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Abstract  
This research aimed to design a new tool for data visualization with performed features - named Bubble-
Wall Plot and assumed that it could be an effective tool for developing data visualization systems. This 
research reviewed seven data visualization approaches for identifying the outliers, including Line 
Charts, Glyphs, Parallel Coordinates Plot, Pixel-based technique, Redial visualizations, Scatter Plots, 
and TreeMap. The challenges for current data visualization approaches were also summarized. Two 
principles were addressed to design the new tool- keep it simple strategy with the smallest strategy. As 
a result, the newly designed Bubble-Wall Plot has successfully been adopted to develop a warning system 
for identifying the outliers in a Case Study company, which was deployed for user acceptance testing in 
May 2021. The main contribution is that this newly designed tool with the simplest style was well-
designed and proven to develop a warning visualization system effectively. 

Keywords Bubble-Wall Plot, Cartographic Symbolization, Data Visualization, Visualization Tool, 
Warning Visualization System  
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1 Introduction  
Data visualization is not something new and is a graphical representation of an object, situation, or set 
of information in a diagram, photograph, or other sorts of image and form a mental image (Metze 2020, 
p.745; Tableau, 2021). Over the last 30 years, various approaches, techniques, and concepts have been 
developed to help the user find a suitable data transformation and visual mapping by iterating and 
evaluating every possible visualization design combination (Behrisch et al. 2018, p.626). As a tool, data 
visualization was used to help end-users see the data and better understand data by quickly and uniquely 
conveying information (Paul et al. 2019, p.339; Walker et al. 2020, p.2; Lundkvist et al. 2021, p.7). As a 
valuable method, data visualizations across any number of variables help end-users make sense of 
abstract concepts that are particularly useful for problems involving large amounts of data that cannot 
be easily or quickly understood (Paul et al. 2019, p.339; Walker et al. 2020, p.2). It leverages the human 
ability to visually identify or detect patterns and recognition (Paul et al. 2019, p.339; Saket, Endert & 
Demiralp 2019, p.2505) and prompts actions by grabbing their attention providing illustrative data 
(Lundkvist et al. 2021, p.7). High-quality visualizations of integrated and multi-scale modeling results 
may strengthen research reliability (Saka, Oshika & Jimichi 2019, p.703) and even offers a new 
perspective on data (Irwin, Robinson & Belt 2017, pp.520-521; Saka, Oshika & Jimichi 2019, p.697, 
p.717).  

In the literature, safety management researchers have used data visualization to aid job hazard 
identification for controlling and improving on-site safety monitoring (Guo, Yu & Skitmore 2017, p.135). 
Researchers used data visualization to display the measures of the warnings, help users understand 
hazard behavior, and inform responsive teams of a hazard event or disaster warning (Webley 2011, p.25, 
p.35; Keon et al. 2014, p.989). It may enable to make the prediction (Saka, Oshika & Jimichi 2019, 
p.696). For example, as a “rapid response system,” early warning systems with data visualization help 
detect clinical deterioration and improve hospital patient safety; if the system detected an anomaly data, 
it would trigger an alert (Fang, Lim & Balakrishnan 2020, p.2). However, data analysis without 
generating informative visualizations often does not help the analysts and readers, especially those 
without solid statistical backgrounds, understand complex research questions, nuanced relationships 
between variables, and statistical outputs (Avraam et al. 2021, pp.1-2).  

Up-to-data literature presented that no single approach was well-performed to cover all feature metrics 
for data visualization. Researchers and practitioners also faced several critical challenges in identifying 
the best visualization approach for a given dataset and task. There are, therefore, necessary to introduce 
interactive and user-centered visualizations to their possible audience much more frequently (Perkhofer 
et al. 2019, p.517). The research highlighted that there was a need to find more effective ways to integrate 
and understand the intersectionality of models in various filed; at the same time, the datasets from 
diverse fields vary from spatial to relational data, especially as the volume, diversity, and complexity of 
data increase (Christensen et al. 2018, p.344). On the other hand, many studies in data visualization 
have focused on leveraging the human visual system to offload cognitive work and visualize information 
effectively (Horton, Nowak & Haegeli 2020, p.1560). Visual analytics is also rapidly emerging as an 
interdisciplinary scientific field based on information visualization and cognitive and perceptual 
sciences (Stenliden, Bodén & Nissen 2019, p.105). However, scientists and researchers were rarely 
trained to develop visualization (Saka, Oshika & Jimichi 2019, p.702). 

