4,478 research outputs found

    Enabling decision trend analysis with interactive scatter plot matrices visualization

    Full text link
    © 2015 Elsevier Ltd. This paper presents a new interactive scatter plot visualization for multi-dimensional data analysis. We apply Rough Set Theory (RST) to reduce the visual complexity through dimensionality reduction. We use an innovative point-to-region mouse click concept to enable direct interactions with scatter points that are theoretically impossible. To show the decision trend we use a virtual Z dimension to display a set of linear flows showing approximation of the decision trend. We conducted case studies to demonstrate the effectiveness and usefulness of our new technique for analyzing the property of three popular data sets including wine quality, wages and cars. The paper also includes a pilot usability study to evaluate parallel coordinate visualization with scatter plot matrices visualization with RST results

    Bubble-Wall Plot: A New Tool for Data Visualization

    Get PDF
    This research aimed to design a new tool for data visualization with performed features - named Bubble-Wall Plot and assumed that it could be an effective tool for developing data visualization systems. This research reviewed seven data visualization approaches for identifying the outliers, including Line Charts, Parallel Coordinates Plot, Scatter Plots, TreeMap, Glyphs, Pixel-based techniques, and Redial visualizations. The challenges for current data visualization approaches were also summarized. Two principles were addressed to design the new tool- keep it simple strategy with the smallest strategy. As a result, the newly designed Bubble-Wall Plot has successfully been adopted to develop a warning system for identifying the outliers in a Case Study company, which was deployed for user acceptance testing in May 2021. The main contribution is that this newly designed tool with the simplest style was well-designed and proven to effectively develop a warning visualization system

    Evaluation Of Information Visualization For Decision Making Support In An Emergency Department Information System.

    Get PDF
    The purpose of this dissertation is to propose an evaluation framework to assess various IV techniques in EDIS and provide recommendations for developers

    General scores for accessibility and inequality measures in urban areas

    Get PDF
    In the last decades, the acceleration of urban growth has led to an unprecedented level of urban interactions and interdependence. This situation calls for a significant effort among the scientific community to come up with engaging and meaningful visualizations and accessible scenario simulation engines. The present paper gives a contribution in this direction by providing general methods to evaluate accessibility in cities based on public transportation data. Through the notion of isochrones, the accessibility quantities proposed measure the performance of transport systems at connecting places and people in urban systems. Then we introduce scores rank cities according to their overall accessibility. We highlight significant inequalities in the distribution of these measures across the population, which are found to be strikingly similar across various urban environments. Our results are released through the interactive platform: www.citychrone.org, aimed at providing the community at large with a useful tool for awareness and decision-making

    Methodologies in Predictive Visual Analytics

    Get PDF
    abstract: Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent-specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end-users to understand and engage with the modeling process. However, despite the numerous and promising applications of visual analytics to predictive analytics tasks, work to assess the effectiveness of predictive visual analytics is lacking. This thesis studies the current methodologies in predictive visual analytics. It first defines the scope of predictive analytics and presents a predictive visual analytics (PVA) pipeline. Following the proposed pipeline, a predictive visual analytics framework is developed to be used to explore under what circumstances a human-in-the-loop prediction process is most effective. This framework combines sentiment analysis, feature selection mechanisms, similarity comparisons and model cross-validation through a variety of interactive visualizations to support analysts in model building and prediction. To test the proposed framework, an instantiation for movie box-office prediction is developed and evaluated. Results from small-scale user studies are presented and discussed, and a generalized user study is carried out to assess the role of predictive visual analytics under a movie box-office prediction scenario.Dissertation/ThesisDoctoral Dissertation Engineering 201

    FDive: Learning Relevance Models using Pattern-based Similarity Measures

    Full text link
    The detection of interesting patterns in large high-dimensional datasets is difficult because of their dimensionality and pattern complexity. Therefore, analysts require automated support for the extraction of relevant patterns. In this paper, we present FDive, a visual active learning system that helps to create visually explorable relevance models, assisted by learning a pattern-based similarity. We use a small set of user-provided labels to rank similarity measures, consisting of feature descriptor and distance function combinations, by their ability to distinguish relevant from irrelevant data. Based on the best-ranked similarity measure, the system calculates an interactive Self-Organizing Map-based relevance model, which classifies data according to the cluster affiliation. It also automatically prompts further relevance feedback to improve its accuracy. Uncertain areas, especially near the decision boundaries, are highlighted and can be refined by the user. We evaluate our approach by comparison to state-of-the-art feature selection techniques and demonstrate the usefulness of our approach by a case study classifying electron microscopy images of brain cells. The results show that FDive enhances both the quality and understanding of relevance models and can thus lead to new insights for brain research.Comment: 12 pages, 7 figures, 2 tables, LaTeX; corrected typo; added DO

    Methodologies in Predictive Visual Analytics

    Get PDF
    abstract: Predictive analytics embraces an extensive area of techniques from statistical modeling to machine learning to data mining and is applied in business intelligence, public health, disaster management and response, and many other fields. To date, visualization has been broadly used to support tasks in the predictive analytics pipeline under the underlying assumption that a human-in-the-loop can aid the analysis by integrating domain knowledge that might not be broadly captured by the system. Primary uses of visualization in the predictive analytics pipeline have focused on data cleaning, exploratory analysis, and diagnostics. More recently, numerous visual analytics systems for feature selection, incremental learning, and various prediction tasks have been proposed to support the growing use of complex models, agent-specific optimization, and comprehensive model comparison and result exploration. Such work is being driven by advances in interactive machine learning and the desire of end-users to understand and engage with the modeling process. However, despite the numerous and promising applications of visual analytics to predictive analytics tasks, work to assess the effectiveness of predictive visual analytics is lacking. This thesis studies the current methodologies in predictive visual analytics. It first defines the scope of predictive analytics and presents a predictive visual analytics (PVA) pipeline. Following the proposed pipeline, a predictive visual analytics framework is developed to be used to explore under what circumstances a human-in-the-loop prediction process is most effective. This framework combines sentiment analysis, feature selection mechanisms, similarity comparisons and model cross-validation through a variety of interactive visualizations to support analysts in model building and prediction. To test the proposed framework, an instantiation for movie box-office prediction is developed and evaluated. Results from small-scale user studies are presented and discussed, and a generalized user study is carried out to assess the role of predictive visual analytics under a movie box-office prediction scenario.Dissertation/ThesisDoctoral Dissertation Engineering 201

    ATMSeer: Increasing Transparency and Controllability in Automated Machine Learning

    Full text link
    To relieve the pain of manually selecting machine learning algorithms and tuning hyperparameters, automated machine learning (AutoML) methods have been developed to automatically search for good models. Due to the huge model search space, it is impossible to try all models. Users tend to distrust automatic results and increase the search budget as much as they can, thereby undermining the efficiency of AutoML. To address these issues, we design and implement ATMSeer, an interactive visualization tool that supports users in refining the search space of AutoML and analyzing the results. To guide the design of ATMSeer, we derive a workflow of using AutoML based on interviews with machine learning experts. A multi-granularity visualization is proposed to enable users to monitor the AutoML process, analyze the searched models, and refine the search space in real time. We demonstrate the utility and usability of ATMSeer through two case studies, expert interviews, and a user study with 13 end users.Comment: Published in the ACM Conference on Human Factors in Computing Systems (CHI), 2019, Glasgow, Scotland U
    • …
    corecore