381 research outputs found

    Optimizing Hypervideo Navigation Using a Markov Decision Process Approach

    Get PDF
    Interaction with hypermedia documents is a required feature for new sophisticated yet flexible multimedia applications. This paper presents an innovative adaptive technique to stream hypervideo that takes into account user behaviour. The objective is to optimize hypervideo prefetching in order to reduce the latency caused by the network. This technique is based on a model provided by a Markov Decision Process approach. The problem is solved using two methods: classical stochastic dynamic programming algorithms and reinforcement learning. Experimental results under stochastic network conditions are very promising

    CGAMES'2009

    Get PDF

    Lightweight client-pull protocol for mobile communication

    Get PDF
    Consumer mobile devices, such as cellular phones and PDAs, rely on TCP/IP as main communication protocol. However, cellular networks are not reliable as wired and wireless LAN, due to both users mobility and geographical obstacles. Moreover, limited bandwidth outside urban areas requires an application level data priority management, in order to improve user experience and avoid communication stack deadlocks. This paper presents early specification and first prototype of the LCPP (Lightweight Client-Pull Protocol), a UDP-based communication protocol specially designed to provide better performance, fast responsiveness and save processing power on mobile devices. Using some concepts adopted in the field of P2P file sharing, LCPP provides data priority management approach, which enables application to negotiate concurrent access to communication channel and to be notified about delaying, network congestion or remote device inability to process data

    Building Internet caching systems for streaming media delivery

    Get PDF
    The proxy has been widely and successfully used to cache the static Web objects fetched by a client so that the subsequent clients requesting the same Web objects can be served directly from the proxy instead of other sources faraway, thus reducing the server\u27s load, the network traffic and the client response time. However, with the dramatic increase of streaming media objects emerging on the Internet, the existing proxy cannot efficiently deliver them due to their large sizes and client real time requirements.;In this dissertation, we design, implement, and evaluate cost-effective and high performance proxy-based Internet caching systems for streaming media delivery. Addressing the conflicting performance objectives for streaming media delivery, we first propose an efficient segment-based streaming media proxy system model. This model has guided us to design a practical streaming proxy, called Hyper-Proxy, aiming at delivering the streaming media data to clients with minimum playback jitter and a small startup latency, while achieving high caching performance. Second, we have implemented Hyper-Proxy by leveraging the existing Internet infrastructure. Hyper-Proxy enables the streaming service on the common Web servers. The evaluation of Hyper-Proxy on the global Internet environment and the local network environment shows it can provide satisfying streaming performance to clients while maintaining a good cache performance. Finally, to further improve the streaming delivery efficiency, we propose a group of the Shared Running Buffers (SRB) based proxy caching techniques to effectively utilize proxy\u27s memory. SRB algorithms can significantly reduce the media server/proxy\u27s load and network traffic and relieve the bottlenecks of the disk bandwidth and the network bandwidth.;The contributions of this dissertation are threefold: (1) we have studied several critical performance trade-offs and provided insights into Internet media content caching and delivery. Our understanding further leads us to establish an effective streaming system optimization model; (2) we have designed and evaluated several efficient algorithms to support Internet streaming content delivery, including segment caching, segment prefetching, and memory locality exploitation for streaming; (3) having addressed several system challenges, we have successfully implemented a real streaming proxy system and deployed it in a large industrial enterprise

    User-activity aware strategies for mobile information access

    Get PDF
    Information access suffers tremendously in wireless networks because of the low correlation between content transferred across low-bandwidth wireless links and actual data used to serve user requests. As a result, conventional content access mechanisms face such problems as unnecessary bandwidth consumption and large response times, and users experience significant performance degradation. In this dissertation, we analyze the cause of those problems and find that the major reason for inefficient information access in wireless networks is the absence of any user-activity awareness in current mechanisms. To solve these problems, we propose three user-activity aware strategies for mobile information access. Through simulations and implementations, we show that our strategies can outperform conventional information access schemes in terms of bandwidth consumption and user-perceived response times.Ph.D.Committee Chair: Raghupathy Sivakumar; Committee Member: Chuanyi Ji; Committee Member: George Riley; Committee Member: Magnus Egerstedt; Committee Member: Umakishore Ramachandra
    • …
    corecore