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ABSTRACT. We consider a minimization problem that combines the Dirichlet energy with the nonlocal
perimeter of a level set, namely∫

Ω

|∇u(x)|2 dx+ Perσ

(
{u > 0},Ω

)
,

with σ ∈ (0, 1). We obtain regularity results for the minimizers and for their free boundaries ∂{u > 0}
using blow-up analysis. We will also give related results about density estimates, monotonicity formulas,
Euler-Lagrange equations and extension problems.

1. INTRODUCTION

Let Ω be a bounded domain Rn and σ ∈ (0, 1) a fixed parameter. In this paper we discuss regularity
properties for minimizers of the energy functional

(1.1) J(u) :=

∫
Ω

|∇u|2dx+ Perσ(E,Ω), E = {u > 0} in Ω.

where Perσ(E,Ω) represents the σ-fractional perimeter of the set E in Ω.

Here the set E is fixed outside Ω and coincides with {u > 0} in Ω, and we minimize J among all
functions u ∈ H1(Ω) with prescribed boundary data i.e. u = ϕ on ∂Ω for some fixed ϕ ∈ H1(Ω).

The fractional perimeter functional Perσ(E,Ω) was first introduced in [6] and it represents the Ω-
contribution in the double integral of the norm ‖χE‖Hσ/2 . Precisely, for any measurable set E ⊆ Rn

(1.2) Perσ(E,Ω) := L(E ∩ Ω, Ec) + L(E \ Ω,Ω \ E),

where

L(A,B) :=

∫
A×B

dx dy

|x− y|n+σ
.

It is known (see [8, 3, 12, 11]) that up to multiplicative constants Perσ(E,Rn) converges to the
classical perimeter functional as σ → 1 and it converges to |E|, the Lebesgue measure of E, as
σ → 0. In this spirit, the functional in (1.1) formally interpolates between the two-phase free boundary
problem treated in [1] (where the term Perσ(E,Ω) is replaced by the classical perimeter of E in Ω)
and the Dirichlet-perimeter minimization functional treated in [4] (where Perσ(E,Ω) is replaced by
the Lebesgue measure of E in Ω).

In fact, all previous models correspond to particular cases of the general nonlocal phase transition
setting as discussed in [10] (see in particular Section 3.5 there): in our case, the square of the Hσ/2

norm of the function signu is, in terms of [10], the double convolution of the “phase field parameter”
φ with the corresponding fractional Laplacian kernel.

The existence of minimizers follows easily by the direct method in the calculus of variations, see
Lemma 2.1 below. Our first regularity result deals with the Hölder regularity of solutions and density
estimates for the free boundary ∂E.

Theorem 1.1. Let (u,E) be a minimizer of J inB1 with 0 ∈ ∂E. Then u isCα(B1), with α := 1− σ
2
)

and

(1.3) ‖u‖Cα(Br0 ) 6 C.

Moreover for any r 6 r0

(1.4) min
{
|Br ∩ E|, |Br ∩ Ec|

}
> crn.

The positive constants C , c above depend only on n and σ, and r0 depends also on ‖u‖L2(B1).



2

We remark that the Hölder exponent obtained in Theorem 1.1 is consistent with the natural scaling of
the problem, namely

if u is a minimizer and ur(x) := r
σ
2
−1u(rx),

then ur is also a minimizer.
(1.5)

A minimizer u is harmonic in its positive and negative sets and formally, at points x on the free bound-
ary {u = 0} it satisfies

(1.6) κσ(x) :=

∫
Rn

χEc − χE
|x− y|n+σ

dy = |∇u+(x)|2 − |∇u−(x)|2,

where κσ(x) represents the σ-fractional curvature of ∂E at x (a precise statement will be given in
Theorem 4.1).

Generically, we expect that the minimizer u is Lipschitz near the free boundary. Then the fractional
curvature becomes the dominating term in the free boundary condition above and ∂E can be viewed
as a perturbation of the σ-minimal surfaces which were treated in [6]. However, differently from the
limiting cases σ = 0 and σ = 1, for σ ∈ (0, 1) it seems difficult to obtain the Lipschitz continuity of u
at all points (see the discussion at the end of Section 5). For the regularity of the free boundary we use
instead a monotonicity formula and study homogenous global minimizers. Following the strategy in [6]
we obtain an improvement of flatness theorem for the free boundary ∂E. We also show in the spirit
of [14, 15] that in dimension n = 2 all global minimizers are trivial and by the standard dimension
reduction argument we obtain the following result.

Theorem 1.2. Let (u,E) be a minimizer in B1. Then ∂E is a C1,γ-hypersurface and it satisfies
the Euler-Lagrange equation (1.6) in the viscosity sense, outside a small singular set Σ ⊂ ∂E of
Haussdorff (n− 3)-dimension.

In particular in dimension n = 2 the free boundary is always a C1,γ curve. We remark that by using
the strategy in [5] the C1,γ regularity of ∂E can be improved to C∞ regularity.

The proofs of Theorem 1.1 and 1.2 require some additional results, that will be presented in the course
of the paper, such as a monotonicity formula, a precise formulation of the Euler-Lagrange equation
and an equivalent extension problem of local type.

The paper is organized as follows. In Section 2 we state various estimates for the change in the
Dirichlet integral whenever we perturb the set E by E ∪ A. We use these estimates throughout
the paper and their proofs are postponed in the last section of the paper. We prove Theorem 1.1 in
Section 3 and the improvement of flatness theorem in Section 4. The monotonicity formula and some
of its consequences are presented in Section 5. Finally in Section 6 we prove Theorem 1.2 by showing
the regularity of cones in dimension 2.

2. ESTIMATES FOR THE HARMONIC REPLACEMENT

In order to rigorously deal with the minimization concept of the functional in (1.1), we introduce some
notation.

Let ϕ ∈ H1(Ω) and E0 ⊂ Ωc be given. We want to minimize the energy

(2.1) JΩ(u) :=

∫
Ω

|∇u|2dx+ Perσ(E,Ω)

among all admissible pairs (u,E) that satisfy

u− ϕ ∈ H1
0 (Ω), E ∩ Ωc = E0,
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u > 0 a.e. in E ∩ Ω, u 6 0 a.e. in Ec ∩ Ω.

We assume that there is an admissible pair with finite energy, say for simplicity J(φ,E0∪{φ > 0}) <
∞. From the lower semicontinuity of J we easily obtain the existence of minimizers.

Lemma 2.1. There exists a minimizing pair (u,E).

Proof. Let (uk, Ek) be a sequence of pairs along which J approaches its infimum. By compactness,
after passing to a subsequence, we may assume that uk ⇀ u in H1(Ω), uk → u in L2(Ω) and
χEk → χE in L1(Ω). Then (u,E) is admissible and by the lower semicontinuity of the fractional
perimeter functional (i.e. Fatou’s lemma) we obtain that (u,E) is a minimizing pair. �

Notice that a minimizing pair in Ω is also a minimizing pair in any subdomain of Ω. We assume
throughout, after possibly modifying E on a set of measure 0, that the topological boundary of E
coincides with its essential boundary, that is

∂E = {x ∈ Rn s.t. 0 < |E ∩Br(x)| < |Br(x)| for all r > 0} .

We recall the notion of harmonic replacement from [4].

Definition 2.2. Let ϕ ∈ H1(Ω) and K ⊂ Ω be a measurable set. Assume that the set

D := {v s.t. v − ϕ ∈ H1
0 (Ω) and v = 0 a.e. in K}

is not empty. Then we denote by ϕK ∈ D the unique minimizer of

min
v∈D

∫
Ω

|∇v|2,

and say that ϕK is the harmonic replacement of ϕ that vanishes in K .

From the definition it follows that∫
Ω

∇ϕK · ∇w = 0, for all w ∈ H1
0 (Ω) with w = 0 a.e. in K .

