11,520 research outputs found

    Climate change and disaster impact reduction

    Get PDF
    Based on papers presented at the 'UK - South Asia Young Scientists and Practitioners Seminar on Climate Change and Disaster Impact Reduction' held at Kathmandu, Nepal on 5-6 June, 2008

    An integrative approach using remote sensing and social analysis to identify different settlement types and the specific living conditions of its inhabitants

    Get PDF
    Someday in 2007, the world population reached a historical landmark: for the first time in human history, more than half of the world´s population was urban. A stagnation of this urbanization process is not in sight, so that by 2050, already 70 percent of humankind is projected to live in urban settlements. Over the last few decades, enormous migrations from rural hinterlands to steadily growing cities could be witnessed coming along with a dramatic growth of the world’s urban population. The speed and the scale of this growth, particularly in the so called less developed regions, are posing tremendous challenges to the countries concerned as well as to the world community. Within mega cities the strongest trends and the most extreme dimensions of the urbanization process can be observed. Their rapid growth results in uncontrolled processes of fragmentation which is often associated with pronounced poverty, social inequality, socio-spatial and political fragmentation, environmental degradation as well as population demands that outstrip environmental service capacity. For the majority of the mega cities a tremendous increase of informal structures and processes has to be observed. Consequentially informal settlements are growing, which represent those characteristic municipal areas being subject to particularly high population density, dynamics as well as marginalization. They have quickly become the most visible expression of urban poverty in developing world cities. Due to the extreme dynamics, the high complexity and huge spatial dimension of mega cities, urban administrations often only have an obsolete or not even existing data basis available to be at all informed about developments, trends and dimensions of urban growth and change. The knowledge about the living conditions of the residents is correspondingly very limited, incomplete and not up to date. Traditional methods such as statistical and regional analyses or fieldwork are no longer capable to capture such urban process. New data sources and monitoring methodologies are required in order to provide an up to date information basis as well as planning strate¬gies to enable sustainable developments and to simplify planning processes in complex urban structures. This research shall seize the described problem and aims to make a contribution to the requirements of monitoring fast developing mega cities. Against this background a methodology is developed to compensate the lack of socio-economic data and to deduce meaningful information on the living conditions of the inhabitants of mega cities. Neither social science methods alone nor the exclusive analysis of remote sensing data can solve the problem of the poor quality and outdated data base. Conventional social science methods cannot cope with the enormous developments and the tremendous growth as they are too labor-, as well as too time- and too cost-intensive. On the other hand, the physical discipline of remote sensing does not allow for direct conclusions on social parameters out of remote sensing images. The prime objective of this research is therefore the development of an integrative approach − bridging remote sensing and social analysis – in order to derive useful information about the living conditions in this specific case of the mega city Delhi and its inhabitants. Hence, this work is established in the overlapping range of the research topics remote sensing, urban areas and social science. Delhi, as India’s fast growing capital, meanwhile with almost 25 million residents the second largest city of the world, represents a prime example of a mega city. Since the second half of the 20th century, Delhi has been transformed from a modest town with mainly administrative and trade-related functions to a complex metropolis with a steep socio-economic gradient. The quality and amount of administrative and socio-economic data are poor and the knowledge about the circumstances of Delhi’s residents is correspondingly insufficient and outdated. Delhi represents therefore a perfectly suited study area for this research. In order to gather information about the living conditions within the different settlement types a methodology was developed and conducted to analyze the urban environment of the mega city Delhi. To identify different settlement types within the urban area, regarding the complex and heterogeneous appearance of the Delhi area, a semi-automated, object-oriented classification approach, based on segmentation derived image objects, was implemented. As the complete conceptual framework of this research, the classification methodology was developed based on a smaller representative training area at first and applied to larger test sites within Delhi afterwards. The object-oriented classification of VHR satellite imagery of the QuickBird sensor allowed for the identification of five different urban land cover classes within the municipal area of Delhi. In the focus of the image analysis is yet the identification of different settlement types and amongst these of informal settlements in particular. The results presented within this study demonstrate, that, based on density classes, the developed methodology is suitable to identify different settlement types and to detect informal settlements which are mega urban risk areas and thus potential residential zones of vulnerable population groups. The remote sensing derived land cover maps form the foundation for the integrative analysis concept and deliver there¬fore the general basis for the derivation of social attributes out of remote sensing data. For this purpose settlement characteristics (e.g., area of the settlement, average building size, and number of houses) are estimated from the classified QuickBird data and used to derive spatial information about the population distribution. In a next step, the derived information is combined with in-situ information on socio-economic conditions (e.g., family size, mean water consumption per capita/family) extracted from georeferenced questionnaires conducted during two field trips in Delhi. This combined data is used to characterize a given settlement type in terms of specific population and water related variables (e.g., population density, total water consumption). With this integrative methodology a catalogue can be compiled, comprising the living conditions of Delhi’s inhabitants living in specific settlement structures – and this in a quick, large-scaled, cost effective, by random or regularly repeatable way with a relatively small required data basis.The combined application of remotely sensed imagery and socio-economic data allows for the mapping, capturing and characterizing the socio-economic structures and dynamics within the mega city of Delhi, as well as it establishes a basis for the monitoring of the mega city of Delhi or certain areas within the city respectively by remote sensing. The opportunity to capture the condition of a mega city and to monitor its development in general enables the persons in charge to identify unbeneficial trends and to intervene accordingly from an urban planning perspective and to countersteer against a non-adequate supply of the inhabitants of different urban districts, primarily of those of informal settlements. This study is understood to be a first step to the development of methods which will help to identify and understand the different forms, actors and processes of urbanization in mega cities. It could support a more proactive and sustainable urban planning and land management – which in turn will increase the importance of urban remote sensing techniques. In this regard, the most obvious and direct beneficiaries are on the one hand the governmental agencies and urban planners and on the other hand, and which is possibly the most important goal, the inhabitants of the affected areas, whose living conditions can be monitored and improved as required. Only if the urban monitoring is quickly, inexpensively and easily available, it will be accepted and applied by the authorities, which in turn enables for the poorest to get the support they need. All in all, the listed benefits are very convincing and corroborate the combined use of remotely sensed and socio-economic data in mega city research

