
Data Transfers Analysis in Computer Assisted Design Flow of FPGA
Accelerators for Aerospace Systems

M. Lattuada, F. Ferrandi, M. Perrotin

M. Lattuada, F. Ferrandi, and M. Perrotin. Data transfers analysis in computer assisted design flow of fpga
accelerators for aerospace systems. IEEE Transactions on Multi-Scale Computing Systems, PP(99):1–14,
2017

The final publication is available via http://dx.doi.org/10.1109/TMSCS.2017.2699647

c©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all
other uses in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or list, or
reuse of any copyrighted component of this work in other works

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio istituzionale della ricerca - Politecnico di Milano

https://core.ac.uk/display/83102615?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 1

Data Transfers Analysis in Computer Assisted
Design Flow of FPGA Accelerators for

Aerospace Systems

Marco Lattuada, Fabrizio Ferrandi, and Maxime Perrotin

Abstract—The integration of Field Programmable Gate Arrays (FPGAs) in an aerospace system improves its efficiency and its

flexibility thanks to their programmability, but increases the design complexity. The design flows indeed have to be composed of several

steps to fill the gap between the starting solution, which is usually a reference sequential implementation, and the final heterogeneous

solution which includes custom hardware accelerators. Among these steps, there are the analysis of the application to identify the

functionalities that gain advantages in execution on hardware and the generation of their implementations by means of Hardware

Description Languages. Generating these descriptions for a software developer can be a very difficult task because of the different

programming paradigms of software programs and hardware descriptions. To facilitate the developer in this activity, High Level

Synthesis techniques have been developed aiming at (semi-)automatically generating hardware implementations of specifications

written in high level languages (e.g., C). With respect to other embedded systems scenarios, the aerospace systems introduce further

constraints that have to be taken into account during the design of these heterogeneous systems. In this type of systems explicit data

transfers to and from FPGAs are preferred to the adoption of a shared memory architecture. The first approach indeed potentially

improves the predictability of the produced solutions, but the sizes of all the data transferred to and from any devices must be known at

design time. Identifying the sizes in presence of complex C applications which use pointers can be a not so easy task.

In this paper, a semi-automatic design flow based on the integration of an aerospace design flow, an application analysis technique,

and High Level Synthesis methodologies is presented. The initial reference application is analyzed to identify which are the sizes of the

data exchanged among the different components of the application. Next, starting from the high level specification and from the results

of this analysis, High Level Synthesis techniques are applied to automatically produce the hardware accelerators.

Index Terms—Space Systems, FPGA, High Level Synthesis, Code Analysis

✦

1 INTRODUCTION

The evolution of the aerospace systems is characterized
by the improvement of the on-board sensors which are
able to capture larger and larger amount of data. However,
the transmission bandwidth between them and the Earth
stations has not equivalently grown. For this reason, to ac-
tually exploit the availability of larger amount of data, more
and more pre-processing has to be executed directly on the
aerospace system to reduce the data to be sent to the Earth.
Traditional high performance computing devices such as
general purpose processors could provide the required com-
putational power, but they are not suitable for these systems
because of the requirements in terms of low power and high
dependability. On the contrary, micro processors developed
for space environment meet such requirements but cannot
provide the required computational power. The solution
which has instead been identified for solving this issue is
the use of Rad-Hard Field Programmable Gate Array (Rad-
Hard FPGA). This type of devices indeed has good charac-
teristics in terms of reliability and power consumption and
guarantees a significant amount of computational power.

There are unfortunately two issues which arise during
designing of systems which include FPGA devices: the gen-

• M. Lattuada and F. Ferrandi are with the Dipartimento di Elettron-
ica, Informazione e Bioingegneria, Politecnico di Milano, Italy (e-mail:
{marco.lattuada, fabrizio.ferrandi}@polimi.it)

• M. Perrotin is with ESTEC, European Space Agency (e-mail:
{Maxime.Perrotin}@esa.int)

eration of the hardware accelerators and their integration
with the rest of the system. The first issue consists of the dif-
ficulty of designing the hardware accelerators implemented
on the FPGA devices which will be included in the final
solutions. Their design indeed requires specific skills, such
as the knowledge of the HDL languages, which are often not
owned by software designers or by aerospace engineers. To
overcome this problem, High Level Synthesis techniques [1]
have been proposed. They aim at automatically generating
hardware implementations starting from high level specifi-
cations by means of (semi-)automatic design flows. While
state of the art techniques well address the issue about
the generation of hardware accelerators, their integration
requires extra effort to be covered.

One of the most critical problems of the integration
of hardware accelerators in aerospace is the management
of the data transfers. FPGAs are indeed characterized by
local memories, where data have to be moved in order to
efficiently exploit their computational power. The design of
solutions for heterogeneous systems characterized by dis-
tributed memory can be a hard task. For this reason, infras-
tructures like Heterogeneous System Architecture (HSA) [2]
have been developed to hide the complexity of distributed
memory systems and to avoid the necessity of performing
explicit data transfers. They make designing solutions sim-
pler, since some architectural details can be ignored by the
designer, but they introduce a potential issue. This type
of mechanisms indeed, by hiding the actual position of

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 2

the accessed data, can introduce significant unpredictable
variance in the time required to perform the memory ac-
cesses. Since predictability is a mandatory constraint in
space systems scenario, the architectures characterized by
explicit data transfers are preferred because they do not
have this sources of unpredictability. These solutions require
precise information at design time about the amount of data
transferred during the execution of the application to cor-
rectly predict the delay of the communication in the worst
case. A conservative approach (e.g., transferring more data
than required) would allow a correct predictability analysis,
but it would imply an increment of the required resources
both in terms of memory and computational power. Indeed,
not only larger FPGA memories would be necessary to store
the input and the output data, but also faster processing
elements could be required to compensate the longer delay
of the data transfers. In an heterogeneous embedded system
there are also other causes of unpredictability (e.g., cache
misses), but analyze and remove all of them is out of the
scope of this paper.