Also, it is straightforward to check that if ϕ > 0 then ϕK is subharmonic. In this case we think that ϕK
is defined pointwise as the limit of its solid averages.

Clearly if (u,E) is a minimizing pair then we obtain

u+ = u+
Ec and u− = u−E.

Below we estimate the difference in the Dirichlet energies of the harmonic replacements in two different
sets E and E \ A, in terms of the measure of the set A ⊂ B3/4. These estimates depend on the
geometry of E and A. We assume that ϕ ∈ H1(B1) ∩ L∞(B1), ϕ > 0, and let

w := ϕEc , v := ϕEc∪A.

The first lemma deals with the case when A is interior to a ball.

Lemma 2.3. Assume v, w are as above and A := Bρ ∩ E for some ρ ∈ [1
4
, 3

4
]. Then∫

B1

|∇v|2 − |∇w|2 dx 6 C|A| ‖w‖2
L∞(B1),

for some constant C depending only on n.

The next lemma gives the same bound in the case when A is exterior to a ball under the additional
hypothesis that A satisfies a density property.
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Lemma 2.4. Let v, w be as above and assume E ∩B1/2 = ∅. Let A ⊂ B3/4 \B1/2 be a closed set
that satisfies the density property

|A ∩Br(x)| > βrn for all x ∈ ∂A and Br(x) ∩B1/2 = ∅,
for some β > 0. Then ∫

B1

|∇v|2 − |∇w|2 dx 6 C(β)|A| ‖w‖2
L∞(B1),

for some constant C(β) depending only on n and β.

Finally we provide a more precise estimate in the case when ∂E is more regular.

Let u ∈ H1(B1) ∩ C(Ω) be harmonic in the sets E = {u > 0} and {u < 0}. Assume

0 ∈ ∂E and E = {xn > g(x′)}
is given by the subgraph in the en direction of a C1,γ function. For a sequence of εk → 0 we consider
sets

Ak := {g(x′) < xn < fk(x
′)} ⊂ Bεk ,

for a sequence of functions fk with bounded C1,γ norm. For each k we define ūk the perturbation of
u for which the positive set is given by E ∪ Ak, i.e.

ū+
k = u+

Ec\Aε ū−k = u−E∪A.

Lemma 2.5. Then

lim
k→∞

1

|Ak|

∫
B1

|∇ūk|2 − |∇u|2 dx = |∇u−(0)|2 − |∇u+(0)|2.

The proofs of Lemmas 2.3-2.5 will be completed in the last section.

3. PROOF OF THEOREM 1.1

In this section we obtain the Hölder continuity of minimizers and uniform density estimates for their
free boundary. We adapt to our goals the strategy of [4], and we simplify some steps using Lemma
2.3. We start with a density estimate.

Lemma 3.1. Let (u,E) be a minimizer in B1 and assume

0 ∈ ∂E and ‖u+‖L∞(B1) 6M,

for some constant M . Then

|E ∩B1/2| > δ, ‖u−‖L∞(B1/2) 6 K,

for some positive constant δ, K depending on n, σ and M .

Proof. First we prove the density estimate. For each ρ ∈ [1
4
, 3

4
], set

Vρ = |E ∩Bρ|, a(ρ) = Hn−1(E ∩ ∂Bρ).

and assume by contradiction that V1/2 < δ small.

For each such ρ we consider ū the perturbation of u which has as positive setE\A withA := E∩Bρ,
that is

ū+ := u+
Ec∪A, ū− := u−E\A.

From the minimality of (u,E) we find

(3.1) Perσ(E,B1)− Perσ(E \ A,B1) 6
∫
B1

|∇ū|2 − |∇u|2dx.
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Since (see (7.2))∫
B1

|∇ū|2 − |∇u|2dx =

∫
B1

|∇ū+|2 − |∇u+|2dx−
∫
B1

|∇(ū− − u−)|2 dx(3.2)

6
∫
B1

|∇ū+|2 − |∇u+|2dx,

we use Lemma 2.3 and the definition of Perσ (see (1.2)) and we conclude that

L(A,Ec)− L(A,E \ A) 6 CM2|A|.
Hence

(3.3) L(A,Ac) 6 2L(A,E \ A) + CM2|A| 6 2L(A,Bc
ρ) + CM2Vρ.

We estimate the left term by applying Sobolev inequality (see, e.g., Theorem 7 in [13]): we obtain that

V
n−σ
n

ρ = ‖χA‖2

L
2n
n−σ (Rn)

6 C‖χA‖2
Hσ/2(Rn) = CL(A,Ac).

If x ∈ Bρ then ∫
Bcρ

1

|x− y|n+σ
dy 6 C

∫ ∞
ρ−|x|

1

rn+σ
rn−1dr 6 C(ρ− |x|)−σ,

hence integrating in the set A we obtain

L(A,Bc
ρ) 6 C

∫ ρ

0

a(r)(ρ− r)−σ dr.

We use these inequalities into (3.3) and the assumption that Vρ 6 δ is sufficiently small to find

V
n−σ
n

ρ 6 C

∫ ρ

0

a(r)(ρ− r)−σ dr.

Integrating the inequality above between 1
4

and t ∈ [1
4
, 1

2
] gives

(3.4)

∫ t

1/4

V
n−σ
n

ρ dρ 6 Ct1−σ
∫ t

0

a(r)dr 6 CVt.

The proof is now a standard De Giorgi iteration: let

tk =
1

4
+

1

2k
, vk = Vtk ,

and notice that t2 = 1
2

and t∞ = 1
4
. Equation (3.4) yields

2−(k+1)v
n−σ
n

k+1 6 Cvk.

Since v2 < δ, that is conveniently small, we obtain vk → 0 as k → ∞. Thus V1/4 = 0 and we
contradict that 0 ∈ ∂E.

For the bound on u− we write the energy inequality for ρ = 3
4

and we estimate also the negative term
in (3.2) by Poincare inequality∫

B1

|∇(ū− − u)|2dx > c

∫
B1

|ū− − u−|2dx > c

∫
E∩B1/2

|ū−|2dx > cδ(sup
B1/2

ū−)2,

where in the last inequality we used that u− is harmonic in B3/4.

We have
0 6 L(A,Ec) 6 L(A,E \ A) + CM2Vρ − cδ(sup

B1/2

ū−)2

and the desired conclusion follows since

L(A,E \ A) 6 L(Bρ, B
c
ρ) 6 C, Vρ 6 C, and u− 6 ū−. �
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If (u,E) is a minimizing pair in Br then the rescaled pair (ur, Er) is minimizing in B1 with

(3.5) ur(x) := r
σ
2
−1u(rx), Er := r−1E.

Let

λ+
r := ‖u+

r ‖L∞(B1) = r
σ
2
−1‖u+‖L∞(Br),

and define λ−r similarly.

If either λ+
r or λ−r is less than 1 then, by Lemma 3.1 with M = 1,

λ+
r/2 6 C, λ−r/2 6 C, and c 6

|E ∩Br|
|Br|

6 1− c,

with c, C constants depending on σ and n. Theorem 1.1 follows provided the inequalities above hold
for all small r. Thus, in order to prove Theorem 1.1 it remains to show that for all r 6 r0 either λ+

r 6 1
or λ−r 6 1. This follows from the next lemma which is a consequence of the Alt-Caffarelli-Friedman
monotonicity formula in [2].

Lemma 3.2. Let (u,E) be a minimizing pair in B1, and assume 0 ∈ ∂E. Then

λ+
r λ
−
r 6 Crσ‖u‖2

L2(B1), ∀r ∈ (0, 1/4],

with C depending only on n.

Proof. Similar arguments appear in Section 2 of [4]. We sketch the proof below.

