682,879 research outputs found

    Data Transfers Analysis in Computer Assisted Design Flow of FPGA Accelerators for Aerospace Systems

    Get PDF
    The integration of Field Programmable Gate Arrays (FPGAs) in an aerospace system improves its efficiency and its flexibility thanks to their programmability, but increases the design complexity. The design flows indeed have to be composed of several steps to fill the gap between the starting solution, which is usually a reference sequential implementation, and the final heterogeneous solution which includes custom hardware accelerators. Among these steps, there are the analysis of the application to identify the functionalities that gain advantages in execution on hardware and the generation of their implementations by means of Hardware Description Languages. Generating these descriptions for a software developer can be a very difficult task because of the different programming paradigms of software programs and hardware descriptions. To facilitate the developer in this activity, High Level Synthesis techniques have been developed aiming at (semi-)automatically generating hardware implementations of specifications written in high level languages (e.g., C). With respect to other embedded systems scenarios, the aerospace systems introduce further constraints that have to be taken into account during the design of these heterogeneous systems. In this type of systems explicit data transfers to and from FPGAs are preferred to the adoption of a shared memory architecture. The first approach indeed potentially improves the predictability of the produced solutions, but the sizes of all the data transferred to and from any devices must be known at design time. Identifying the sizes in presence of complex C applications which use pointers can be a not so easy task. In this paper, a semi-automatic design flow based on the integration of an aerospace design flow, an application analysis technique, and High Level Synthesis methodologies is presented. The initial reference application is analyzed to identify which are the sizes of the data exchanged among the different components of the application. Next, starting from the high level specification and from the results of this analysis, High Level Synthesis techniques are applied to automatically produce the hardware accelerators

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    Standardization Framework for Sustainability from Circular Economy 4.0

    Get PDF
    The circular economy (CE) is widely known as a way to implement and achieve sustainability, mainly due to its contribution towards the separation of biological and technical nutrients under cyclic industrial metabolism. The incorporation of the principles of the CE in the links of the value chain of the various sectors of the economy strives to ensure circularity, safety, and efficiency. The framework proposed is aligned with the goals of the 2030 Agenda for Sustainable Development regarding the orientation towards the mitigation and regeneration of the metabolic rift by considering a double perspective. Firstly, it strives to conceptualize the CE as a paradigm of sustainability. Its principles are established, and its techniques and tools are organized into two frameworks oriented towards causes (cradle to cradle) and effects (life cycle assessment), and these are structured under the three pillars of sustainability, for their projection within the proposed framework. Secondly, a framework is established to facilitate the implementation of the CE with the use of standards, which constitute the requirements, tools, and indicators to control each life cycle phase, and of key enabling technologies (KETs) that add circular value 4.0 to the socio-ecological transition

    Improving root cause analysis through the integration of PLM systems with cross supply chain maintenance data

    Get PDF
    The purpose of this paper is to demonstrate a system architecture for integrating Product Lifecycle Management (PLM) systems with cross supply chain maintenance information to support root-cause analysis. By integrating product-data from PLM systems with warranty claims, vehicle diagnostics and technical publications, engineers were able to improve the root-cause analysis and close the information gaps. Data collection was achieved via in-depth semi-structured interviews and workshops with experts from the automotive sector. Unified Modelling Language (UML) diagrams were used to design the system architecture proposed. A user scenario is also presented to demonstrate the functionality of the system
    corecore