The identification of the sizes of the transferred data
in applications which are designed from scratch is usually
very easy, but most of the times this approach cannot
be considered, since the development starts from existing
reference sequential applications. Moreover, if the reference
applications are written in C source code, the analysis of
their data transfers can be a very hard task because of the
presence of pointers which can partially or totally hide the
data characteristics and in particular their size. A possible
approach consists of requiring the designer to directly pro-
vide this information, but there are two possible drawbacks.
The first one is that a significant knowledge of all the parts
of the analyzed application and of all the used libraries is
required. The second is that this type of approach can be
subject to errors performed by the designer.

In [3] a design flow which partially addresses the issues
of including FPGA hardware accelerators in a space system
is presented. The design flow is based on the integration
of High Level Synthesis methodologies in a framework [4]
for the development of critical systems, but it is still semi-
automatic: there are several steps that have to be performed
by hand by the designer during the development of the
solution. In this paper the design flow is extended with
a technique for the analysis of the applications aimed at
automatically identifying the size of transferred data. In
this way one of the most complex steps which was de-
manded to the developer is automatized, simplifying the
design process. This is performed by statically analyzing the
structure of a C source code application, identifying for each
pointer parameter of each function what is the maximum
size of the data which can be pointed by it. Moreover this
analysis technique allows the High Level Synthesis to be
more integrated with the rest of the framework resulting in
a new design flow which will be presented in this paper.

The rest of the paper is organized as follows. Section 2
discusses the related works, Section 3 presents the proposed
analysis technique which is integrated in the design flow
as described in Section 4. Its evaluation is discussed in
Section 5, where the results about its applicability and its
accuracy are presented. Finally, Section 6 draws the conclu-
sion of this paper.

2 RELATED WORKS

Several approaches have been proposed to support the
development of heterogeneous space embedded systems.
For example, Ludtke et al. [5] proposed a reconfigurable
system composed of different processing elements (includ-
ing a FPGA device), an ad-hoc operating system, and a
middle-ware to allow the exploitation of the same archi-
tecture for the implementation of different specifications.
The focus of this work is mainly on the characteristics that
the hardware/software architecture must have, while no
specific framework or tool are proposed to program it. On
the contrary, the framework proposed in [6] and [7] aims
at helping the designer in choosing the best combination
of FPGA device and fault-tolerant strategy, but the design
of the hardware accelerators for the particular combination
is still demanded to the developer. Another possible ap-
proach to help the designer in the exploitation of FPGA
devices was proposed by Greco et al. in [8]. The USURP
framework was extended adding a Hardware Abstraction
API, very similar to the GNU Scientific Library API, which
provides transparent access to a set of already implemented
hardware accelerators. This approach has the advantage of
not requiring knowledge of hardware design nor of HDL
languages, but only a limited set of hardware accelerators
are available: the functions not already included in the
hardware library cannot be accelerated by the FPGA. A
whole framework for the design of space systems was also
proposed by Deshmukh et al. [9]. The authors proposed a
new Domain Specific Language for describing the different
components of an application targeting space systems and
provided a framework to automatically generate the code to
implement them. FPGA devices are however not considered
in this work and the designer is forced to use a new
unique language for developing the whole application. The
TASTE framework [4], which is exploited by the proposed
design flow, instead hides the modeling language allowing
the developer to use different languages (HDL included)
to describe and implement the single components of the
application.

The problem of computing the size of the exchanged
data is usually not addressed by High Level Synthesis
tools [10]. Legup [11] for example adopts a shared memory
architecture with the processor and the accelerators sharing
off-chip memory. Since the accelerators exchange the data
with the rest of the system by reading and writing this
memory, the information about the size of the data is not
required. The accelerators generated by Vivado HLS [12]
can access external data into two main ways: by means of
bus interfaces or by means of local memories where the
exchanged data are temporary stored. In the former case, the
information about the size of the input data is not required,
in the latter case this information is mandatory and must
be provided by the user since it is not computed by the
tool. Since this information can be computed by the analysis
technique proposed in this paper, the technique can also
be integrated as pre-processing step of other High Level
Synthesis tools. Finally, FPGA hardware accelerators can
be designed to work on data streaming (e.g., [13]): for this
type of applications the overall size of exchanged data is not
significant.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 3

The size of the exchanged data is not relevant only in
space systems including FPGAs, but it has to be considered
whenever there are heterogeneous systems characterized
by explicit data transfers. The problem of computing these
quantities is typically not addressed by means of automatic
techniques: the usually adopted solution consists of requir-
ing the designer to provide the necessary information. In
the TASTE framework this is accomplished by exploiting
ASN.1 [14] which must be used by the designer to specify
the characteristics (e.g., the sizes) of the data exchanged
between the different components of the designed applica-
tion. In Section 4.2 it will be shown how ASN.1 descriptions
can be generated starting from the results of the proposed
analysis technique. Another possible approach consists of
embedding the information directly in the source code
of the application. This objective can be obtained with
newly proposed language extensions and annotation for-
mats designed to facilitate the data transfers to accelerator
memories. In some cases the proposals start from OpenMP
API [15] which was originally designed for shared memory
multiprocessor systems and which did not allow designers
to specify explicit data transfers. For this reason, different
extensions to OpenMP API were proposed (e.g., [16], [17])
to include support to accelerators like DSPs and GPUs, some
of them explicitly aimed at specifying the size of transferred
data. Native support for accelerators has been integrated in
OpenMP API Version 4.0, released in July 2013: new pragma
directives have been introduced which allow the designer
to specify the offloading of tasks and data to accelerators.
Like in the previously proposed extensions, the designer
has to annotate the data transfers with pragmas explicitly
specifying the size of pointer parameters.