First we prove that u+ and u− are continuous. For this we need to show that u+ = u− = 0 on ∂E.
Assume by contradiction that, say for simplicity u−(0) > 0. Since

lim sup
x→0

u−(x) = u−(0),

we see that the density of E in Br tends to 0 as r → 0. Since u+ > 0 is subharmonic and u+ = 0
a.e. in Ec it follows that u+ must vanish of infinite order at the origin. Then λ+

r 6 1 for all small r and
by the discussion above E has positive density in Br for all small r and we reach a contradiction.

Since u+ and u− are continuous subharmonic functions with disjoint supports we can apply Alt-
Caffarelli-Friedman monotonicity formula, according to which

Ψ(r) :=
1

r4

∫
Br

|∇u+|2

|x|n−2
dx

∫
Br

|∇u−|2

|x|n−2
dx,

is increasing in r.

From the definition of the harmonic replacement it follows that (see Lemma 2.3 in [4] for example)

4(u+)2 = 2|∇u+|2

and we find

c‖u+‖2
L∞(Br/2) 6 c —

∫
Br

(u+)2dx 6
∫
Br

|∇u+|2

|x|n−2
dx 6 C —

∫
B2r

(u+)2dx.

We use these bounds in the monotonicity formula above and obtain the conclusion. �
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4. IMPROVEMENT OF FLATNESS FOR THE FREE BOUNDARY

In this section we obtain the Euler-Lagrange equation at points on the free boundary and also we show
that if ∂E is sufficiently flat in some ball Br then ∂E is a C1,γ graph in Br/2. The proofs are similar to
the corresponding proofs for nonlocal minimal surfaces in [6]. The difference is that when we perturb
E by a set A, the change in the nonlocal perimeter is bounded by the change in the Dirichlet integrals
(instead of 0), and by Section 2, this can be bounded in terms of |A|.
Our main theorem on this topic is the following.

Theorem 4.1. Assume (u,E) is minimal in B1 and that in B1

{xn > ε0} ⊂ E ⊂ {xn > −ε0}, ‖u‖L∞ 6 1,

for some ε0 > 0 small depending on σ and n. Then ∂E ∩ B1/2 is a C1,γ graph in the en direction
and it satisfies the Euler-Lagrange equation in the viscosity sense

(4.1)

∫
Rn

χEc − χE
|y|n+σ

dy = |∇u+(x)|2 − |∇u−(x)|2, x ∈ ∂E.

The constant γ above depends on n and σ. The Euler-Lagrange equation in the viscosity sense
means that at any point x where ∂E has a tangent C2 surface included in E (respectively Ec) we
have > (respectively 6) in (4.1).

First we bound the σ-curvature of ∂E at points x that have a tangent ball from Ec.

Lemma 4.2. Let (u,E) be a minimizing pair inB1. Assume thatB1/4(−en/4) is tangent from exterior
to E at 0. Then ∫

Rn

χEc − χE
|x|n+σ

dx 6 C ‖u+‖2
L∞(B1)

with C depending on n and σ. If moreover ∂E is a C1,γ surface near 0 then∫
Rn

χEc − χE
|x|n+σ

dx 6 |∇u+(0)|2 − |∇u−(0)|2.

Proof. We follow closely the proof of Theorem 5.1 of [6].

After a dilation we may assume that Ec contains B2(−2en). Fix δ > 0 small, and ε � δ. Let T be
the radial reflection with respect to the sphere ∂B1+ε(−en)

We define the sets:

A− := B1+ε(−en) ∩ E, A+ := T (A−) ∩ E, A := A− ∪ A+.

and let
F := T (Bδ ∩ (E \ A)).

It is easy to check that F ⊂ Ec ∩Bδ.

Let ū be the perturbation of u which has as positive set E \ A as in the proof of Lemma 3.1. First we
estimate the right hand side in the energy inequality (3.1). Let ũ be the perturbation of u which has as
positive set E \ A−. We use Lemmata 2.3 and 2.4 and we obtain∫

B1

|∇ū|2 − |∇u|2dx =

∫
B1

|∇ū|2 − |∇ũ|2dx+

∫
B1

|∇ũ|2 − |∇u|2dx

6
∫
B1

|∇ū+|2 − |∇ũ+|2dx+

∫
B1

|∇ũ+|2 − |∇u+|2dx

6 C|A| ‖u+‖2
L∞(B1).
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Notice that
ũ+ = u+

Ec∪A− , ū+ = u+
Ec∪A−∪T (A−)

and, by Theorem 1.1, T (A−) satisfies the uniform density property of Lemma 2.4.

Now we consider the left hand side of the energy inequality (3.1):

Perσ(E,B1)− Perσ(E \ A,B1) = L(A,Ec)− L(A, C(E \ A) =

[L(A,Ec \Bδ)− L(A,E \Bδ)] + [L(A,F )− L(A, T (F ))] + L(A, (Ec ∩Bδ) \ F )

:= I1 + I2 + I3 > I1 + I2.

We estimate I1 and I2 as in [6], and we conclude that∣∣∣∣ 1

|A|
I1 −

∫
Rn\Bδ

χEc − χE
|x|n+s

dx

∣∣∣∣ 6 Cε1/2δ−1−s

and
I2 > −Cδ1−s|A| − CεL(A−, F ).

It remains to show that for all small ε

(4.2) L(A−, F ) 6 CL(A−, Bc
1+ε(−en))

since then, as in Lemma 5.2 of [6], there exists a sequence of ε→ 0 such that

εL(A−, F ) 6 Cεη|A−|,
and our result follows.

We prove (4.2) by writing the energy inequality for ũ defined above. We haveL(A−, F ) 6 L(A−, Ec)
and

L(A−, Ec) 6 L(A−, E \ A−) +

∫
B1

|∇ũ+|2 − |∇u+|2dx

6 L(A−, Bc
1+ε(−en)) + C|A−| ‖u‖2

L∞(B1)

6 2L(A−, Bc
1+ε(−en)).

where the last inequality holds for all small ε.

In the case when ∂E is a C1,γ surface near 0 we can estimate the change in the Dirichlet integral by
Lemma 2.5 and obtain the second part of our conclusion. �

With the results already obtained, Theorem 4.1 now follows easily from the improvement of flatness
property of ∂E:

Proposition 4.3. Assume (u,E) is a minimal pair in B1 and fix 0 < α < s. There exists k0 depend-
ing on s, n and α such that if

0 ∈ ∂E, ‖u‖L∞(B1) 6 1, and for all balls B2−k with 0 6 k 6 k0 we have

(4.3) {x · ek > 2−k(α+1)} ⊂ E ⊂ {x · ek > −2−k(α+1)}, |ek| = 1,

then there exist vectors ek for all k ∈ N for which the inclusion above remains valid.

The proof now follows closely Theorem 6.8 in [6]. We sketch it below.

Assume (4.3) holds for some large k > k0. Then by comparison principle we find that

u± 6 Cr, in Br for all r > 2−k.

for some C depending on n and α.
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Rescaling by a factor 2k the pair (u,E), the situation above can be described as follows: if for all l
with 0 6 l 6 k

‖u‖L∞(B
2l

) 6 2l2−(σk)/2,

∂E ∩B2l ⊂ {|x · el| 6 2l2α(l−k)}, |el| = 1

then the inclusion holds also for l = −1, i.e.

(4.4) ∂E ∩B1/2 ⊂ {|x · e−1| 6 2−12−α(k+1)}.
For some fixed l we see that ∂E ∩ B2l has C(l)2−αk flatness, and u is bounded by C(l)2−(σk)/2 in
B2l .

First we give a rough Harnack inequality that provides compactness for a sequence of blow-ups.