    a review of the instruments of the EU, Germany, France, and Italy

    Get PDF
    This paper explores how the idea of resilience has made its way into the external action of the European Union (EU) and selected member states (Germany, France and Italy) as a means to address areas of limited statehood and contested orders. It examines the debates informing the development of the EU’s external action and current concerns in economic, political, and migration instruments. The main findings are that the EU’s economic and political instruments have become gradually dominated by resilience framings, with an emphasis on multilateralism, adaptation, and long-term and bottom-up responses. Resilience also increasingly drives the humanitarian assistance and development cooperation policies in Germany and to a lesser extent France, which have gradually moved away from top-down administrative and centralized models of governance. The EU and member states like Italy, however, have been more reluctant to foster resilience to address migration issues. Instead, they have prevented flows of irregular migrants into Europe by means of containment strategies such as improving border management, policing, and surveillance and combating smuggling networks

    The Politics of Exhaustion: Immigration Control in the British-French Border Zone

    Get PDF
    Within a climate of growing anti-immigration and populist forces gaining traction across Europe, and in response to the increased number of prospective asylum seekers arriving in Europe, recent years have seen the continued hardening of borders and a disconcerting evolution of new forms of immigration control measures utilised by states. Based on extensive field research carried out amongst displaced people in Europe in 2016-2019, this article highlights the way in which individuals in northern France are finding themselves trapped in a violent border zone, unable to move forward whilst having no obvious alternative way out of their predicament. The article seeks to illustrate the violent dynamics inherent in the immigration control measures in this border zone, characterised by both direct physical violence as well as banalised and structural forms of violence, including state neglect through the denial of services and care. The author suggests that the raft of violent measures and micro practices authorities resort to in the French-British border zone could be understood as constituting one of the latest tools for European border control and obstruction of the access to asylum procedures; a Politics of Exhaustion

    Concrete Crack Detection and Monitoring Using a Capacitive Dense Sensor Array

    Get PDF
    Cracks in concrete structures can be indicators of important damage and may significantly affect durability. Their timely identification can be used to ensure structural safety and guide on-time maintenance operations. Structural health monitoring solutions, such as strain gauges and fiber optics systems, have been proposed for the automatic monitoring of such cracks. However, these solutions become economically difficult to deploy when the surface under investigation is very large. This paper proposes to leverage a novel sensing skin for monitoring cracks in concrete structures. This sensing skin is constituted of a flexible electronic termed soft elastomeric capacitor, which detects a change in strain through changes in measured capacitance. The SEC is a low-cost, durable, and robust sensing technology that has previously been studied for the monitoring of fatigue cracks in steel components. In this study, the sensing skin is introduced and preliminary validation results on a small-scale reinforced concrete beam are presented. The technology is verified on a full-scale post-tensioned concrete beam. Results show that the sensing skin is capable of detecting, localizing, and quantifying cracks that formed in both the reinforced and post-tensioned concrete specimens

    Roadmap on measurement technologies for next generation structural health monitoring systems