In a similar way other programming infrastructures,
even if natively designed with support to heterogeneous ar-
chitectures, require the designer to explicitly define the size
of data transfers. For example, OpenCL API [18], typically
exploited for programming heterogeneous systems includ-
ing FPGAs [19], includes a function (clSetKernelArg) to
explicitly define an input data parameter of an offloaded
kernel and its size. The OpenACC [20] standard instead
requires to describe the input and the output of each of-
floaded kernel by means of pragma annotations (copyin
and copyout). All these approaches need the direct inter-
action with the designer while on the contrary the static
analysis proposed in this paper solves this problem auto-
matically.

The problem addressed by the proposed analysis tech-
nique is quite close to the alias analysis problem, but it has
some particular features which require an ad-hoc technique
to solve it. Moreover, perfect alias analysis is a very time-
consuming activity [21] which can be non-affordable in case
of very complex applications: an ad-hoc technique which
covers exactly the pointed data size problem has to be
preferred [22]. A similar problem was addressed by Yong et
al. in [23] where static analysis of source code is performed
to compute a safe approximation of the range of memory
locations which can be accessed through a pointer. Even if
it has a different aim, its results could be useful to solve
the problem addressed by the proposed analysis technique,
but its limitations are so significant to reduce its actual
applicability. As stated by the authors, their range analysis

relies on the presence of constants in the source code to
derive meaningful ranges and does not record information
about the relationship between variables, significantly lim-
iting the set of analyzable code patterns. Furthermore, the
range analysis is not inter-procedural, so it is not applicable
in presence of data transferred across different functions.
On the contrary, the analysis technique proposed in this
paper has a very limited set of preconditions, smaller than
the limitations usually applied to critical software, so, how
shown by the experimental results of Section 5, it can be
applied to a large set of embedded applications, without any
further interaction with the designer, producing meaningful
and accurate results.

3 PROPOSED ANALYSIS TECHNIQUE

In this section, the proposed analysis technique is presented.
In particular, Section 3.1 gives its overview and describes
the limitations of its applicability, then Section 3.2 briefly
describes the produced output. The details of the technique
are presented in Section 3.3, while Section 3.4 discusses its
time and space complexity.

3.1 Overview of the Analysis Technique

The proposed analysis technique aims at identifying at
compile time in a C source code application how much large
can be the data structures pointed by each pointer, and in
particular by each pointer parameter, during an application
execution. In the rest of this paper, this quantity will be
identified as Pointed Data Size (PDS). This information is
mandatory for the design of hardware accelerators in the
TASTE flow, but the results of the analysis can be exploited
in whatever type of design flow targeting critical hetero-
geneous embedded systems characterized by explicit data
transfers.

The proposed analysis can be applied on the source
code or on the intermediate representation adopted by a
compiler, but for the sake of readability and generality, its
application to C source code will be presented. In Section 4.2
an example of its implementation applied to GCC inter-
mediate representation will be presented. The produced
information ideally should have the following properties:

• correctness: the real PDS cannot be larger than the
computed, otherwise the generated code could pro-
duce wrong results;

• accuracy: the computed PDS has to be as much close
as possible to the real value to minimize the data
transfer delays and the memory usage;

• completeness: the PDS of every pointer should be
computed.

The accuracy of the obtained results can be more critical
than in the alias analysis problem. Accepting conservative
solutions could indeed imply too long data transfers and too
high usage of memory, which can be a very critical resource
in an space embedded system. The proposed methodology
addresses this issue by relaxing the requirement of the
completeness: on a limited set of rare known code patterns,
the analysis is not able to produce a result. Note that
unsupported patterns can be easily identified during the
analysis: in this case the technique does not produce any

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 4

result. Moreover, inapplicability can be limited to a subset
of an application (i.e., only to one or few functions), while
the remaining code can be correctly analyzed. The missing
information can be integrated by the designer (e.g., in the
TASTE flow by directly specifying the ASN.1 types of the
input and output parameters which cannot be analyzed).
The experimental results presented in Section 5 will show
how the unsupported patterns are actually rare in embed-
ded systems applications.

The patterns, whose presence limits the applicability of
the analysis, are the following:

• a pointer is assigned in a function foo and then used
in a function bar which calls foo; this can happen if
the pointer is passed by address from bar to foo or
if the pointer is a global variable:

void foo(int ** arg) {

*arg = malloc(10);

}

void bar() {

int * temp;

foo(&temp);

/*some usage of temp */

}

• a function returns a pointer to a memory space dy-
namically allocated inside the function or to a global
variable:
int global[10];

int * custom_malloc(int size) {

return malloc(size * sizeof(int));

}

int * get_global() {

return &global;

}

Moreover the analysis assumes that the application cannot
provoke any memory access error such as out of bound
access, invalid memory access, buffer overflow, etc. Note
however that the absence of dynamic memory allocations
and the correctness of the memory accesses are usually
already verified in critical applications, so that these require-
ments do not actually limit the applicability of the proposed
technique in the considered design flow.

