2,898 research outputs found

    Self-Assembly of Geometric Space from Random Graphs

    Full text link
    We present a Euclidean quantum gravity model in which random graphs dynamically self-assemble into discrete manifold structures. Concretely, we consider a statistical model driven by a discretisation of the Euclidean Einstein-Hilbert action; contrary to previous approaches based on simplicial complexes and Regge calculus our discretisation is based on the Ollivier curvature, a coarse analogue of the manifold Ricci curvature defined for generic graphs. The Ollivier curvature is generally difficult to evaluate due to its definition in terms of optimal transport theory, but we present a new exact expression for the Ollivier curvature in a wide class of relevant graphs purely in terms of the numbers of short cycles at an edge. This result should be of independent intrinsic interest to network theorists. Action minimising configurations prove to be cubic complexes up to defects; there are indications that such defects are dynamically suppressed in the macroscopic limit. Closer examination of a defect free model shows that certain classical configurations have a geometric interpretation and discretely approximate vacuum solutions to the Euclidean Einstein-Hilbert action. Working in a configuration space where the geometric configurations are stable vacua of the theory, we obtain direct numerical evidence for the existence of a continuous phase transition; this makes the model a UV completion of Euclidean Einstein gravity. Notably, this phase transition implies an area-law for the entropy of emerging geometric space. Certain vacua of the theory can be interpreted as baby universes; we find that these configurations appear as stable vacua in a mean field approximation of our model, but are excluded dynamically whenever the action is exact indicating the dynamical stability of geometric space. The model is intended as a setting for subsequent studies of emergent time mechanisms.Comment: 26 pages, 9 figures, 2 appendice

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Ontology in the Game of Life

    Get PDF
    The game of life is an excellent framework for metaphysical modeling. It can be used to study ontological categories like space, time, causality, persistence, substance, emergence, and supervenience. It is often said that there are many levels of existence in the game of life. Objects like the glider are said to exist on higher levels. Our goal here is to work out a precise formalization of the thesis that there are various levels of existence in the game of life. To formalize this thesis, we develop a set-theoretic construction of the glider. The method of this construction generalizes to other patterns in the game of life. And it can be extended to more realistic physical systems. The result is a highly general method for the set-theoretical construction of substance

    Uniform probability in cosmology

    Full text link
    Problems with uniform probabilities on an infinite support show up in contemporary cosmology. This paper focuses on the context of inflation theory, where it complicates the assignment of a probability measure over pocket universes. The measure problem in cosmology, whereby it seems impossible to pick out a uniquely well-motivated measure, is associated with a paradox that occurs in standard probability theory and crucially involves uniformity on an infinite sample space. This problem has been discussed by physicists, albeit without reference to earlier work on this topic. The aim of this article is both to introduce philosophers of probability to these recent discussions in cosmology and to familiarize physicists and philosophers working on cosmology with relevant foundational work by Kolmogorov, de Finetti, Jaynes, and other probabilists. As such, the main goal is not to solve the measure problem, but to clarify the exact origin of some of the current obstacles. The analysis of the assumptions going into the paradox indicates that there exist multiple ways of dealing consistently with uniform probabilities on infinite sample spaces. Taking a pluralist stance towards the mathematical methods used in cosmology shows there is some room for progress with assigning probabilities in cosmological theories.Comment: 16 pages; accepted for publication in Studies in History and Philosophy of Scienc
    • ā€¦
    corecore