Lemma 4.4. Assume that for some large k, (k > k1)

∂E ∩B1 ⊂ {|xn| 6 a := 2−kα}, ‖u‖L∞(B1) 6 aσ/(2α)

and
∂E ∩B2l ⊂ {|x · el| 6 a2l(1+α)}, l = 0, 1, . . . , k.

Then either

∂E ∩Bδ ⊂
{xn
a
6 1− δ2

}
or ∂E ∩Bδ ⊂

{xn
a
> −1 + δ2

}
,

for δ small, depending on σ, n, α, (α < σ).

Proof. The proof is the same as Lemma 6.9 in [6]. The only difference is that at the contact point y
between the paraboloid P and ∂E the quantity

(4.5)
1

a

∫
Rn

χEc − χE
|x− y|2

dx

is not bounded above by 0, instead by Lemma 4.2, it is bounded by

1

a
C‖u‖2

L∞(B1) 6 Ca(σ/α)−1 → 0 as a→ 0,

and all the arguments apply as before. �

Completion of the proof of Proposition 4.3. As k becomes much larger than k1, we can apply Harnack
inequality several times as in [6]. This gives compactness of the sets

∂E∗ :=
{

(x′,
xn
a

) s.t. x ∈ ∂E
}
,

as a→ 0. Precisely, we consider pairs (u,E) that are minimal in B2k with 0 ∈ ∂E, for which

∂E ∩B1 ⊂ {|xn| 6 a := 2−kα}, ‖u‖L∞(B1) 6 aσ/(2α).

and for all 0 6 l 6 k

∂E ∩B2l ⊂ {|x · el| 6 a2l(1+α)}, ‖u‖L∞(B
2l

) 6 2laσ/(2α).

and we want to show that (4.4) holds.

If (um, Em) is a sequence of pairs as above with am → 0 there exists a subsequence mk such that

∂E∗mk → (x′, ω(x′))

uniformly on compact sets, where ω : Rn−1 → R is Hölder continuous and

ω(0) = 0, |ω| 6 C(1 + |x′|1+α).

Moreover, since the quantity in (4.5) tends to 0, the proof of Lemma 6.11 of [6] works as before, thus

4
σ+1

2 w = 0 in Rn−1.
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This shows that ω is a linear function and therefore (4.4) holds for all large m. �

5. A MONOTONICITY FORMULA

The goal of this section is to establish a Weiss-type monotonicity formula for minimizing pairs (u,E),
that is different from the Alt-Caffarelli-Friedman monotonicity formula used in Lemma 3.2. For this
scope, we first introduce the localized energy for the σ-perimeter by using the extension problem in
one more dimension as in [6]. With a measurable set E ⊂ Rn we associate a function U(x, z)
defined in Rn+1

+ as

U(·, z) := (χE − χEc) ∗ P (·, z), with P (x, z) := c̃n,σ
zσ

(|x|2 + z2)(n+σ)/2
,

where c̃n,σ is a normalizing constant depending on n and σ.

For a bounded Lipschitz domain Ω ⊂ Rn+1 we denote by

Ω0 := Ω ∩ {z = 0} ⊂ Rn, Ω+ := Ω ∩ {z > 0},
and denote the extended variables as

X := (x, z) ∈ Rn+1
+ , B+

r := {|X| < r}.

The relation between the σ-perimeter and its extension is given by Lemma 7.2 in [6]. Precisely, let E
be a set with Perσ(E,Br) < ∞ and U its extension, and let F be a set which coincides with E
outside a compact set included in Br. Then

Perσ(F,Br)− Perσ(E,Br) = cn,σ inf
Ω,V

∫
Ω+

z1−σ(|∇V |2 − |∇U |2)dX.

Here the infimum is taken over all bounded Lipschitz sets with Ω0 ⊂ Br and all functions V that agree
with U near ∂Ω and whose trace on {z = 0} is given by χF −χF c . The constant cn,σ > 0 above is a
normalizing constant. As a consequence we obtain the following characterization of minimizing pairs
(u,E) using the extension U of E.

Proposition 5.1. The pair (u,E) is minimizing in Br if and only if∫
Br

|∇u|2 dx+ cn,σ

∫
Ω+

z1−σ|∇U |2 dX

6
∫
Br

|∇v|2 dx+ cn,σ

∫
Ω+

z1−σ|∇V |2 dX

for any bounded Lipschitz domain Ω with Ω0 ⊂ Br and any functions v, V that satisfy

1) V = U in a neighborhood of ∂Ω,

2) the trace of V on {z = 0} is χF − χF c for some set F ⊂ Rn,

3) v = u near ∂Br, and v > 0 a.e. in F , v 6 0 a.e. in F c.

Now we present a Weiss-type monotonicity formula for minimizing pairs (u,E).

Theorem 5.2. Let (u,E) be a minimizing pair in Bρ. Then

Φu(r) := rσ−n
(∫

Br

|∇u|2 dx+ cn,σ

∫
B+
r

z1−σ|∇U |2 dX
)

−
(

1− σ

2

)
rσ−n−1

∫
∂Br

u2 dHn−1

is increasing in r ∈ (0, ρ).
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Moreover, Φu is constant if and only if u is homogeneous of degree 1− σ
2

and U is homogeneous of
degree 0.

Proof. The proof is a suitable modification of the one of Theorem 8.1 in [6]. We notice that Φu pos-
sesses the natural scaling

Φu(rs) = Φur(s),

where (ur, Er) is the rescaling given in (3.5).

We prove that
d

dr
Φ(u, U, r) > 0 for a.e. r.

By scaling it suffices to consider the case when r = 1 and r is a “regular"radius for |∇u|2dx,
z1−σ|∇U |2dxdz and E. We use the short notation Φ(r) for Φu(r) and write

Φ(r) = G(r)−H(r),

with

G(r) := rσ−n
(∫

Br

|∇u|2 dx+ cn,σ

∫
B+
r

z1−σ|∇U |2 dX
)

H(r) :=
(

1− σ

2

)
rσ−n−1

∫
∂Br

u2 dHn−1.

Below we use the minimality to obtain a bound forG′(1). We denote as usual uν and uτ for the normal
and tangential gradient of u on ∂Br. Let ε > 0 be small. We compute G(1) by writing the integrals in
B1−ε and B1 \B1−ε:

Gu(1) =

∫
B1−ε

|∇u|2 dx+ ε

∫
∂B1

|∇u|2 dHn−1

+ cn,s

(∫
B+

1−ε

z1−σ|∇U |2 dx dz + ε

∫
∂B+

1

z1−σ|∇U |2 dHn

)
+ o(ε)

=(1− ε)n−σG(1− ε) + ε

∫
∂B1

|uτ |2 + |uν |2 dHn−1

+ ε cn,σ

∫
∂B+

1

z1−σ(|Uτ |2 + |Uν |2) dHn + o(ε).

We now consider a competitor (uε, U ε) for (u, U) defined as

uε(x) :=


(1− ε)1−σ

2 u( x
1−ε) if x ∈ B1−ε,

|x|1−σ2 ) u( x
|x|) if x ∈ B1 \B1−ε,

u(x) if x ∈ Bc
1,

and

U ε(X) :=


U( X

1−ε) if x ∈ B+
1−ε,

U( X
|X|) if x ∈ B+

1 \ B+
1−ε,

U(X) if |X| > 1.

From Proposition 5.1 we obtain
Gu(1) 6 Guε(1).



12

We compute Guε(1) noticing that uε in B1−ε coincides with the rescaling u1/(1−ε) hence

Guε(1) = (1− ε)n−σGu1−ε(1− ε) + ε cn,σ

∫
∂B+

1

|Uτ |2dHn

+ ε

∫
∂B1

(
|uτ |2 +

(
1− σ

2

)2

u2

)
dHn−1 + o(ε).