    Get PDF
    Structural health monitoring (SHM) is the automation of the condition assessment process of an engineered system. When applied to geometrically large components or structures, such as those found in civil and aerospace infrastructure and systems, a critical challenge is in designing the sensing solution that could yield actionable information. This is a difficult task to conduct cost-effectively, because of the large surfaces under consideration and the localized nature of typical defects and damages. There have been significant research efforts in empowering conventional measurement technologies for applications to SHM in order to improve performance of the condition assessment process. Yet, the field implementation of these SHM solutions is still in its infancy, attributable to various economic and technical challenges. The objective of this Roadmap publication is to discuss modern measurement technologies that were developed for SHM purposes, along with their associated challenges and opportunities, and to provide a path to research and development efforts that could yield impactful field applications. The Roadmap is organized into four sections: distributed embedded sensing systems, distributed surface sensing systems, multifunctional materials, and remote sensing. Recognizing that many measurement technologies may overlap between sections, we define distributed sensing solutions as those that involve or imply the utilization of numbers of sensors geometrically organized within (embedded) or over (surface) the monitored component or system. Multi-functional materials are sensing solutions that combine multiple capabilities, for example those also serving structural functions. Remote sensing are solutions that are contactless, for example cell phones, drones, and satellites. It also includes the notion of remotely controlled robots

    Vision and advocacy of optoelectronic technology developments in the AECO sector

    Get PDF
    Purpose This research presents a literature review of laser scanning and 3D modelling devices, modes of delivery and applications within the architecture, engineering, construction and owner-operated (AECO) sector. Such devices are inextricably linked to modern digital built environment practices, particularly when used in conjunction with as-built building information modelling (BIM) development. The research also reports upon innovative technological advancements (such as machine vision) that coalesce with 3D scanning solutions. Design/methodology/approach A synthesis of literature is used to develop: a hierarchy of the modes of delivery for laser scan devices; a thematic analysis of 3D terrestrial laser scan technology applications; and a componential cross-comparative tabulation of laser scan technology and specifications. Findings Findings reveal that the costly and labour intensive attributes of laser scanning devices have stimulated the development of hybrid automated and intelligent technologies to improve performance. Such developments are set to satisfy the increasing demand for digitisation of both existing and new buildings into BIM. Future work proposed will seek to: review what coalescence of digital technologies will provide an optimal and cost effective solution to accurately reconstructing the digital built environment; conduct case studies that implement hybrid digital solutions in pragmatic facilities management scenarios to measure their performance and user satisfaction; and eliminate manual remodelling tasks (such as point cloud reconstruction) via the use of computational intelligence algorithms integral within cloud based BIM platforms. Originality/value Although laser scanning and 3D modelling have been widely covered en passant within the literature, scant research has conducted an holistic review of the technology, its applications and future developments. This review presents concise and lucid reference guidance that will intellectually challenge, and better inform, both practitioners and researchers

    Potential impact assessment of climate-related hazards on urban public health services: interaction of changing climate-related hazards and urban development in the future, Khon Kaen City, Thailand

    Get PDF
    Current understanding of the interactions between the future urban development change and climate change in the local context, considering infrastructure operation & functionality, is still primitive, especially in public health services. This study offers a climate-resilient operationalization framework for urban public health services considering the interaction between urban development change and climate change across scales, the so-called Health Integrative Climate Resilience and Adaptation Future (HICRAF). HICRAF integrates collaborative scenario planning and composite indicators developed based on the IPCC Fifth Assessment Report (AR5) 's climate risk concept. It combines a mixed-methods approach of quantitative and qualitative techniques and demonstrates how different methods and scales (spatial and temporal) can be linked and create new knowledge on cascading risk patterns in a medium-sized city with a universal health care coverage setting; Khon Kaen city, Thailand. The results show that the approach allows local public health care to operationalize their potential impact and climate-resilient targets in a forward-looking manner with multiple service operation aspects. The scenario assessment outcomes prove that public health devotions can help their operation and functionality fail-safe when confronting future climatic and non-climatic challenges. However, achieving climate-resilient targets requires sectoral integration with urban development and health determining domains. Hence, more integrated spatial planning of public health services and critically revisiting conventional cost-benefit assessments on public health infrastructure investment are key entry points for creating climate-resilient urban health services. In addition to addressing missing links between global climate trajectories and local climate adaptation scenarios that involved stakeholders' normative judgements and cross-sectoral interests. HICRAF highlights a clear constraint of applying a purely place-based concept on climate vulnerability/risk assessment in reflecting the realities of network operation and functionality of urban systems. Thus, the co-existing paradox between the place-based and network-based concepts should be investigated further in climate vulnerability/risk assessment studies. Furthermore, exploration and disputation of HICRAF and its composite indicators with a wider scale and diversified settings are invited to enhance its robustness and universality
    corecore