There is instead mainly one pattern which introduces
inaccuracy in the analysis results: pointer variables with
multiple assignments:

char * string;

if(condition)

string="title";

else

string="-";

process(string);

Note that this problem is not solved by adoption of Static
Single Assignment form [24] : in this case the approximation
would be introduced by the Phi instructions.

The proposed analysis technique has been mainly de-
signed for the analysis of sequential applications. Neverthe-
less, it can be easily extended to applications parallelized
by means of OpenMP or pthread library. In the former
case the instances of the private variables of the different
sections have to be considered as different variables. In the
latter case, the calls to pthread library functions have to be
managed in an ad-hoc way.

3.2 Output of the proposed analysis

The output of the proposed analysis consists of the PDS of
each pointer present in the analyzed application measured
in terms of number of pointed elements (i.e., the overall size
of the pointed data divided by the size of one element),
which is a target independent quantity. The independence
of this information from a particular target can be useful
during design space exploration for generic heterogeneous
systems, but it is not necessary during development of
applications in the TASTE framework since the exact size
of all the basic types must be explicitly specified in ASN.1
descriptions. For example, if the type to be described by
means of ASN.1 is an array of 10 integer, not only it is
necessary to specify the number of elements of the array,
but it is also necessary to explicitly specify the precision
of the single integer. A PDS can be a non-negative integer
number, if it can be analytically computed at compile time,
or an expression, when its value is not fixed but depends
on the particular input of the application. In the following
example PDS(p)=3 and PDS(q)=atoi(argv[1]):

int main(int argc, char ** argv){

int * p, * q;

int var = atoi(argv[1]);

p = malloc(sizeof(int) * 3);

q = malloc(sizeof(int) * var);

...

}

Note that in case of the TASTE design flow, the PDSs of
the pointer parameters must be necessarily constant non
negative numbers. Nevertheless, supporting expression in
PDSs can extend the applicability of the proposed technique
to different embedded systems design scenarios.

In some cases copying an amount of data equal to the
PDS of a pointer starting from its current value does not
guarantee that all the necessary data are transferred. For
example if the address of an intermediate cell of an array is
assigned to a pointer:

int array[5];

int * p = &array[2];

thanks to pointer arithmetic through p it is possible to access
all the cells of array (including array[0] and array[1]).
A flag associated with the PDS of a pointer is used to signal
that some memory locations can be accessed through this
pointer and a negative offset, so that the whole range [p -
PDS(p), p + PDS(p)} has potentially to be transferred. Note
that as a consequence the size of the corresponding type
would be 2 · sizeof(array).

The output of the proposed analysis is not limited to
the PDS of each formal pointer parameter of each function.
Indeed, storing the PDSs also of the actual parameters of
each function call allows to optimize the data transfers
in each call site. Furthermore, intermediate results (e.g.,
PDSs of all local and global variables) could be exploited
during application partitioning in hardware/software co-
design flows.

Because of the characteristics of the C language, defining
which are all the pointers for which the PDS has to be
computed is not trivial. A pointer can be part of a more com-
plex structure (like a structure or an array). To identify each
pointer, including the ones contained in complex structures,
the analysis associates a string with it. This string, which is

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 5

called Pointer Path (PP), is recursively computed applying
the rules listed in Table 1 (for the sake of brevity only
the most significant rules are reported). Differently from
Access Paths [25], PPs refer to the pointers and not to the
memory locations pointed by them. The set of PPs obtained
analyzing the application is the set of pointer expressions
whose PDS is computed. For example, in the following
code the identified PPs are variable.nested.pointer

and variable.pointer:

typedef struct {

int * pointer;

int value;

} s3;

typedef struct {

s3 nested[10];

int * pointer;

} s4

s4 variable[10];

Different pointers can have the same PP and so the
same computed PDS even if the actual ones are different,
potentially introducing inaccuracy in the produced results.
In case of recursive structures (e.g., linked lists), only one
element is considered.

3.3 Details of the proposed analysis

Algorithm 1: Code Analysis.

1 BuildCallGraph()

2 foreach Strongly Connected Component of the call graph in top-down order do
3 repeat
4 foreach function fi ∈ Strongly Connected Component do
5 foreach statement sj of function fi do
6 CheckPointerAssignment(sj)

7 end
8 PropagateAssignment()

9 foreach call point cj in function fi do
10 ActualToFormal(cj)

11 end
12 end
13 until PDSs do not change
14 end

Algorithm 1 sums up the proposed analysis technique. It
starts by computing the call graph of the application (line 1)
and then its code is analyzed in detail function by function.
The information about the PDSs of the formal parameters
has to be already available at the beginning of the analysis
of a function because these parameters can be assigned to
local variables or used as parameters of called functions.
For this reason, caller functions have to be analyzed before
called functions: the analysis of the whole application starts
from main function (or from the entry point specified by the
developer) and then all the other functions of the application
are examined following one of the topological orders in-
duced by the call graph (lines 2-14). In presence of recursive
calls, the functions in the corresponding strongly connected
component have to be iteratively analyzed until the PDSs of
their formal parameters do not change. Note however that
recursion is usually forbidden in critical embedded systems.

The analysis of each function consists of several phases
which store results in four main data structures:

• MayAlias: stores for each PP all the other PPs with
which it may alias;

• PDS: stores for each PP its PDS in pointed element
size;

• SymPDS: stores for each PP the expression containing
its PDS;

• Offset: stores for each PP if it can be used with
negative offset.