This research aimed to design a new tool for data visualization with performed features - named 
“Bubble-Wall Plot.” This research assumed that this newly designed Bubble-Wall Plot could effectively 
develop data visualization systems as an effective tool. The following sections include related works,  
review on outlier data visualization, challenges for data visualization approaches, Bubble-Wall Plot, 
conclusions, limitations, and further research.  

2 Related Works 
Data Visualization has spread with different terms over an extended period, such as infographics, 
information graphics, informative graphs, statistical graphics, graphical visualizations, etc. (called data 
visualization in this research). In the literature, a few studies reviewed research on data visualizations 
between 1974 and 2016. Bertini, Tatu & Keim (2011) reviewed data visualization techniques in 20 papers 
published between 1974 and 2010. Dimara & Perin (2020) synthesized a review of interaction in 
visualization about 59 articles published between 1991 and 2017. Friedman (2021) conducted empirical 
research for the role of visualization in scientific discovery in the field of ecology between 1996 and 2016. 

This research reviewed data visualization approaches discussed in Q1 publications between Jan 2017 
and May 2021. 25 visualization approaches were found, including Bar Chart, Bubble Map, Dimension 

https://cqu-primo.hosted.exlibrisgroup.com/primo-explore/search?query=creator%2Cexact%2CFriedman%2C%20Alon%2CAND&tab=61cqu_library&search_scope=61CQU_Library&vid=61CQU&lang=en_US&mode=advanced&offset=0
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Hierarchies, Geo-Spatial maps, Glyphs-based techniques, Heatmaps, Histograms, Line Charts, Network 
Diagrams, Parallel Coordinates Plot, Pie Chart, Pixel-based techniques, Polar Coordinate Plots, Radial 
visualizations, Radar Chart, Sankey Chart, Scatter Plot, Stacked Graph, Sunburst, Table Lens, 
Topological Hierarchies, TreeMap, Typographic, Tag Clouds, and Weather Map.  

However, research indicated that most data visualization techniques missed identifying outliers 
(Johansson & Forsell 2016, p.585). Among the above approaches, eight data visualization approaches 
or tools were used for determining the outliers. They include Line Charts, Geo-Spatial maps, Glyphs-
based techniques, Parallel Coordinates Plot, Pixel-based techniques, Redial visualizations, Scatter Plots, 
and TreeMap (Behrisch et al. 2018, pp.635-647). In contrast with other approaches, Geo-Spatial maps 
represent concepts with a semantic closer to humanity, such as cities, lands, roads, etc. (Behrisch et al. 
2018, p.646).  

3 Review on Outlier Data Visualization  
This section discussed seven data visualization techniques for identifying outliers, including Line Charts, 
Glyphs-based techniques, Parallel Coordinates Plot, Pixel-based techniques, Redial visualizations, 
Scatter Plots, and TreeMap. 

Line Charts were commonly used for visualizing time series to scientific data (Wang et al. 2018, p.3096). 
They may analyze the temporal aspects of data and put their exclusive focus on the task of trend analysis, 
and used two axes in x- and y-direction to reference each data point in the coordinate system (Behrisch 
et al. 2018, p.647). Line Chart is significantly more accurate and speed than other charts for Correlation 
and Distribution tasks (Saket, Endert & Demiralp 2019, p.2508, p.2511), and higher users’ preferences 
than using Scatter Plots (Saket, Endert & Demiralp 2019, p.2511). However, Line Charts face several 
limitations. The main limit is that Line Chart is slower with response time for retrieving value (Zhang, 
Sarvghad & Miklau 2021, p.1791). The second limitation is that Line Charts have low performance for 
Derived Value and Finding Cluster; The axes values were drawn at uniform intervals, making it difficult 
to precisely identify a specific data point (Saket, Endert & Demiralp 2019, p.2511). One more limitation 
is that an inappropriate aspect ratio of the height to width may affect the visual perception of the 
accuracy of value judgments (Heer & Agrawala 2006, p.701; Behrisch et al. 2018, p.647).  

