7,200 research outputs found

    Crowdsourcing in Computer Vision

    Full text link
    Computer vision systems require large amounts of manually annotated data to properly learn challenging visual concepts. Crowdsourcing platforms offer an inexpensive method to capture human knowledge and understanding, for a vast number of visual perception tasks. In this survey, we describe the types of annotations computer vision researchers have collected using crowdsourcing, and how they have ensured that this data is of high quality while annotation effort is minimized. We begin by discussing data collection on both classic (e.g., object recognition) and recent (e.g., visual story-telling) vision tasks. We then summarize key design decisions for creating effective data collection interfaces and workflows, and present strategies for intelligently selecting the most important data instances to annotate. Finally, we conclude with some thoughts on the future of crowdsourcing in computer vision.Comment: A 69-page meta review of the field, Foundations and Trends in Computer Graphics and Vision, 201

    Multimedia information technology and the annotation of video

    Get PDF
    The state of the art in multimedia information technology has not progressed to the point where a single solution is available to meet all reasonable needs of documentalists and users of video archives. In general, we do not have an optimistic view of the usability of new technology in this domain, but digitization and digital power can be expected to cause a small revolution in the area of video archiving. The volume of data leads to two views of the future: on the pessimistic side, overload of data will cause lack of annotation capacity, and on the optimistic side, there will be enough data from which to learn selected concepts that can be deployed to support automatic annotation. At the threshold of this interesting era, we make an attempt to describe the state of the art in technology. We sample the progress in text, sound, and image processing, as well as in machine learning

    TennisSense: a platform for extracting semantic information from multi-camera tennis data

    Get PDF
    In this paper, we introduce TennisSense, a technology platform for the digital capture, analysis and retrieval of tennis training and matches. Our algorithms for extracting useful metadata from the overhead court camera are described and evaluated. We track the tennis ball using motion images for ball candidate detection and then link ball candidates into locally linear tracks. From these tracks we can infer when serves and rallies take place. Using background subtraction and hysteresis-type blob tracking, we track the tennis players positions. The performance of both modules is evaluated using ground-truthed data. The extracted metadata provides valuable information for indexing and efficient browsing of hours of multi-camera tennis footage and we briefly illustrative how this data is used by our tennis-coach playback interface

    Gesture based interface for image annotation

    Get PDF
    Dissertação apresentada para obtenção do Grau de Mestre em Engenharia Informática pela Universidade Nova de Lisboa, Faculdade de Ciências e TecnologiaGiven the complexity of visual information, multimedia content search presents more problems than textual search. This level of complexity is related with the difficulty of doing automatic image and video tagging, using a set of keywords to describe the content. Generally, this annotation is performed manually (e.g., Google Image) and the search is based on pre-defined keywords. However, this task takes time and can be dull. In this dissertation project the objective is to define and implement a game to annotate personal digital photos with a semi-automatic system. The game engine tags images automatically and the player role is to contribute with correct annotations. The application is composed by the following main modules: a module for automatic image annotation, a module that manages the game graphical interface (showing images and tags), a module for the game engine and a module for human interaction. The interaction is made with a pre-defined set of gestures, using a web camera. These gestures will be detected using computer vision techniques interpreted as the user actions. The dissertation also presents a detailed analysis of this application, computational modules and design, as well as a series of usability tests

    Developing serious games for cultural heritage: a state-of-the-art review

    Get PDF
    Although the widespread use of gaming for leisure purposes has been well documented, the use of games to support cultural heritage purposes, such as historical teaching and learning, or for enhancing museum visits, has been less well considered. The state-of-the-art in serious game technology is identical to that of the state-of-the-art in entertainment games technology. As a result, the field of serious heritage games concerns itself with recent advances in computer games, real-time computer graphics, virtual and augmented reality and artificial intelligence. On the other hand, the main strengths of serious gaming applications may be generalised as being in the areas of communication, visual expression of information, collaboration mechanisms, interactivity and entertainment. In this report, we will focus on the state-of-the-art with respect to the theories, methods and technologies used in serious heritage games. We provide an overview of existing literature of relevance to the domain, discuss the strengths and weaknesses of the described methods and point out unsolved problems and challenges. In addition, several case studies illustrating the application of methods and technologies used in cultural heritage are presented
    corecore