At the beginning of the analysis of a function the PDS
of all the PPs included in function parameters are always
available, while the PDSs of the PPs included in global
variables are available only if these are globally initialized or
are initialized by an already analyzed function. Information
about global variables assigned in called functions would
not be available and causes the abort of the technique.
All the statements of the function are analyzed looking for
pointer assignments (line 6); since the performed analysis
is flow-insensitive, the order of the analysis of the single
statements is not relevant. MayAlias, SymPDS, PDS and
Offload are updated according to the rules of Table 2
(for the sake of brevity only the most significant rules are
reported). The following phase is the elaboration of the
collected information (line 8): SymPDS, PDS and Offset are
updated on the basis of MayAlias. For example, if a pointer
p is assigned to a pointer q with smaller PDS, the PDS of the
latter is updated. The complete update of the data structures
can be done in linear time if the propagation is performed
starting from PPs with largest PDS. Finally, during the last
phase of the analysis of the function, the PDSs of all the
PPs contained in formal parameters of called functions are
eventually updated. In particular the PDS of a PP contained
in a formal parameter is updated if the PDS of the actual
parameter in one of the calls is larger than it. In this way,
information about the PDSs of formal parameters will be
available when the called functions will be analyzed.

3.4 Time and Space Complexity of the Proposed Anal-

ysis

In this section the time and the space complexity of the
proposed analysis are discussed. In the following S iden-
tifies the set of statements of the analyzed application, Si is
the set of statements of function fi. The time complexity
of the analysis of a function fi (lines 5-10) is O(|Si|).
PropagateAssignment can be indeed performed in O(|Si|)
if the assignments are considered starting from the ones
relative to the PPs with largest PDS. If the application does
not contain any recursion (i.e., its call graph is acyclic),
each function is examined once, so the overall complexity of
the analysis is O(|S|). If the application contains recursive
calls, some functions can be analyzed more than once. In
the worst case during each iteration of the analysis of a
strongly connected component of the call graph the PDS of
only one PP contained in a formal parameter is updated to
its final value. The PDS of each PP contained in formal pa-
rameters can be updated only once: from the current value
to the largest value of the corresponding actual parameters
discovered during the analysis of functions included in the
strongly connected component. For this reason, the number
of repeated analysis of a same function is bounded by
the number of PPs in its parameters, so the overall time
complexity of the proposed analysis is O(|S| · pn) where
pn is the maximum number of PPs in the parameters of a
function.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 6

TABLE 1
Rules for the construction of PP(exp).

1 PP(variable) = variable
2 PP(*expression) = PP(expression)*
3 PP(expression[index]) = PP(expression) if expression is an array
3 PP(expression[index]) = PP(expression)* if expression is a pointer
4 PP(expression operator expression2) = PP(expression) if expression is of

pointer type
5 PP(expression.field) = PP(expression).field if expression is of struct type
6 PP(expression.field) = PP(expression) if expression is of union type

TABLE 2
Rules for data structures updating.

Id Structure of the assignment Updates Description

1 p1=p2 MayAlias[PP(p2)].insert(PP(p1)); Assignment between pointers.
2 p1=p2+constant MayAlias[PP(p2)].insert(PP(p1)); Assignment between pointers with offset.

Offset is set for the left-side pointer since it
points to something inside some data structure.

Offset[PP(p1)] = true;

3 p1=&p2[index] MayAlias[PP(p2)].insert(PP(p1));

Offset[PP(p1)] = true;

4 p1=p2+variable MayAlias[PP(p2)].insert(PP(p1));

Offset[PP(p1)] = true;

5 p1=malloc(constant) if constant > PDS[PP(p1)] Dynamic allocation of memory of known size:
if the allocated memory is larger than current
known PDS of left-side pointer, this is update.

PDS[PP(p1)] = constant;

6 p1=malloc(expression) if SymPDS[PP(p1)] != empty Dynamic allocation of memory of unknown
size: if a memory space of unknown size has
already allocated to the pointer the analysis
aborts, otherwise the expression storing the un-
known size is associated with the pointer.

Abort();

SymPDS[PP(p1)] = expression;

7 p1=&variable if 1 > PDS[PP(p1)] Address assignment: if the PDS of left-side
pointer is 0, this is updated to 1.PDS[PP(p1)] = 1

8 p1=&array[index] if sizeof(array) > PDS[PP(p1)] Array address assignment: if the size of the
variable in the right side is larger than PDS

of left-side pointer, this is updated; moreover,
Offset is set for the left-side pointer since it
can point inside the array.

PDS[PP(p1)] = sizeof(array)

Offset[PP(p1)] = true

9 p1=function(args) foreach pointer argument arg The result of a function is assigned to a pointer;
since the called function has not yet been ana-
lyzed, it is assumed that whatever input pointer
can be returned by the function; for library
functions, ad-hoc rules can be defined.

MayAlias[PP(arg)].insert(PP(p1));

Offset[PP(p1)] = true;

p1 and p2 are pointers or expressions whose type is a pointer. constant, variable and index are an integer constant, an integer variable and an integer

variable or constant. array is an array of generic elements.

The space complexity is determined by the size of PDS,
SymPDS and Offset which, at the end of the execution
of the analysis, store information about each PP. For this
reason, the space complexity of the proposed methodology
is O(|PPs|) where PPs is the set of PP of the application.