Glyphs-based approaches utilize shape, color, opacity, size, location, etc., to encode high-dimensional 
information by rendering “small graphical symbols” and have been used to provide statistical and 
sensitivity information to present trends in the data (Liu et al. 2017, p.1256). The most significant 
advantage of the glyph is its flexibility in the layout. All graphics are designed to represent data points, 
positioned independently and efficiently combined with other established visualizations opening space 
for various application areas with additional information about the data (Behrisch et al. 2018, p.641). 
The main limitation is that this visual feature does not carry any information about the data to add color 
to the plot or highlight certain visual features and better solve the analysis task (Behrisch et al. 2018, 
p.641). 

A Parallel Coordinates Plot is one of the most popular visualizations for multi- and high-dimensional 
data: equally-spaced vertical axis represents the dimensions of the dataset; the top of the axis 
corresponds to the highest, while the bottom to the lowest value in each dimension; data points are 
mapped to polylines across the axis, such that the intersection between an axis and a polyline marks the 
data value (Behrisch et al. 2018, p.636). It is strongly recommended visualization in the information 
visualization community and highly cited in scientific research (Perkhofer, Walchshofer & Hofer 2020, 
p.62). The main advantage of this technique is that it gained popularity by enabling analysts to explore 
patterns across a large set of dimensions (Behrisch et al. 2018, p.636) and is even suitable for the 
visualization of the unlimited number of data points (Abi Akle, Yannou & Minel 2019, p.234). Parallel 
Coordinates Plots were used for displaying a general overview of the multi-dimensional monitoring data 
to provide an interface for users to explore and filter the high-dimensional source data (Johansson & 
Forsell 2016, p.585; Zhang, Gong & Koyamada 2020, p.1089, p.1091, p.1098). Compared with other 
visualization techniques, Parallel Coordinates Plot could quickly identify correlation patterns at a glance, 
such as positive, negative, and non-trivial (multiple) correlations (Johansson & Forsell 2016, p.585; Abi 
Akle, Yannou & Minel 2019, p.235). This visual mapping allows analysts to spot high-level patterns, as 
well as single data points of interest (Behrisch et al. 2018, p.636). Parallel Coordinates Plot also performs 
better in accuracy and response time for each visualization task and sensitivity analysis tasks to the 
clustering, outlier detection, and change detection in subsets of the data (Kanjanabose, Abdul-Rahman 
& Chen 2015, p.268; Johansson & Forsell 2016, p.585, p.587; Netzel et al. 2017, p.118, p.130).  

http://vis.stanford.edu/jheer
http://vis.berkeley.edu/%7Emaneesh
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However, Parallel Coordinates Plots face at least seven challenges. The main challenge is that a perceived 
pattern in Parallel Coordinates depends primarily on ordering the dimension axis; a proper ordering 
can reveal unknown patterns; in contrast, a non-useful ordering may hide them (Behrisch et al. 2018, 
p.636). It requests the applicable order of dimensions to enhance correlation and clustering (Bertini, 
Tatu & Keim 2011, p.2209). The second challenge a large number of dimensions decreases the available 
screen space between two axes and results in cluttered plots (Behrisch et al. 2018, p.636). The third 
challenge is that the patterns disappear due to overplotted lines with an increasing number of data 
records (Behrisch et al. 2018, p.636). The fourth challenge is that Parallel Coordinates Plot does not 
exhibit much strength in supporting value retrieval (Kanjanabose, Abdul-Rahman & Chen 2015, p.268). 
The fifth challenge is that when display time is limited, people spend more time interpreting the 
perceived signal and generating an output response when using Parallel Coordinates Plots instead of 
Scatter Plots, which seems to point at an increase in cognitive load (Li, Martens & van Wijk 2010, p.26). 
The sixth challenge is that all the evidence hence implies that the accuracy of judgment for Parallel 
Coordinates Plot is much lower than that for Scatter Plots (Li, Martens & van Wijk 2010, p.25). One 
more challenge is that positive and negative correlation perception is not symmetric: negative 
correlations are visible more clearly (Behrisch et al. 2018, p.636). 