By scaling, the first term in the sum above equals (1 − ε)n−σGu(1). Plugging Gu(1) and Guε(1) in
the inequality above gives

Gu(1) > Gu(1− ε) + ε

∫
∂B1

|uν |2 −
(

1− σ

2

)2

u2 dHn−1

+ ε cn,σ

∫
∂B+

1

z1−σ|Uν |2 dHn + o(ε),

hence

G′(1) >
∫
∂B1

|uν |2 −
(

1− σ

2

)2

u2 dHn−1 + cn,σ

∫
∂B+

1

z1−σ|Uν |2 dHn.

On the other hand,

H ′(1) =
(

1− σ

2

)∫
∂B1

2uuν + (σ − 2)u2 dHn−1.

and we conclude that

Φ′(1) >
∫
∂B1

(
uν −

(
1− σ

2

)
u
)2

dHn−1 + cn,σ

∫
∂B+

1

z1−σ|Uν |2 dHn,

and the conclusion follows. �

The monotonicity formula allows us to characterize the blow-up limit of a sequence of rescalings
(ur, Er). First we need to show that minimizing pairs remain closed under limits.

Proposition 5.3. Assume (um, Em) are minimizing pairs in B2 and

um → u in L2(B2), and Em → E in L1
loc(Rn).

Then (u,E) is a minimizing pair in B1 and um → u in H1(B1) and

Perσ(Em, B1)→ Perσ(E,B1).

Proof. First we show that um → u in H1(B1). Since ∇um ⇀ ∇u weakly in L2 it suffices to show
that ∫

B1

|∇um|2dx→
∫
B1

|∇u|2dx.

Indeed, since um and u are continuous functions which are harmonic in their positive and negative
sets we have

4u2 = 2|∇u|2, 4u2
m = 2|∇um|2,

and the limit above follows since u2
m → u2 in L1.

Let (v, F ) be a compact perturbation for (u,E) in B1. Precisely, assume F = E and v = u outside
a compact set of B1, and v > 0 a.e. in F , v 6 0 a.e. in F c. Let

w+
m = min{u+

m, u
+}

and define v+
m such that v+

m = v+ in B1−2ε, v+
m = w+

m in the annulus B1+ε \ B1−ε and v+
m = u+

m

outside B1+2ε. In B1 \B1−2ε we define v+
m as an interpolation between v+ and w+

m i.e.

v+
m = ηv+ + (1− η)w+

m,
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with η a cutoff function with η = 1 in B1−2ε and η = 0 outside B1−ε. Similarly, in B1+2ε \ B1 we let
v+
m to be an interpolation between u+

m and w+
m.

We define v−m similarly. We have

vm > 0 a.e. in Fm, vm 6 0 a.e. in F c
m, with

Fm := (F ∩B1) ∪ (En \B1),

thus (vm, Fm) is a compact perturbation of (um, Em). From the minimality of (um, Em) (see (2.1))
we find

JB2(um) 6 JB2(vm).

By construction, ∫
B2

|∇vm|2 − |∇um|2dx 6
∫
B1

|∇v|2 − |∇um|2dx+ cm(ε),

with

cm(ε) := Cε−2

∫
B2

(um − u)2dx+ C

∫
B1+2ε−B1−2ε

|∇u|2 + |∇um|2dx.

Notice also that

Perσ(Fm, B2)− Perσ(Em, B2) 6 Perσ(F,B1)− Perσ(Em, B1) + bm,

with
bm := L(B1, (Em∆E) \B1).

Since Em → E in L1
loc(Rn) it follows easily that bm → 0 (see Theorem 3.3 in [6]). Using the last two

inequalities in the energy inequality and letting first m→∞ and then ε→ 0 we find

lim sup JB1(um) 6 JB1(v).

On the other hand from the lower semicontinuity of J we have

lim inf JB1(um) > JB1(u).

This shows that (u,E) is a minimizing pair and that JB1(um)→ JB1(u) and our conclusion follows.
�

Next we consider the limit of a sequence of rescalings ur, Er, Ur as r → 0,

ur(x) = r
σ
2
−1u(rx), Er = r−1E, Ur(X) = U(rX).

Proposition 5.4 (Tangent cone). Assume (u,E) is a minimizing pair inB1, and 0 ∈ ∂E. There exists
a sequence of r = rk → 0 such that

ur → ū in L2
loc(Rn), Er → Ē in L1

loc(Rn), Ur → Ū in L2
loc(Rn, z1−σdX)

with ū homogeneous of degree 1 − σ
2

, Ū homogeneous of degree 0 and (ū, Ē) a minimizing pair in
Rn.

We refer to a minimizing homogeneous pair (ū, Ē) as a minimizing cone. From Theorem 1.1 we see
that on compact sets ur → u uniformly and Er → Ē in Hausdorff distance.

Proof. By compactness we can find a sequence such that ur → ū and Er → Ē as above. From
Proposition 5.3 we have Perσ(Er) → Perσ(Ē) and, as in Proposition 9.1 in [6], this implies the
convergence above of Ur to U , and

Φur(t)→ Φū(t) as r → 0.

Then Φū(t) = Φu(0+) and the conclusion follows from Theorem 5.2. Notice from the definition of Φ
that Φ(0+) is bounded since u ∈ Cα(B1), with α = 1− σ

2
, thanks to Theorem 1.1. �
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Let (ū, Ē) be a minimizing cone. We define its energy as Φū which is a constant (recall Theorem 5.2).
From the homogeneity of ū it follows that

Φū = cn,σ

∫
B1

|∇Ū |2dX,

hence the energy depends only on Ē.

Since ū± are complementary homogeneous harmonic functions in Ē respectively Ēc, at least one of
them, say ū−, has homogeneity greater or equal to 1, thus ū− = 0. Then ū+ is homogeneous of
degree 1− σ

2
and ∫

Rn

χĒc − χĒ
|y − x|n+σ

dy = |∇ū+(x)|2, ∀x ∈ ∂Ē,

holds in the viscosity sense. Notice that both terms are homogeneous of degree −σ.

If ū+ ≡ 0 then the study of minimizing cones reduces to the study of σ-minimal surfaces. This is the
case when σ = 1 which was treated in [4]. Indeed, the homogeneity of a positive harmonic function
in a mean-convex cone E which vanishes on ∂E cannot be less than 1. This follows since a multiple
of the distance function to ∂E is superharmonic and is an upper barrier for ū+. When σ < 1 it is
not clear whether or not there exist minimizing cones with ū 6= 0 and it seems difficult to relate the
σ-curvature of ∂E with the homogeneity of ū+.

When Ē = Π is a half-space then ū ≡ 0 and we call (0,Π) a trivial cone. If the blow-up limit (ū, Ē)
of a minimizing pair (u,E) is trivial then we say that 0 ∈ ∂E is a regular point of the free boundary.
By Theorem 4.1, ∂E is a C1,γ surface in a neighborhood of its regular points.

We remark that if E admits an exterior tangent ball at 0 ∈ ∂E then Ē ⊂ Π and ū+ = 0. Then,
we use the Euler-Lagrange equation (Lemma 4.2) and obtain E = Π. Thus any point on ∂E which
admits a tangent ball from E or Ec is a regular point. Therefore the set of regular points is dense in
∂E. We summarize these results below.

Proposition 5.5. Let (u,E) be a minimal pair, 0 ∈ ∂E, and let (ū, Ē) be its tangent cone as in
Proposition 5.4. If Ē is a half-space (i.e. if 0 is a regular point) then ∂E is a C1,γ surface and the free
boundary equation (4.1) holds. Moreover, all points on ∂E which have a tangent ball from either E or
Ec are regular points.

By a standard argument (see Theorem 9.6 in [6]), we also obtain that the trivial cone has the least
energy amongst all minimizing cones. Precisely if (ū, Ē) is a minimizing cone then

Φū > ΦΠ,

and if Ē is not a half-space then

Φū > ΦΠ + δ0

for some δ0 > 0 depending only on n, σ.