4 INTEGRATION OF THE PROPOSED ANALYSIS

TECHNIQUE WITH THE TASTE FRAMEWORK

This section presents how the proposed analysis technique
has been integrated in a design flow based on the TASTE
framework. Section 4.1 briefly describes the TASTE Frame-
work, providing the background of the design flow pre-
sented in this paper while Section 4.2 describes the design
flow integrating the proposed analysis technique.

4.1 The TASTE Framework

TASTE (The ASSERT Set of Tools for Engineering) [4] is a
development framework for the design of applications for
real time safety-critical embedded systems. The framework
was originally created in 2008 as the final result of ASSERT

(Automated proof based System and Software Engineering for
Real-Time applications), a research project co-founded by the
Sixth Framework Programme for Research and Technology
Development of the European Union, which was coordi-
nated by the European Space Agency and which involved
about 30 industrial and accademic partners. In the following
years European Space Agency has continued to support
the framework by funding several follow-up activities to
maintain and extend it.

The TASTE framework is composed of a collection of
tools, most of which released under GPL/LGPL license,
aimed at building in a semi-automatic way a distributed
real time system. It supports different operating systems
(RTEMS, Linux and Linux with Xenomai), different proces-
sors (x86, x86-64, LEON2, LEON3, and ERC32 BSP) and,
by means of the integration of device drivers as functional
models, external devices (e.g., ethernet network interfaces,
serial ports, Spacewire interfaces, etc.). The main aim of
the framework is to allow the system designers to focus
their attention on the design of the algorithms composing
the specification and not on the implementation details

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 7

1

Capture Functional
Architecture

and data model
(AADL+ASN.1)

2

Design SW Components
from auto-generated

skeletons with
preferred languages

Coding
with

Ada or C

Modelling
with

Simulink

Modelling
with SDL

Modelling
with
your

language

3

Software Implementation
Automatically assemble,

glue together, and deploy the final
SW system on a real target

(Ada RT, Bare system, RTEMS)

M
ID

D
L

E
W

A
R

E
-

R
E

A
L

T
IM

E

H
A

R
D

W
A

R
E

P
L

A
T

F
O

R
M

O
n

-b
o

a
rd

co
m

p
u

te
r

On-board
software

Sensors

Actuators

...

...

Payloads

Fig. 1. The design flow of the TASTE framework.

related to the particular combination of operating system
and hardware components. Nevertheless, the adoption of
a single unique language (e.g., UML) for modeling each
aspect of a potentially very heterogeneous system has been
considered unrealistic. On the contrary, the TASTE frame-
work does not try to remove or reduce the heterogeneity
of the system, but tries to hide this heterogeneity to the de-
signer without requiring to adopt a unique formal modeling
language. The single parts of the systems can be described
by the designer in the preferred language: TASTE currently
supports Matlab/Simulink, SDL, C, Ada, and VHDL as
input description languages. Starting from very different
languages, the TASTE framework hides all the details about
communication among heterogeneous subsystems, but al-
lows the designer to verify at design time in a formal way
the critical properties of the generated system.

The generic design flow implemented in the TASTE
framework is presented in Figure 1. The main steps are:

• Capture Functional Architecture: in this phase the
designer builds the Interface view of the application.
This view defines the skeleton of the application:
which are the software components (i.e., collections
of functions) which compose the application and
which are their exposed interfaces. For each interface
the input and the output data have to be specified
by means of ASN.1 types. The TASTE framework
provides a graphical tool (Interface view editor) to
perform this activity.

• Design SW Components: the designer fills the skeleton
by implementing all the software components; each
software component can be implemented with one of
the languages supported by the TASTE framework.

• Software Implementation: the framework automatically
generates the glue code which allows the different
software components to interact and exchange data;
finally the software system is deployed on the target.

Beside the tools aimed at implementing these steps,
the TASTE framework integrates also a set of tools for
analyzing the design solution and in particular to perform
schedulability analysis (MAST [26] and CHEDDAR [27]).

During the different steps of the design flow, the TASTE
framework exploits two languages to formally describe the
characteristics of the designed application:

• AADL [28], which is used to describe the Interface
view; note that AADL descriptions are automatically
generated by the tools of the TASTE framework, so
its knowledge is not required.

• ASN.1 [14], which is used to specify the types of the
data exchanged between the different components
of the designed application. The framework only
provides the ASN.1 descriptions for the basic types
(e.g., integer, float): the description of more complex
types used in function interfaces has to be provided

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 8

Software
Driver

Calling
Function

HW
Accelerator

call(...)
write in(...)

start()

poll()

read out(...)

Fig. 2. The Sequence Diagram of Hardware Function Invocation.

by the designer or it has to be generated by other
tools as proposed in this paper. The adoption of
this standard in the TASTE framework guarantees
the correct interaction among functions assigned
to different processing elements with different
endianness and different data size.

Aggregate data types (i.e., structures and arrays) can be
specified in ASN.1, but their size must be fixed and known at
design time. If an interface will be implemented by means of
a C function, the sizes of all the input and output parameters
must be known. If this information is not directly known by
the designer, for example because the C implementation is
legacy code, it can be automatically extracted by means of
the proposed analysis technique.

