60,101 research outputs found

    New results on stabbing segments with a polygon

    Get PDF
    We consider a natural variation of the concept of stabbing a set of segments with a simple polygon: a segment s is stabbed by a simple polygon P if at least one endpoint of s is contained in P, and a segment set S is stabbed by P if P stabs every element of S. Given a segment set S, we study the problem of finding a simple polygon P stabbing S in a way that some measure of P (such as area or perimeter) is optimized. We show that if the elements of S are pairwise disjoint, the problem can be solved in polynomial time. In particular, this solves an open problem posed by Loftier and van Kreveld [Algorithmica 56(2), 236-269 (2010)] [16] about finding a maximum perimeter convex hull for a set of imprecise points modeled as line segments. Our algorithm can also be extended to work for a more general problem, in which instead of segments, the set S consists of a collection of point sets with pairwise disjoint convex hulls. We also prove that for general segments our stabbing problem is NP-hard. (C) 2014 Elsevier B.V. All rights reserved.Peer ReviewedPostprint (author's final draft

    On rr-Guarding Thin Orthogonal Polygons

    Get PDF
    Guarding a polygon with few guards is an old and well-studied problem in computational geometry. Here we consider the following variant: We assume that the polygon is orthogonal and thin in some sense, and we consider a point pp to guard a point qq if and only if the minimum axis-aligned rectangle spanned by pp and qq is inside the polygon. A simple proof shows that this problem is NP-hard on orthogonal polygons with holes, even if the polygon is thin. If there are no holes, then a thin polygon becomes a tree polygon in the sense that the so-called dual graph of the polygon is a tree. It was known that finding the minimum set of rr-guards is polynomial for tree polygons, but the run-time was O~(n17)\tilde{O}(n^{17}). We show here that with a different approach the running time becomes linear, answering a question posed by Biedl et al. (SoCG 2011). Furthermore, the approach is much more general, allowing to specify subsets of points to guard and guards to use, and it generalizes to polygons with hh holes or thickness KK, becoming fixed-parameter tractable in h+Kh+K.Comment: 18 page

    Towards a theory of automated elliptic mesh generation

    Get PDF
    The theory of elliptic mesh generation is reviewed and the fundamental problem of constructing computational space is discussed. It is argued that the construction of computational space is an NP-Complete problem and therefore requires a nonstandard approach for its solution. This leads to the development of graph-theoretic, combinatorial optimization and integer programming algorithms. Methods for the construction of two dimensional computational space are presented

    Fastest mixing Markov chain on graphs with symmetries

    Full text link
    We show how to exploit symmetries of a graph to efficiently compute the fastest mixing Markov chain on the graph (i.e., find the transition probabilities on the edges to minimize the second-largest eigenvalue modulus of the transition probability matrix). Exploiting symmetry can lead to significant reduction in both the number of variables and the size of matrices in the corresponding semidefinite program, thus enable numerical solution of large-scale instances that are otherwise computationally infeasible. We obtain analytic or semi-analytic results for particular classes of graphs, such as edge-transitive and distance-transitive graphs. We describe two general approaches for symmetry exploitation, based on orbit theory and block-diagonalization, respectively. We also establish the connection between these two approaches.Comment: 39 pages, 15 figure

    Isoperimetric and stable sets for log-concave perturbations of Gaussian measures

    Full text link
    Let Ω\Omega be an open half-space or slab in Rn+1\mathbb{R}^{n+1} endowed with a perturbation of the Gaussian measure of the form f(p):=exp(ω(p)cp2)f(p):=\exp(\omega(p)-c|p|^2), where c>0c>0 and ω\omega is a smooth concave function depending only on the signed distance from the linear hyperplane parallel to Ω\partial\Omega. In this work we follow a variational approach to show that half-spaces perpendicular to Ω\partial\Omega uniquely minimize the weighted perimeter in Ω\Omega among sets enclosing the same weighted volume. The main ingredient of the proof is the characterization of half-spaces parallel or perpendicular to Ω\partial\Omega as the unique stable sets with small singular set and null weighted capacity. Our methods also apply for Ω=Rn+1\Omega=\mathbb{R}^{n+1}, which produces in particular the classification of stable sets in Gauss space and a new proof of the Gaussian isoperimetric inequality. Finally, we use optimal transport to study the weighted minimizers when the perturbation term ω\omega is concave and possibly non-smooth.Comment: final version, to appear in Analysis and Geometry in Metric Space
    corecore