The Pixel-based technique creates a separate view (called sub-window) for every dimension of a dataset, 
mapped to precisely one pixel within each sub-window, and colored according to the value in the 
respective dimensions (Behrisch et al. 2018, p.639). It encodes individual data values as pixels and 
focuses on arranging them in meaningful ways (Liu et al. 2017, p.1255). The Pixel-based visualizations 
can also be used to identify clusters and outliers on extensive high-dimensional data (Behrisch et al. 
2018, p.639). The main advantages are that Pixel-oriented visualizations do not face overplotting issues 
and display large amounts of data without aggregation (Behrisch et al. 2018, p.638). However, this 
requires a manual setting of the interestingness thresholds (Behrisch et al. 2018, p.639). 

Radial visualizations are two-dimensional projections of high-dimensional data into a circle and arrange 
the data in a circular or elliptical fashion (Behrisch et al. 2018, p.439, p.640). The main limitation is that 
a Radial visualization did not be recommended for an interactive data visualization as it was difficult for 
participants to identify and compare values needed and drill down more into the data rather than 
visually perceive the differences in the alternative visualization (Albo et al. 2016, p.575, p.577). Another 
limitation is that radial visualizations are highly dependent on the ordering of dimensions, which is, in 
turn, dependent on the user’s task: if one data instance has high values in two neighboring dimensions, 
it is plotted more closely to the circumference, in addition, another data instance with high values in two 
opposite dimensions is plotted more closely to the center of the circle (Behrisch et al. 2018, p.640). This 
technique cannot show all details due to the visual limitations inherent in radial layouts (Keim et al. 
2006, p.127). One more limit is that Radial visualization approaches are not recommended for 
interactive data visualization (Nguyen et al. 2020, p.2, p.3). 

A Scatter Plot is a handy technique widely used for investigating the relationship between two different 
variables as x- and y-axis in a Cartesian coordinate view and might be extensible to multi-dimensional 
data and very appropriate for large data visualization (Urribarri & Castro 2017, p.114; Behrisch et al. 
2018, p.634). The main advantage of this visual representation is its strength in getting a quick overview 
of data (Nguyen et al. 2020, p.3). It has the readability of single data instances and patterns to be 
straightforward and quickly understood, which may help indicate problems, unique properties, and 
anything interesting about the data (Behrisch et al. 2018, p.634). Scatter Plots have high accuracy, speed, 
and user preference for finding anomalies (Saket, Endert & Demiralp 2019, p.2511), and better with 
perceptual accuracy and faster with response time for filter and cluster (Behrisch et al. 2018, p.634; 
Zhang, Sarvghad & Miklau 2021, p.1791). Scatter Plots have significantly higher accuracy and speed for 
finding correlations but are lower than Line Charts (Li, Martens & van Wijk 2010, p.26; Harrison et al. 
2014, p.1950; Saket, Endert & Demiralp 2019, p.2508, p.2511). Moreover, Scatter Plots outperform 
Parallel Coordinates Plots in shorter response times (Netzel et al. 2017, p.123) and supporting visual 
correlation analysis more effectively between two variables (Li, Martens & van Wijk 2010, p.29). Scatter 
Plots may also outperform Parallel Coordinates Plot to analyze specific relationships such as linear 
relationships (Johansson & Forsell 2016, p.585). 