The only FPGA board supported by the current version
of the TASTE framework is the GR-CPCI-XC4V board [29].
This board has been developed as a cooperation between
Aeroflex Gaisler and Pender Electronic Design. It is a com-
pact PCI board containing a Virtex4 XC4VLX FPGA, 16
Mbyte of FLASH prom and up to 256 Mbyte of SDRAM.
The access to the GR-CPCI-XC4V board is provided in the
TASTE platform by means of the PCI bus. Each input and
output parameter of each synthesized function is mapped
in a memory address. The steps performed during the
invocation of a function mapped on the FPGA are shown in
Figure 2. When a software function has to invoke a function
implemented in hardware, it calls its driver (call(...))
which writes (write_in(...)) in the opportune FPGA
memory locations the input parameters through the PCI
bus. The information collected by the PDS analysis allows
the driver to know the exact amount of data that have
to be transferred. Note that the generated accelerator can
only access them: all the other data of the application
cannot be accessed. After that all the input parameters have

been written, the driver starts the execution of the hard-
ware accelerator by writing (start()) a memory mapped
control register. Next, it continuously checks (poll()) for
the value stored in the memory mapped control register
until the hardware accelerator ends its computation. Finally,
it performs a set of memory readings (read_out(...))
aimed at retrieving the output of the hardware accelerator
computation, and then returns these data to the function
which performs the call to the hardware module. Also
in this case, the information collected by the proposed
analysis technique is mandatory to correctly perform the
data transfer. Note that a different driver is automatically
generated for each application since they depend on the
particular signatures of the functions mapped on hardware.
The drivers introduce an overhead in the overall execution
time of the computation which is mainly due to the data
transfers at the beginning and at the end of the execution of
the accelerated functions and which depends on the amount
of data to be exchanged. The more precise the results of the
PDS analysis are, the smaller is the introduced overhead.

The limitation in the support of other FPGA devices is
mainly related to the generation of software drivers. Adding
the support to other FPGA devices connected through PCI
bus can be easily achieved. On the contrary, adding the
support to new devices connected through different buses
(e.g., Spicewire) requires the implementation of the neces-
sary software driver generator.

4.2 Proposed Design Flow

This section presents the design flow for the automatic
generation of hardware accelerators in the TASTE frame-
work exploiting the information generated by the PDS
analysis and High Level Synthesis methodologies. These
are implemented in Bambu, an open source tool, part of
the PandA framework [30], developed at Politecnico di
Milano and aimed at assisting the designer during the High
Level Synthesis of complex applications. Bambu is written
in C++, it can be freely downloaded under GPL license and
it has been tested with different Linux distributions (e.g.,
Centos, Debian, Ubuntu). Bambu supports the generation
of hardware accelerators for different devices of different
vendors (i.e., Xilinx, Intel, Lattice).

The selection of the functions that have to be synthesized
in hardware is demanded to the designer of the applica-
tion: the integration of automatic techniques for performing
HW/SW partitioning [31] is out of the scope of this work.
Since Bambu accepts only C source code files as input, only
functions written in this language can be synthesized as
hardware accelerators. The support to the automatic gen-
eration of hardware accelerators starting from SDL has been
indirectly added by modifying OpenGEODE [32]. The tool
has been extended by adding a backend for the generation
of C source code starting from SDL descriptions. This C
source code can then be used as input of Bambu, so that,
by combining OpenGEODE and Bambu, it is possible to
generate hardware modules starting from SDL descriptions.
All the other languages supported by the TASTE framework
are instead not supported by the tool.

In the proposed design flow, Bambu performs a prepro-
cessing step to include the HDL of hardware accelerated

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 9

BAMBU

Original Taste Application

Modified Taste Application

AADL
Parser

.aadl

Interface
View

ASN.1
Parser

.asn

Data
View

GNU GCC

.c

Source
Code

AADL
Backend

PDS Analysis C Backend
High Level
Synthesis

.aadl

Interface
View

.vhd

HDL
Code

.asn

Data
View

.c

Source
Code

Functions to
Be Accelerated

Fig. 3. The High Level Synthesis flow targeting the TASTE FPGA architecture.

functions in the TASTE application description which is
then used as input of the rest of the design flow. Figure 3
shows the design flow implemented in Bambu for this aim.
Its inputs are:

• Interface View, i.e., the file specifying the different
functions composing the application. Note that the
functions to be accelerated in hardware have not to
be specified in this file.

• Data View ASN.1 files, i.e., the ASN.1 descriptions
of the types used in the interfaces of the functions.
Information about parameters of hardware
accelerated functions can be missing.

• C Source files, i.e., the files containing the
implementation of the functions of the application.

• Hardware Accelerated Functions, i.e., the list of the
functions that have to be accelerated by executing
them on FPGA.

At the end of its internal design flow Bambu produces:

• Interface View, i.e., the file specifying the different
functions composing the application enriched with
information about hardware accelerated functions.

• Data View ASN.1 files, i.e., the ASN.1 descriptions
of the types used in the interfaces of the functions
enriched with information about parameters of
hardware accelerated functions obtained with PDS
analysis.

• C Source files, i.e., the files containing the
implementation of the functions of the application
modified by replacing calls of hardware accelerated
functions with calls to the corresponding drivers.

• HDL description of the FPGA architecture, i.e., HDL
files containing the VHDL description of the
accelerators and of the architecture connecting them
with the rest of the system.

In the following, the Bambu intermediate steps will be de-
tailed.

The High Level Synthesis flow starts from the analysis of

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 10

the Interface View file, which is the only one that has actually
to be explicitly provided. All the other files previously
listed are automatically identified recursively analysing the
extracted information. From the Interface View file two types
of information can be extracted:

• The source files containing the C implementation of
functions.

• The list of the Data View aadl files to be analysed;
from these aadl files, the tool extracts the list of Data
View ASN.1 files that have to be modified.

Bambu reads by means of a GCC plugin [33] the C
implementation of the functions to be synthesized in hard-
ware and produces an intermediate representation based on
GIMPLE [34]. After that all the necessary information has
been collected, the rest of the Bambu design flow can be
applied.