6. PROOF OF THEOREM 1.2

In this section we prove Theorem 1.2 using the dimension reduction argument of Federer. As in Section
10 in [6], in order to obtain Theorem 1.2 it suffices to prove the following two propositions.

Proposition 6.1. The pair (u,E) is minimizing in Rn if and only if (u(x), E × R) is minimizing in
Rn+1.

Proposition 6.2. In dimension n = 2, all minimizing cones are the trivial.
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Proof of Proposition 6.1. The proof is similar to the one of Theorem 10.1 in [6]. We just sketch the
main difference. The only issue that needs to be discussed is the existence of a perturbation which is
admissible when we prove that (u,E) is minimizing in Rn if (u(x), E × R) is minimizing in Rn+1.

Precisely let v(x), V (x, z) be admissible functions which coincide with u, respectively U say outside
B+

1/2. It suffices to construct an admissible pair w(x, xn+1) and W (x, xn+1, z) in one dimension

higher i.e. in B1 × [0, 1] such that on the n dimensional slice xn+1 = 0, (w,W ) coincides with
(u, U), and on the slice xn+1 = 1, (w,W ) coincides with (v, V ).

For xn+1 ∈ [0, 1/4] we define

W (x, xn+1, z) = U(x, z), and w(x, xn+1) := (1− ϕ+ ϕη(x))u(x)

with ϕ = ϕ(xn+1) a smooth function vanishing for xn+1 6 0 and which equals 1 for xn+1 > 1/4.
The function η above is a cutoff function which vanishes in B1/2 and equals 1 outside B3/4.

Similarly we construct W and w for xn+1 ∈ [3/4, 1], by using the pair (v, V ).

In the interval xn+1 ∈ [1/4, 3/4] we extend w to be constant in the xn+1 variable. We also extend
W to be constant in the annulus B+

1 \ B+
1/2. It remains to construct W in the inner cylinder B1/2 ×

[1/4, 3/4]. Since w = 0 on the “bottomöf this cylinder, any choice for W with trace ±1 on {xn+1 =
0} makes the pair (w,W ) admissible. Now we can argue precisely as in the proof of the σ-minimal
surfaces, and the construction for the interpolating W is given in Lemma 10.2 in [6]. �

Proof of Proposition 6.2. We follow the methods in [14, 15] where the same result was proved for
σ-minimal surfaces. We remark that the assumption that n = 2 is only necessary at the end of the
proof. We define

Er(v, V ) :=

∫
Bρ

|∇v|2 dx+ cn,σ

∫
B+
r

z1−σ|∇V (X)|2 dX.

By Proposition 5.1, we know that (u, U) minimizes E under domain variations. We consider a diffeo-
morphism on Rn+1 given, for any X ∈ Rn+1

+ by

(6.1) X 7→ Y := X + ϕ(|X|/R)e1,

where ϕ ∈ C∞(R), ϕ = 1 in [−1/2, 1/2] and ϕ = 0 outside (−3/4, 3/4), and R is a large
parameter. We define U+

R (Y ) := U(X) and similarly, if we change e1 into −e1 in (6.1), we may
define U−R . The diffeomorphism in (6.1) restricts to a diffeomorphism in Rn just by considering points
of the type X = (x, 0), i.e.

y := x+ ϕ(|x|/R)e1.

and we set u+
R(y) := u(x), and similarly we define u−R. We claim that

(6.2) ER(u+
R, U

+
R ) + ER(u−R, U

−
R )− 2ER(u, U) 6 CRn−2−σ,

for some C independent of R. By Proposition 5.1, the minimality of (u, U) gives

ER(u, U) 6 ER(u−R, U
−
R ),

and the last two inequalities imply

(6.3) ER(u+
R, U

+
R ) 6 ER(u, U) + CRn−2−σ.

To prove (6.2), by direct calculations (or see formula (11) in [14]) we obtain(
|∇u+

R|
2 + |∇u−R|

2
)
dy = 2(1 +O(1/R2)χBR\BR/2)|∇u|

2 dx

z1−σ
(
|∇U+

R |
2 + |∇U−R |

2
)
dY = 2z1−σ(1 +O(1/R2)χB+

R\B
+
R/2

)|∇U |2 dX.



16

We use that |∇u(x)|2 and z1−σ|∇U(X)|2 are homogeneous of degree−σ respectively−1−σ and
obtain ∫

BR

(
|∇u+

R|
2 + |∇u−R|

2
)
dy − 2

∫
BR

|∇u|2 dx

6 CR−2

∫
BR\BR/2

|∇u|2 dx 6 CR−2 ·Rn−σ

and ∫
B+
R

z1−σ
(
|∇U+

R |
2 + |∇U−R |

2
)
dY − 2

∫
B+
R

2z1−σ|∇U |2 dX

6 CR−2

∫
B+
R\B

+
R/2

z1−σ|∇U |2 dX 6 CR−2 ·Rn−σ

and so the proof of (6.2) is complete.

Next we perform an argument similar to the one of Theorem 1 of [14] (the main difference here is that
two functions are involved in the minimization procedure instead of a single one). For this, we assume
now that n = 2, we argue by contradiction and we suppose that E is not a halfplane. Thus, there
exist M > 0 and p ∈ BM , say on the e2-axis, such that p lies in the interior of E, and p + e1 and
p− e1 lie in Ec. Therefore, if R is sufficiently large we have that

u+
R(x) = u(x− e1), for all x ∈ B2M

U+
R (X) = U(X − e1), for all X ∈ B+

2M ,

u+
R(x) = U(x) for all x ∈ R2 \BR, and

U+
R (X) = U(Y ) for all X ∈ R3

+ \B+
R .

(6.4)

We define

vR(x) := min{u(x), u+
R(x)}, wR(x) := max{u(x), u+

R(x)},
VR(X) := min{U(X), U+

R (X)} and WR(X) := max{U(X), U+
R (X)}

and P := (p, 0) ∈ R3. From (6.4) and the trace property of U we have that

U+
R < WR = U in a neighborhood of P , and(6.5)

U < WR = U+
R in a neighborhood of P + e1.(6.6)

Moreover
ER(u, U) 6 ER(vR, VR)

and
ER(vR, VR) + ER(wR,WR) = ER(u, U) + ER(u+

R, U
+
R ),

therefore

ER(wR,WR) 6 ER(u+
R, U

+
R ).(6.7)

Now we observe that
(wR,WR) is not a minimizer for E2M

with respect to compact perturbations in B2M ×B+
2M . Otherwise WR would be a minimizer too: then

the fact that U 6 WR, (6.5) and the strong maximum principle would give that U = WR in B+
2M , but

this would be in contradiction with (6.6). Thus there exists δ > 0 and a competitor

(u∗, U∗) that coincides with (wR,WR) outside B2M × B+
2M

(with u∗ = wR) and such that

E2M(u∗, U∗) + δ 6 E2M(wR,WR).
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Here δ > 0 is independent of R since (wR,WR) does not depend on R when restricted to B2M ×
B+

2M (recall (6.4)). We conclude that

ER(u∗, U∗) + δ 6 ER(wR,WR).

Combining this with (6.3) and (6.7) we obtain

ER(u∗, U∗) + δ 6 ER(wR,WR) 6 ER(u+
R, U

+
R ) 6 ER(u, U) + CR−σ.

IfR is large enough we obtain that ER(u∗, U
∗) < ER(u, U), which contradicts the minimality of (u, U)

and completes the proof of Proposition 6.2. �

7. PROOFS OF LEMMAS 2.3 - 2.5

In this section we estimate the difference in the Dirichlet energies of the harmonic replacements in two
different sets E and E \ A, with A ⊂ B3/4. We assume that ϕ ∈ H1(B1) ∩ L∞(B1), ϕ > 0, and
let

w := ϕEc , v := ϕEc∪A.