The main limitation is that Scatter Plot may not provide interactive functions, such as linking, brushing, 
and zoom-in view, which involve highlighting or de-emphasizing data and have limited in displaying 
details (Nguyen et al. 2020, p.2, p.3). The second limitation is that Scatter Plot has significant 
overlapping that presents high superposition when visualizing big datasets (Urribarri & Castro 2017, 
p.114). The third limitation is that this technique does not exhibit much strength in supporting value 
retrieval (Kanjanabose, Abdul-Rahman & Chen 2015, p.268). One more limit is that Scatter Plots did 
not be recommended for interactive data visualization (Nguyen et al. 2020, p.2, p.3). 
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TreeMap is a standard tool for visualizing trees with associated data in a space-filling and nested layout 
(Kopp & Weinkauf 2019, p.535), an effective method for visualizing hierarchies (Wang, Wang & 
Alexander 2015, p.34). This approach is one of the most relevant information visualization techniques 
to support the analysis of large hierarchical data structures or data clusters (Soares et al. 2020, p.1). 
Each node is drawn in size related to its data and serves as a container for drawing its children (Kopp & 
Weinkauf 2019, p.535). All nodes were allocated into square horizontal and vertical rows (Bostock, 
Ogievetsky & Heer 2011, p.2306). Generally, TreeMap approaches allow one to remain comprehensible 
at much higher data densities (Behrisch et al. 2018, p.645). As a space-filling visualization, it makes 
efficient use of the limited screen space and allows for high-dimensions to be displayed efficiently to 
depict hierarchical data aspects (Behrisch et al. 2018, p.645; Songer, Hays & North 2004, p.182). Large 
branches in the hierarchy are given large areas (Behrisch et al. 2018, p.645; Songer, Hays & North 2004, 
p.182). Each rectangle in a TreeMap represents a node in a tree that parent node rectangles enclose child 
rectangles while its area is designed to be proportional to the node's value (Behrisch et al. 2018, p.645). 
The size of each sub-rectangle represents one measure, while color or transparency is often used to 
describe another measurement of data (Wang, Wang & Alexander 2015, p.34; Cheong et al. 2016, 
p.1394). The TreeMap allows nodes to be resized smoothly, without shuffling or occlusion that would 
impede the perception of changing values (Bostock, Ogievetsky & Heer 2011, p.2306). Another 
advantage is that when fully populated with all levels of detail in the hierarchy, TreeMap has a high 
data/ink ratio (Songer, Hays & North 2004, p.184). TreeMap presents several challenges for data 
representations. The main challenge is that TreeMaps lacks a value message (Cheong et al. 2016, p.1394) 
and cannot represent zero and negative values (Soares et al. 2020, p.2). The second challenge is that 
TreeMap can be applied only to hierarchical data (Wang, Wang & Alexander 2015, p.37). The third 
challenge is that users find it challenging to compare regions with extreme aspect ratios (Behrisch et al. 
2018, p.645). One more challenge is that TreeMaps encode values using an area that is less accurate 
than judgments of other visual encodings, such as length (Behrisch et al. 2018, p.645). 

4 Challenges for Data Visualization Approaches 
The above discussions clearly stated that no single approach was well-performed for outlier data 
visualization. Therefore, this needs to explore a better tool to meet the up-to-data needs for data 
visualization. However, scholars in scientific disciplines faced unique challenges in creating 
visualization approaches that required insights from data analysis to data visualization (Friedman 2021, 
p.35). As business managers and decision-makers lacked familiarity and knowledge concerning 
interactive visualization options (Perkhofer et al. 2019, p.515), practitioners also faced the challenges of 
identifying the best visualization system for a given task (Harrison et al. 2014, p.1943; Behrisch et al. 
2018, p.625; Dimara & Perin 2020, p.127). The challenges for data visualization approaches were 
summarized as: requiring an effective interactive visualization tool, being a challenge for interpretation 
to represented risks, limited to map the correlations between variables, being challenges for designing 
the user interface to identify data patterns, different viewpoints to current approaches, and challenged 
by high-dimensional datasets. 

5 Bubble-Wall Plot: A New Visualization Tool  
The above discussions clearly stated that no single data visualization approach was well-performed to 
cover all feature metrics for identifying the outliers and summarized the challenges of identifying the 
best visualization approach for a given dataset and task that practitioners face. This research designed a 
new data visualization approach with performed features for solving such limitations, which may be a 
simple and effective tool for data visualization.   

