14,555 research outputs found

    An Intelligent System for Induction Motor Health Condition Monitoring

    Get PDF
    Induction motors (IMs) are commonly used in both industrial applications and household appliances. An IM online condition monitoring system is very useful to identify the IM fault at its initial stage, in order to prevent machinery malfunction, decreased productivity and even catastrophic failures. Although a series of research efforts have been conducted over decades for IM fault diagnosis using various approaches, it still remains a challenging task to accurately diagnose the IM fault due to the complex signal transmission path and environmental noise. The objective of this thesis is to develop a novel intelligent system for more reliable IM health condition monitoring. The developed intelligent monitor consists of two stages: feature extraction and decision-making. In feature extraction, a spectrum synch technique is proposed to extract representative features from collected stator current signals for fault detection in IM systems. The local bands related to IM health conditions are synchronized to enhance fault characteristic features; a central kurtosis method is suggested to extract representative information from the resulting spectrum and to formulate an index for fault diagnosis. In diagnostic pattern classification, an innovative selective boosting technique is proposed to effectively classify representative features into different IM health condition categories. On the other hand, IM health conditions can also be predicted by applying appropriate prognostic schemes. In system state forecasting, two forecasting techniques, a model-based pBoost predictor and a data-driven evolving fuzzy neural predictor, are proposed to forecast future states of the fault indices, which can be employed to further improve the accuracy of IM health condition monitoring. A novel fuzzy inference system is developed to integrate information from both the classifier and the predictor for IM health condition monitoring. The effectiveness of the proposed techniques and integrated monitor is verified through simulations and experimental tests corresponding to different IM states such as IMs with broken rotor bars and with the bearing outer race defect. The developed techniques, the selective boosting classifier, pBoost predictor and evolving fuzzy neural predictor, are effective tools that can be employed in a much wider range of applications. In order to select the most reliable technique in each processing module so as to provide a more positive assessment of IM health conditions, some more techniques are also proposed for each processing purpose. A conjugate Levebnerg-Marquardt method and a Laplace particle swarm technique are proposed for model parameter training, whereas a mutated particle filter technique is developed for system state prediction. These strong tools developed in this work could also be applied to fault diagnosis and other applications

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version

    Failure mode identification and end of life scenarios of offshore wind turbines: a review

    Get PDF
    In 2007, the EU established challenging goals for all Member States with the aim of obtaining 20% of their energy consumption from renewables, and offshore wind is expected to be among the renewable energy sources contributing highly towards achieving this target. Currently wind turbines are designed for a 25-year service life with the possibility of operational extension. Extending their efficient operation and increasing the overall electricity production will significantly increase the return on investment (ROI) and decrease the levelized cost of electricity (LCOE), considering that Capital Expenditure (CAPEX) will be distributed over a larger production output. The aim of this paper is to perform a detailed failure mode identification throughout the service life of offshore wind turbines and review the three most relevant end of life (EOL) scenarios: life extension, repowering and decommissioning. Life extension is considered the most desirable EOL scenario due to its profitability. It is believed that combining good inspection, operations and maintenance (O&M) strategies with the most up to date structural health monitoring and condition monitoring systems for detecting previously identified failure modes, will make life extension feasible. Nevertheless, for the cases where it is not feasible, other options such as repowering or decommissioning must be explored

    A review of intelligent methods for condition monitoring and fault diagnosis of stator and rotor faults of induction machines

    Get PDF
    Nowadays, induction motor (IM) is extensively used in industry, including mechanical and electrical applications. However, three main types of IM faults have been discussed in the literature, bearing, stator, and rotor. Importantly, stator and rotor faults represent approximately 50%. Traditional condition monitoring (CM) and fault diagnosis (FD) methods require a high processing cost and much experience knowledge. To tackle this challenge, artificial intelligent (AI) based CM and FD techniques are extensively developed. However, there have been many review research papers for intelligent CM and FD machine learning methods of rolling elements bearings of IM in the literature. Whereas there is a lack in the literature, and there are not many review papers for both stator and rotor intelligent CM and FD. Thus, the proposed study's main contribution is in reviewing the CM and FD of IM, especially for the stator and the rotor, based on AI methods. The paper also provides discussions on the main challenges and possible future works