Here above, we used the notation for the harmonic replacements of ϕ that vanish inEc andEc∪A, as
introduced in Definition 2.2. We remark that the existence of v follows from the existence ofw. Indeed,
given w we can easily find an explicit test function with finite energy which vanishes in Ec ∪B3/4, for
example a function of the form w(1− η) with η a cutoff function.

Since w minimizes the Dirichlet energy among all functions which are fixed inEc and have prescribed
values on ∂B1 we find

(7.1)

∫
B1

∇w · ∇ψ dx = 0, ∀ψ ∈ H1
0 (B1) with ψ = 0 a.e. in Ec,

and therefore

(7.2)

∫
B1

|∇(w − ψ)|2 − |∇w|2 dx =

∫
B1

|∇ψ|2 dx.

By definition, v minimizes the Dirichlet energy among all functions which equal w on ∂B1, and are 0
a.e. in Ec ∪ A. We may relax this last condition to functions that are equal to 0 a.e. in Ec and are
nonpositive in A, since then we can truncate them wherever they are negative. This and (7.2) show
that

(7.3)

∫
B1

|∇v|2 − |∇w|2 dx = inf
ψ∈A

∫
B1

|∇ψ|2dx

where

A := {ψ ∈ H1
0 (B1), ψ = 0 a.e. in Ec, ψ > w a.e. in A}.

We use this characterization and show that the difference between the energies of v and w depends
monotonically on ϕ, E and A. Precisely, for i = {1, 2} let wi, vi be the corresponding functions for
ϕi, Ei, Ai.

Lemma 7.1. Assume

ϕ1 6 ϕ2, E1 ⊂ E2, A1 ⊂ A2.

Then ∫
B1

|∇v1|2 − |∇w1|2 dx 6
∫
B1

|∇v2|2 − |∇w2|2 dx.
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Proof. Let v̄2 minimize the Dirichlet integral in B1 among all the functions that equal v2 a.e. in Ec
1 and

v̄2 − v2 ∈ H1
0 (B1). Notice that v̄2 is well defined since v2 is a test function with finite energy, so the

minimizer exists by direct methods. As in (7.1) and (7.2) above, we find∫
B1

|∇v2|2 − |∇v̄2|2 dx =

∫
B1

|∇(v̄2 − v2)|2 dx.

Since v̄2 = v2 = 0 a.e. in Ec
2 ⊂ Ec

1, and v̄2 = w2 on ∂B1 we find from the definition of w2 that∫
B

|∇w2|2 dx 6
∫
B

|∇v̄2|2 dx.

hence ∫
B1

|∇(v̄2 − v2)|2 dx =

∫
B1

|∇v2|2 − |∇v̄2|2 dx 6
∫
B1

|∇v2|2 − |∇w2|2 dx.

Using the characterization in (7.3) for v1, w1 it suffices to show that v̄2 − v2 ∈ A1. By construction
v̄2 − v2 ∈ H1

0 (B1), v̄2 − v2 = 0 a.e. in Ec
1 and v̄2 − v2 = v̄2 a.e. in A1 ⊂ A2. It remains to check

that v̄2 > w1 which follows by maximum principle.

Indeed, let h := (w1− v̄2)+. We have h = 0 a.e. in Ec
1 and also h ∈ H1

0 (B1) since ϕ1 6 ϕ2. From
the definitions of w1, v̄2 (see (7.1)) we obtain∫

B1

∇w1 · ∇h dx = 0,

∫
B1

∇v̄2 · ∇h dx = 0.

Then ∫
B1

|∇(w1 − v̄2)+|2 dx =

∫
B1

∇(w1 − v̄2) · ∇h dx = 0,

and the desired inequality w1 6 v̄2 is proved. �

Proof of Lemma 2.3. After dividingw and v by an appropriate constant, we may assume that ‖w‖L∞(B1) =
1. Then by Lemma 7.1 it suffices to prove our bound in the case when ϕ = 1, B1 \ Bρ ⊂ E and
A = Bρ ∩ E. In this case

v = c(ρ2−n − |x|2−n)+

for an appropriate c, and using symmetric rearrangement we see that the Dirichlet integral of w is
minimized whenever w and the set A are radial. Therefore we need to prove the lemma only in the
case when E = Bc

r , A = Bρ \Br, for some r 6 ρ. We have∫
B1

|∇v|2 − |∇w|2 dx =

∫
B1

|∇(w − v)|2dx =

∫
B1\Br

(w − v)4(v − w).

Using that in Bρ \Br

4(v − w) = 4v = vνdHn−1|∂Bρ ,
and that w − v = w 6 Cr on ∂Bρ we find∫

B1

|∇v|2 − |∇w|2 dx 6 Cr 6 C|A|,

and the lemma is proved. �

Proof of Lemma 2.4. Assume that ‖w‖L∞(B1) = 1 and as before, by Lemma 7.1, it suffices to obtain
the bound in the case when ϕ = 1 and E = B1/2. Then

w := c(2n−2 − |x|2−n)+

for an appropriate c, and let
v̄ := min{w,C0dA},
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where dA represents the distance to the closed set A, and C0 is a large constant depending only on
n. Notice that by construction v̄−ϕ ∈ H1

0 (B1), v̄ = 0 inA and v̄ has bounded Lipschitz norm. Then∫
B1

|∇v|2 − |∇w|2 dx 6
∫
B1

|∇v̄|2 − |∇w|2 dx 6 C|S|,

where S := {v̄ < w}. It remains to show that |S| 6 C(β)|A| which follows the uniform density
property of A.

By choosing C0 sufficiently large we have

S ⊂ {C0dA < w} ⊂ {6dA < d∂B1/2
}.

Thus if x ∈ S and y ∈ ∂A is the closest point to x then it easily follows that

x ∈ Bdy/5(y) with dy := d∂B1/2
(y).

Hence by Vitali’s lemma we can find a collection of disjoint balls Bdyi/5
(yi) such that

S ⊂
⋃
i

Bdyi
(yi).

Thus, by adding the inequalities

|A ∩Bdyi/5
(yi)| > c(β)|Bdyi

(yi)|

we obtain that |A| > c(β)|S|. �

For the proof of Lemma 2.5 we first need a regularization result for the maximum of twoC1,γ functions,
γ ∈ (0, 1). In the next lemma we smooth out the “cornersöf the graph of the positive part of a C1,γ

function without increasing its area too much.

Lemma 7.2. Assume h : Ω→ R+ is a C1,γ function that satisfies {h > 0} = Ω, h = 0 on ∂Ω, and
for any z ∈ Ω there exists a linear function lz (its tangent plane) such that

|h− lz| 6 ε|x− z|1+γ, ∀x ∈ Ω,

for some ε > 0 small. Let

K := {z ∈ Ω s.t. lz + |x− z|1+γ > 0 in Rn}

and denote by

h∗(x) := inf
z∈K

(
lz + |x− z|1+γ

)
.

Then ∫
Ω

h∗ dx 6 (1 + εσ)

∫
K

h dx

with σ > 0 depending on n and γ.

Clearly if we replace |x − z|1+γ by m|x − z|1+γ the conclusion still holds since the problem re-
mains invariant under multiplication by a constant m. The function h∗ can be thought as a C1,γ upper
envelope of norm ‖∇h‖Cγ/ε of the function h (extended by 0 in the whole Rn).

By construction h∗ > h in Ω, h = h∗ in K , and at any point z ∈ K the graph of h is tangent by
below to the C1,γ function lz + |x− z|1+γ > 0.