5.1 A Bubble-Wall Plot Design 

Designing visualization involves visual stimulation with a chart, plot, or diagram that can vary in size, 
color, and display platform to represent information or data (Yoon et al. 2016, p.245), which should 
consider information visualization principles (Horton, Nowak & Haegeli 2020, p.1560).  

Some studies focused on ten elementary perceptual tasks provided by Cleveland & McGill (1984), 
including standard position scale, non-aligned position scale, length, direction, angle, area, volume, 
curvature, shading, and color saturation.  Based on Cleveland & McGill’s research, Saket et al. (2018, 
p.1329) assessed 12 interactive graphical encodings to motivate data visualization designers. They 
include Horizontal Distance, Vertical Distance, Horizontal Position, Vertical Position, Rectangular Area, 
Circular Area, Horizontal Length, Vertical Length, Horizontal Curvature, Vertical Curvature, Shading, 
and Angle. Most studies followed Bertin’s cartographic symbolization comprising six visual variables: 
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color, value, size, shape, pattern, and orientation (Cheong et al. 2020, p.1024; Horton, Nowak & Haegeli 
2020, pp.1560).  Other visual features were also used in the literature, such as Blur, Crispness, focus, 
fog, locations or spatial position, map, and texture (Behrisch et al. 2018, p.626; Cheong et al. 2020, 
p.1024; Horton, Nowak & Haegeli 2020, pp.1560).  

This research addressed the Keep It Simple Strategy, Keep It the Smallest Strategy, and Bertin’s 
cartographic symbolization principles to design a new visualization tool - named “Bubble-Wall Plot” 
(see Figure 1) as:  

• Addressing Keep It the Smallest Strategy (KISS).  

The newly designed visualization tool was well-addressed the Keep It the Smallest Strategy.  
Visualization idioms should present data with the smallest spatial dimensions, avoid three-dimensional 
visualizations, and use one-dimensional lists where possible (Horton, Nowak & Haegeli 2020, p.1561). 
The Bubble-Wall Plot was designed with the smallest number of spatial dimensions - a one-dimension 
design.  

• Addressing Keep It Simple Strategy (KISS).  

The newly designed visualization tool was well-addressed the Keep It Simple Strategy. Effective and 
efficient visualizations follow a simple mantra; The most information in the simplest possible form as 
the simple visualizations help communicate research outcomes to the public (Behrisch et al. 2018, p.625; 
Christensen et al. 2018, p.344). Research verified that users who viewed simple graphs perceived the 
results as more credible and aesthetically pleasing than users who viewed complex graphs (Wanzer et 
al. 2021, p.7). The most straightforward visualization may result in the most uncomplicated process for 
the users. 

The Bubble-Wall Plot was designed with one bubble (a) and two horizontal lines (b and c). The bubble 
(a) stands for the Bubble status. Line b stands for the upper limit value (ULV). Line c stands for the 
lower limit value (LLV). The value point b stands for a real-time value, which was retrieved from the 
real-time system. Two horizontal lines (b and c) determine the range (e) to the changes of the bubble 
(a).  

• Following Bertin’s Cartographic symbolization 

This research followed Bertin’s cartographic symbolization comprising six visual variables: color, value, 
size, shape, pattern, and orientation (Cheong et al. 2020, p.1024; Horton, Nowak & Haegeli 2020, 
pp.1560).  According to cartographic theory, different color schemes have particular applications and 
recommended uses, depending on the type of data displayed and the kind of relationship represented 
(Klockow-McClain, McPherson & Thomas 2020, p.318). 

 
Figure 1: Cartographic Symbolization of A Bubble-Wall Plot  

Five types of Bubble-Wall Plots are designated to different statuses in practice: Normal Status (see 
Figure 2-a), Normal Status Closed to the Upper Limit Value (see Figure 2-b), Normal Status Closed to 
the Lower Limit Value Figure (see Figure 2-c), Exceeding the Upper Limit Value (see Figure 2-d), and 
Being Below the Lower Limit Value (see Figure 2-e).  