    Machine learning and deep learning based methods toward Industry 4.0 predictive maintenance in induction motors: Α state of the art survey

    Get PDF
    Purpose: Developments in Industry 4.0 technologies and Artificial Intelligence (AI) have enabled data-driven manufacturing. Predictive maintenance (PdM) has therefore become the prominent approach for fault detection and diagnosis (FD/D) of induction motors (IMs). The maintenance and early FD/D of IMs are critical processes, considering that they constitute the main power source in the industrial production environment. Machine learning (ML) methods have enhanced the performance and reliability of PdM. Various deep learning (DL) based FD/D methods have emerged in recent years, providing automatic feature engineering and learning and thereby alleviating drawbacks of traditional ML based methods. This paper presents a comprehensive survey of ML and DL based FD/D methods of IMs that have emerged since 2015. An overview of the main DL architectures used for this purpose is also presented. A discussion of the recent trends is given as well as future directions for research. Design/methodology/approach: A comprehensive survey has been carried out through all available publication databases using related keywords. Classification of the reviewed works has been done according to the main ML and DL techniques and algorithms Findings: DL based PdM methods have been mainly introduced and implemented for IM fault diagnosis in recent years. Novel DL FD/D methods are based on single DL techniques as well as hybrid techniques. DL methods have also been used for signal preprocessing and moreover, have been combined with traditional ML algorithms to enhance the FD/D performance in feature engineering. Publicly available datasets have been mostly used to test the performance of the developed methods, however industrial datasets should become available as well. Multi-agent system (MAS) based PdM employing ML classifiers has been explored. Several methods have investigated multiple IM faults, however, the presence of multiple faults occurring simultaneously has rarely been investigated. Originality/value: The paper presents a comprehensive review of the recent advances in PdM of IMs based on ML and DL methods that have emerged since 2015Peer Reviewe

    Bearing Fault Diagnosis Using Motor Current Signature Analysis and the Artificial Neural Network

    Get PDF
    Bearings are critical components in rotating machinery. The need for easy and effective bearings fault diagnosis techniques has led to developing different monitoring approaches. In this research, however, a fault diagnosis system for bearings is developed based on the motor current signature analysis (MCSA) technique. Firstly, a test rig was built, and then different bearing faults were simulated and investigated in the test rig. Three current sensors, type SCT013, were interfaced to Arduino MEGA 2560 microcontroller and utilized together for data acquisition. The time-domain signals analysis technique was utilized to extract some characteristic features that are related to the simulated faults. It was noticed that the simulated bearing faults have led to generating vibrations in the induction motors, which in turn cause a change in its magnetic field. For classification (identification) of the extracted features, the artificial neural network (ANN) was employed. An ANN model was developed using the Matlab ANN toolbox to detect the simulated faults and give an indication about the machine health state. The obtained features from the captured motor current signals were utilized for training the ANN model. The results showed the effectiveness of using MCSA based on the time-domain signal analysis in combination with ANN in diagnosis different bearings faults

    An Assessment on the Non-Invasive Methods for Condition Monitoring of Induction Motors

    Get PDF
    The ability to forecast motor mechanical faults at incipient stages is vital to reducing maintenance costs, operation downtime and safety hazards. This paper synthesized the progress in the research and development in condition monitoring and fault diagnosis of induction motors. The motor condition monitoring techniques are mainly classified into two categories that are invasive and non-invasive techniques. The invasive techniques are very basic, but they have some implementation difficulties and high cost. The non-invasive methods, namely MCSA, PVA and IPA, overcome the disadvantages associated to invasive methods. This book chapter reviews the various non-invasive condition monitoring methods for diagnosis of mechanical faults in induction motor and concludes that the instantaneous power analysis (IPA) and Park vector analysis (PVA) methods are best suitable for the diagnosis of small fault signatures associated to mechanical faults. Recommendations for the future research in these areas are also presented
    • …
    corecore