equation S = k log W. Two examples: freezing of a fluid and demixing of a binary mixture, will illustrate this phenomenon. From them the concept of entropic force or interaction, very useful in polymer or colloid science, will emerge.La investigación del autor está financiada por los proyectos BFM2003-0180 del Ministerio de Educación y Ciencia y UC3M-FI-05-007 de la Universidad Carlos III de Madrid y la Comunidad Autónoma de Madrid, y forma parte del proyecto “Modelización y Simulación de Sistemas No Homogéneos en Materia Condensada”, MOSSNOHO (S-0505/ESP/000299), financiado por la Comunidad Autónoma de Madrid.Publicad

    The Volume of Black Holes

    Full text link
    We propose a definition of volume for stationary spacetimes. The proposed volume is independent of the choice of stationary time-slicing, and applies even though the Killing vector may not be globally timelike. Moreover, it is constant in time, as well as simple: the volume of a spherical black hole in four dimensions turns out to be just 43πr+3{4 \over 3} \pi r_+^3. We then consider whether it is possible to construct spacetimes that have finite horizon area but infinite volume, by sending the radius to infinity while making discrete identifications to preserve the horizon area. We show that, in three or four dimensions, no such solutions exist that are not inconsistent in some way. We discuss the implications for the interpretation of the Bekenstein-Hawking entropy.Comment: 8 pages, revte

    Maximum entropy properties of discrete-time first-order stable spline kernel

    Full text link
    The first order stable spline (SS-1) kernel is used extensively in regularized system identification. In particular, the stable spline estimator models the impulse response as a zero-mean Gaussian process whose covariance is given by the SS-1 kernel. In this paper, we discuss the maximum entropy properties of this prior. In particular, we formulate the exact maximum entropy problem solved by the SS-1 kernel without Gaussian and uniform sampling assumptions. Under general sampling schemes, we also explicitly derive the special structure underlying the SS-1 kernel (e.g. characterizing the tridiagonal nature of its inverse), also giving to it a maximum entropy covariance completion interpretation. Along the way similar maximum entropy properties of the Wiener kernel are also given

    Application of spectral and spatial indices for specific class identification in Airborne Prism EXperiment (APEX) imaging spectrometer data for improved land cover classification

    Get PDF
    Hyperspectral remote sensing's ability to capture spectral information of targets in very narrow bandwidths gives rise to many intrinsic applications. However, the major limiting disadvantage to its applicability is its dimensionality, known as the Hughes Phenomenon. Traditional classification and image processing approaches fail to process data along many contiguous bands due to inadequate training samples. Another challenge of successful classification is to deal with the real world scenario of mixed pixels i.e. presence of more than one class within a single pixel. An attempt has been made to deal with the problems of dimensionality and mixed pixels, with an objective to improve the accuracy of class identification. In this paper, we discuss the application of indices to cope with the disadvantage of the dimensionality of the Airborne Prism EXperiment (APEX) hyperspectral Open Science Dataset (OSD) and to improve the classification accuracy using the Possibilistic c–Means (PCM) algorithm. This was used for the formulation of spectral and spatial indices to describe the information in the dataset in a lesser dimensionality. This reduced dimensionality is used for classification, attempting to improve the accuracy of determination of specific classes. Spectral indices are compiled from the spectral signatures of the target and spatial indices have been defined using texture analysis over defined neighbourhoods. The classification of 20 classes of varying spatial distributions was considered in order to evaluate the applicability of spectral and spatial indices in the extraction of specific class information. The classification of the dataset was performed in two stages; spectral and a combination of spectral and spatial indices individually as input for the PCM classifier. In addition to the reduction of entropy, while considering a spectral-spatial indices approach, an overall classification accuracy of 80.50% was achieved, against 65% (spectral indices only) and 59.50% (optimally determined principal component

    Further Evidence for the Conformal Structure of a Schwarzschild Black Hole in an Algebraic Approach

    Get PDF
    We study the excitations of a massive Schwarzschild black hole of mass M resulting from the capture of infalling matter described by a massless scalar field. The near-horizon dynamics of this system is governed by a Hamiltonian which is related to the Virasoro algebra and admits a one-parameter family of self-adjoint extensions described by a parameter z \in R . The density of states of the black hole can be expressed equivalently in terms of z or M, leading to a consistent relation between these two parameters. The corresponding black hole entropy is obtained as S = S(0) - 3/2 log S(0) + C, where S(0) is the Bekenstein-Hawking entropy, C is a constant with other subleading corrections exponentially suppressed. The appearance of this precise form of the black hole entropy within our formalism, which is expected on general grounds in any conformal field theoretic description, provides strong evidence for the near-horizon conformal structure in this system.Comment: 9 pages, Latex, minor changes in the text, references adde
    corecore