The Bubble-Wall Plot was designed with blue to state the normal status. The Bubble-Wall Plot with 
yellow indicated the anomalous status – outliers identified. If d exceeds line b, the ULV specifies that 
the retrieved real-time value exceeds the ULV. The Bubble will be changed to a yellow color from a blue 
(see Figure 2-d). If the value of d is below the line c - the LLV, which identifies that the retrieved real-
time value is below the LLV. The Bubble will also be changed to a yellow color from a blue (see Figure 
2-e).  
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    Figure 2-a                      Figure 2-b               Figure 2-c                       Figure 2-d                 Figure 2-e 

Figure 2-a: Normal Status; Figure 2-b: Normal Status Closed to the Upper Limit Value; Figure 2-c: 
Normal Status Closed to the Lower Limit Value; Figure 2-d: Exceeding the Upper Limit Value; Figure 
2-e: Being Below the Lower Limit Value. 

5.2 Summary of Significant Features of Bubble-Wall Plot 

Table 1 illustrates the comparison between the Bubble-Wall Plot and the other seven visualization tools 
adopted to identify outliers. Three features were remarkable to the design Bubble-Wall Plot. The simple 
style is the first significant feature. With the simplest symbolization and smallest spatial dimension, one 
bubble and two lines comprised the Bubble-Wall Plot. Line Chart and Scatter Plot are simple 
symbolizations for symbolization style but still complex than the Bubble-Wall Plot. All other five 
symbolizations are complex. For symbolization dimension, Line Chart, Scatter Plot, and Radial 
symbolizations need two dimensions. Parallel Coordinate Plots, Pixel, Glyphs, and TreeMap 
symbolizations use multi-dimensions.  The second notable feature is easily visual. The Bubble-Wall Plot 
can promptly visualize any anomaly changes between two variables. Yellow color signs any outliers or 
anomaly data to the emergency responsive management team, and easy for the safety-responsive team 
to manage without knowing the mechanisms of anomaly data. One more significant feature is 
straightway. The scope (e) to the status of the bubble (a) is directly demonstrated by the two horizontal 
lines (b and c). If d exceeds the line b or is below the c, it will be the outlier. The Bubble will be changed 
to a yellow color from a blue (see Figure 2-d, Figure 2-e). 

  Bubble-
Wall  

Line Chart Parallel 
Coordin

ates 

Pixel Glyphs TreeMap Scatter 
Plot 

Radial 

Symbol
ization
*  

    

  

Style simplest simple complex complex complex complex simple complex 

Dimen
sion 

one two multi multi multi multi two two 

Table 1. Comparison of Bubble-Wall Plot and Other Symbolizations to Outliers  
(Note: * provided by Behrisch et al. (2018, pp.635-647)) 

6 Conclusions, Limitations, and Further Research  
This research aimed to design a new tool for data visualization with performed features - named Bubble-
Wall Plot and assumed that it could be an effective tool for developing data visualization systems. This 
research reviewed seven data visualization approaches for identifying the outliers, including Line 
Charts, Parallel Coordinates Plot, Scatter Plots, TreeMap, Glyphs, Pixel-based techniques, and Redial 
visualizations. The challenges for current data visualization approaches were also summarized. Two 
KISS principles were well-addressed for designing a new data visualization tool -Bubble-Wall Plot.   

As a result, the newly designed Bubble-Wall Plot has successfully been adopted to develop a warning 
system for identifying the outliers in a Case Study company, which was deployed for user acceptance 
testing in May 2021. The Case Study report is ready as a full research paper for scientific reviewing. The 
limitation is that this new tool was only adopted in a single case study company for developing a warning 
system. Further research should be conducted to verify that this newly designed Bubble-Wall Plot might 
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be adopted as an effective data visualization tool to develop different types of data visualization systems. 
The main contribution is that this newly designed tool with the simplest style was well-designed and 
proven to develop a warning visualization system effectively. 
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