Proof. Notice that

z ∈ K ⇔ h(z) > c0|∇h(z)|
γ+1
γ , with c0 := γ(γ + 1)−

γ+1
γ .
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We show that for any y ∈ Ω \K there exists dy > 0 such that

(7.4)

∫
(Ω\K)∩Bdy (y)

h∗ dx 6 εσ
∫
Bdy/5(y)∩K

h dx.

Then, by Vitali lemma, we cover Ω \K with a collection of balls Bdyi
(yi) with Bdyi/5

(yi) disjoint and
we obtain the desired claim by summing (7.4) for all yi.

Our hypotheses and (7.4) remain invariant under the scaling

hλ(x) = λ1+γh(x/λ),

thus we may assume for simplicity that y = 0 and∇h(0) = en. Since 0 /∈ K we have h(0) ∈ [0, c0),
and by our hypothesis

|h(x)− (h(0) + xn)| 6 ε|x|1+γ,

hence

|h(x)− (h(0) + xn)| 6 ε1/2 if |x| 6 2d0 := ε−
1

2(γ+1) .

This implies that for some C0 sufficiently large,

Ω ∩Bd0 ⊂ {xn > −C0},

|∇h| 6 2, h > c02
γ+1
γ in the set Bd0 ∩ {xn > C0}.

We obtain

Bd0 ∩ {xn > C0} ⊂ K, and h∗ 6 C in Bd0 ∩ {|xn| 6 C0}
hence ∫

(Ω\K)∩Bd0

h∗ dx 6 Cdn−1
0 ,

∫
K∩Bd0/5

h dx > cdn+1
0 ,

and (7.4) follows. �

Assume for simplicity that E is a set

E := {xn > g(x′)},

where g is a C1,γ function and g(0) = 0,∇x′g(0) = 0.

Let u ∈ H1(E ∩ B1), be positive and harmonic in the interior with u = 0 on ∂E. First we state a
consequence of C1,γ estimates for harmonic functions.

Lemma 7.3. Let F = {xn > f(x′)} be a compact perturbation of E in B1/2 and denote by v the
harmonic function in F ∩B1 which vanishes on ∂F ∩B1 and equals u on ∂B1. Assume that f , g are
C1,γ functions with norm bounded by a constant M , ‖u‖L2 6M and also that |f − g| 6 ε. Then

‖∇u−∇v‖L∞(E∩F∩B1/2) 6 Cε
γ

1+γ .

for some constant C depending on n, γ and M .

Proof. By boundary C1,γ estimates

‖v‖C1,γ(B3/4∩F ) 6 C ⇒ |u− v| 6 Cε on ∂(E ∩ F ∩B1).

By maximum principle, the last inequality holds also in the interior of the domain and the conclusion
follows since u− v has bounded C1,γ norm in B3/4 ∩ E ∩ F . �
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Completion of the proof of Lemma 2.5. We estimate the change in the Dirichlet integral for the har-
monic replacement of u whenever we perturb E by a small C1,γ set A ⊂ Bε. We distinguish two
cases, when A is interior to E and when A is exterior to E. Assume for simplicity that |∇u(0)| = 1.

Case 1: The set A is interior to E,

(7.5) A = {g(x′) 6 xn < f(x′)} ⊂ Bε,

for some function f with C1,γ norm bounded by a constant M . We let ū := uEc∪A and we want to
show that

(7.6) lim
ε→0

1

|A|

∫
B1

(|∇ū|2 − |∇u|2) dx = 1.

After modifying f in the set B2ε \ Bε we may assume that f = g outside B2ε and f has bounded
C1,γ norm. From (7.5) we also obtain that

(7.7) ‖g‖
C1,

γ
2 (B′2ε)

, ‖f‖
C1,

γ
2 (B′2ε)

are bounded by Cε
γ
2 .

We have ∫
B1

|∇ū|2 − |∇u|2 dx =

∫
B1

∇(ū− u) · ∇(ū+ u) dx.

After integrating by parts in the sets E \ A and A we find

(7.8)

∫
B1

|∇ū|2 − |∇u|2 dx =

∫
∂A

u ūν dHn−1,

with ν the exterior normal to A. We need to estimate∫
Γ

u ūν dHn−1 with Γ := {(x′, f(x′)) s.t. f(x′) > g(x′)}.

Let T ⊂ Γ be a measurable set and denote by T ′ ⊂ Rn−1 its projection along en direction. Since in
Bε, un = 1 + o(1) with o(1)→ 0 as ε→ 0, we use (7.7) and we see that

(1 + o(1)) inf
T
ūν

∫
T ′
h dx′ 6

∫
T

u ūν dHn−1 6 (1 + o(1)) sup
T
ūν

∫
T ′
h dx′,

with

h := f − g.

For the upper bound we use that ū 6 v with v defined in Lemma 7.3. Then ūν 6 vν = 1 + o(1) in Γ
and we find that

(7.9)

∫
Γ

u ūν dHn−1 6 (1 + o(1))|A|.

For the lower bound we use Lemma 7.2 for h+ and consider its C1,γ/2 envelope of norm εγ/4 �
εγ/2. Denote by K ′ ⊂ Rn−1 the contact set between h+ and its envelope and let K ⊂ Γ be the
corresponding set that projects onto K ′.

At any point z ∈ K there is a C1,γ/2 graph

Gz := {xn = fz(x
′)} fz := g + lz + ε

γ
4 |x′ − z′|1+ γ

2 ,

and Gz is tangent by above to A and is included in E \ A. Moreover after using a cutoff function
we may assume hz has small C1,γ/2 norm in a neighborhood of 0 and coincides with g outside this
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neighborhood. Let vz denote the corresponding harmonic function for hz as in Lemma 7.3. Then
ū > vz, or ūν(z) > 1 + o(1) and we obtain

(7.10)

∫
K

ūν u dHn−1 > (1 + o(1))

∫
K′
h dx′ > (1 + o(1))

∫
Γ′
h dx′,

where in the last inequality we used Lemma 7.2. Then (7.6) follows from (7.9) and (7.10).

Case 2: The set A is exterior to E,

A = {f(x′) < xn 6 g(x′)} ⊂ Bε,

for some function f with C1,γ norm bounded. We let ū := uEc\A and we want to show that

(7.11) lim
ε→0

1

|A|

∫
B1

(|∇u|2 − |∇ū|2)dx = 1.

As before we may assume that h = g outside B2ε and (7.7) holds. Since

(7.12)

∫
B1

|∇ū|2 − |∇u|2 dx =

∫
∂A

ū uν dHn−1

and

(7.13) uν = 1 + o(1)

we need to estimate∫
Γ

ū dHn−1 with Γ := {(x′, g(x′)) s.t. g(x′) > f(x′)}.

The function v defined in Lemma 7.3 is a lower barrier for ū and since vn = 1 + o(1) we obtain

(7.14)

∫
Γ

ū dHn−1 > (1 + o(1))

∫
Γ′
h dx′, with h := (g − f)+.

For the upper bound we apply Lemma 7.2 for the function h as in case 1 above. For any z =
(z′, f(z′)), z′ ∈ Γ′ we define the graph Gz of the function

Gz := {xn = fz(x
′)}, fz := g − lz − ε

γ
4 |x′ − z′|1+ γ

2 ,

which is included in Ec and it is tangent to A by below at z. Since ū 6 vz and ∂nvz = 1 + o(1) we
obtain

ū 6 (1 + o(1))(xn − fz(x′)).

After taking the infimum over all z ∈ Γ we find

ū(x′, g(xn)) 6 (1 + o(1))h∗(x′) ∀x′ ∈ Γ′.

By Lemma 7.2 we find

(7.15)

∫
Γ

ū dHn−1 6 (1 + o(1))

∫
Γ′
h∗ dx′ 6 (1 + o(1))

∫
Γ′
h dx′.

Now, (7.11) is a consequence of (7.12), (7.13), (7.14) and (7.15), and this ends the proof of Lemma
2.5. �
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