6,085 research outputs found

    An exchange-correlation energy for a two-dimensional electron gas in a magnetic field

    Full text link
    We present the results of a variational Monte Carlo calculation of the exchange-correlation energy for a spin-polarized two-dimensional electron gas in a perpendicular magnetic field. These energies are a necessary input to the recently developed current-density functional theory. Landau-level mixing is included in a variational manner, which gives the energy at finite density at finite field, in contrast to previous approaches. Results are presented for the exchange-correlation energy and excited-state gap at ν=\nu = 1/7, 1/5, 1/3, 1, and 2. We parameterize the results as a function of rsr_s and ν\nu in a form convenient for current-density functional calculations.Comment: 36 pages, including 6 postscript figure

    Minimization of a fractional perimeter-Dirichlet integral functional

    Get PDF
    We consider a minimization problem that combines the Dirichlet energy with the nonlocal perimeter of a level set, namely \int_\Om |\nabla u(x)|^2\,dx+\Per\Big(\{u > 0\},\Om \Big), with σ∈(0,1)\sigma\in(0,1). We obtain regularity results for the minimizers and for their free boundaries \p \{u>0\} using blow-up analysis. We will also give related results about density estimates, monotonicity formulas, Euler-Lagrange equations and extension problems

    Stable ground states and self-similar blow-up solutions for the gravitational Vlasov-Manev system

    Get PDF
    In this work, we study the orbital stability of steady states and the existence of blow-up self-similar solutions to the so-called Vlasov-Manev (VM) system. This system is a kinetic model which has a similar Vlasov structure as the classical Vlasov-Poisson system, but is coupled to a potential in −1/r−1/r2-1/r- 1/r^2 (Manev potential) instead of the usual gravitational potential in −1/r-1/r, and in particular the potential field does not satisfy a Poisson equation but a fractional-Laplacian equation. We first prove the orbital stability of the ground states type solutions which are constructed as minimizers of the Hamiltonian, following the classical strategy: compactness of the minimizing sequences and the rigidity of the flow. However, in driving this analysis, there are two mathematical obstacles: the first one is related to the possible blow-up of solutions to the VM system, which we overcome by imposing a sub-critical condition on the constraints of the variational problem. The second difficulty (and the most important) is related to the nature of the Euler-Lagrange equations (fractional-Laplacian equations) to which classical results for the Poisson equation do not extend. We overcome this difficulty by proving the uniqueness of the minimizer under equimeasurabilty constraints, using only the regularity of the potential and not the fractional-Laplacian Euler-Lagrange equations itself. In the second part of this work, we prove the existence of exact self-similar blow-up solutions to the Vlasov-Manev equation, with initial data arbitrarily close to ground states. This construction is based on a suitable variational problem with equimeasurability constraint

    Interactions and the Theta Term in One-Dimensional Gapped Systems

    Full text link
    We study how the \theta -term is affected by interactions in certain one-dimensional gapped systems that preserve charge-conjugation, parity, and time-reversal invariance. We exploit the relation between the chiral anomaly of a fermionic system and the classical shift symmetry of its bosonized dual. The vacuum expectation value of the dual boson is identified with the value of the \theta -term for the corresponding fermionic system. Two (related) examples illustrate the identification. We first consider the massive Luttinger liquid and find the \theta -term to be insensitive to the strength of the interaction. Next, we study the continuum limit of the Heisenberg XXZ spin-1/2 chain, perturbed by a second nearest-neighbor spin interaction. For a certain range of the XXZ anisotropy, we find that we can tune between two distinct sets of topological phases by varying the second nearest-neighbor coupling. In the first, we find the standard vacua at \theta = 0, \pi, while the second contains vacua that spontaneously break charge-conjugation and parity with fractional \theta / \pi = 1/ 2, 3/2. We also study quantized pumping in both examples following recent work.Comment: 17 pages, harvmac; v.2 typo corrected and slight re-wording

    On Perturbation theory improved by Strong coupling expansion

    Full text link
    In theoretical physics, we sometimes have two perturbative expansions of physical quantity around different two points in parameter space. In terms of the two perturbative expansions, we introduce a new type of smooth interpolating function consistent with the both expansions, which includes the standard Pad\'e approximant and fractional power of polynomial method constructed by Sen as special cases. We point out that we can construct enormous number of such interpolating functions in principle while the "best" approximation for the exact answer of the physical quantity should be unique among the interpolating functions. We propose a criterion to determine the "best" interpolating function, which is applicable except some situations even if we do not know the exact answer. It turns out that our criterion works for various examples including specific heat in two-dimensional Ising model, average plaquette in four-dimensional SU(3) pure Yang-Mills theory on lattice and free energy in c=1 string theory at self-dual radius. We also mention possible applications of the interpolating functions to system with phase transition.Comment: 31+11 pages, 15 figures, 9 tables, 1 Mathematica file; v3: minor correction

    An operator splitting scheme for the fractional kinetic Fokker-Planck equation

    Get PDF
    In this paper, we develop an operator splitting scheme for the fractional kinetic Fokker-Planck equation (FKFPE). The scheme consists of two phases: a fractional diffusion phase and a kinetic transport phase. The first phase is solved exactly using the convolution operator while the second one is solved approximately using a variational scheme that minimizes an energy functional with respect to a certain Kantorovich optimal transport cost functional. We prove the convergence of the scheme to a weak solution to FKFPE. As a by-product of our analysis, we also establish a variational formulation for a kinetic transport equation that is relevant in the second phase. Finally, we discuss some extensions of our analysis to more complex systems
    • …
    corecore