The next step (AADL Backend) is the generation of the
modified Interface View: the original version is updated
including the information about the hardware accelerated
functions. This information includes their list, which files
contain their HDL description and which are the other
functions calling them.

Next, the PDS analysis presented in Section 3 is per-
formed. By analyzing the GIMPLE intermediate represen-
tation of the functions that have to be implemented on the
FPGA, the PDSs of all the pointer parameters are computed.
Applying the analysis directly to this type of intermediate
representation instead of C source code presents several
advantages:

• with respect to the starting C source code, the GIM-
PLE intermediate representation has a more regular
structure so that the number of different patterns that
have to be considered is smaller.

• since the intermediate representation is in Static Sin-
gle Assignment form [24], a different pointed data
size can be computed for each version of a pointer.

• the results of the alias analysis and of the opti-
mizations already performed by the compiler can be
exploited to improve the accuracy of the analysis.

The produced information will be used by High Level Syn-
thesis methodology, but it is also embedded in the updated
version of the Data View ASN.1 file to be used during the
generation of the coupled software drivers controlling the
data transfers to and from the FPGA memory. If during the
analysis a non-supported pattern is found, the tool produces
an incomplete version of the Data View ASN.1 file which has
to be completed by the designer. The results presented in
Section 5 will show how, even considering generic embed-
ded system code without the restrictions required in critical
systems, these patterns are actually rare.

For each accelerated function parameter type the infor-
mation to be included is:

• Its structure: the padding data that the hardware
accelerator expects to find in input aggregate
parameters (i.e., structures and arrays) and the
padding data added by accelerators in output

aggregate parameters; this information guarantees
the portability of exchanged data between software
and hardware and it will be exploited to generate
the adding and the removal of the padding data in
the software driver.

• Its size: ASN.1 requires to specify the size of all the
exchanged data. In case of pointer parameters, the
size depends on the number of pointed elements.
The analysis presented in Section 3 is exploited to
compute these values.

• Its endianness: the hardware accelerators generated
by Bambu internally adopt little endianness.

Next step (C Backend) is the generation of the modified
version of the C source code of the application. With respect
to the source code of the starting version of the application,
the only applied change is the replacement of all the calls
of the hardware accelerated functions with the calls to the
corresponding software drivers (described in Section 4.1).
Note that Bambu just introduces the call to the drivers,
but does not generate their implementation which will be
produced by the rest of the TASTE framework using the
information contained in the modified Interface View and in
the modified Data View.

Last step of the design flow executed by Bambu is the
actual High Level Synthesis. In the current version of the
tool the TASTE FPGA architecture is generated targeting the
GR-CPCI-XC4V board [29], but Bambu supports 15 FPGA
devices of 3 different vendors. Moreover the support of new
devices can be easily integrated in Bambu by means of XML
files. The outcome of the High Level Synthesis design flow
targeting the TASTE FPGA architecture is:

• a VHDL file containing the description of the top
architecture to be implemented on the FPGA, i.e.,
the architecture connecting accelerators with the rest
of the system.

• a VHDL file containing the structural descriptions of
all the synthesized C functions.

The TASTE framework automatically generates the soft-
ware drivers for interfacing the accelerators implemented on
the FPGA. The software drivers hide most of the implemen-
tation details of the interaction between the general purpose
processor and the FPGA, but they are not sufficient to make
software functions and hardware modules communicating.
Indeed, as in the software part of the application it is
necessary to use software drivers to fill the gap between
the low level bus and the application, in a similar way
on the FPGA device it is necessary to instantiate some
components to connect the PCI bus with the accelerators.
The architecture which Bambu generates to make hardware
accelerators accessible through the PCI bus is presented
in Figure 4. The hardware accelerators are not directly
connected with the PCI bus, but are directly connected
to an internal communication infrastructure based on the
ARM Advanced Microcontroller Bus Architecture (AMBA) [35].

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 11

FPGA

PCI
Target

AHB Bus

HW Accel.
1

HW Accel.
2

P
C

I
B

u
s

CPU

Fig. 4. The TASTE FPGA Architecture.

AMBA bus is an open standard on-chip interconnect spec-
ification, originally developed by ARM, aimed at facilitat-
ing the interconnection on System-on-Chip of components
developed by different designers. The components used in
the TASTE FPGA architecture to implement such type of
communication infrastructure are taken from the GRLIB IP
Library [36], a set of reusable IP components designed for
FPGA released under GNU GPL License. The advantages of
using such type of communication infrastructure are:

• more than one hardware accelerator can be
integrated in the architecture;

• each hardware accelerator can be designed
independently from the rest of the system;

• the implementation details of the selected FPGA
board are hidden since ad-hoc implementations of
all the components for all the supported boards are
provided;

• the porting of the TASTE FPGA architecture to
different boards is facilitated.

More in details the exploited components are:

• the PCI target interface component which implements
a PCI slave interface towards the external PCI bus
and a AHB master interface towards the internal
communication infrastructure. This component acts
as a bridge connecting the PCI bus and the AMBA
bus.

• the AHB bus. The hardware accelerators are con-
nected directly to the AHB bus, so they have to
implement a slave interface for this type of bus.

The FPGA communication infrastructure originally
adopted in the TASTE FPGA architecture included a AHB
bus and a APB bus. The updating of the FPGA com-
munication infrastructure was possible since this is com-
pletely transparent to the generated software driver and
since Bambu generates not only the HDL of the hardware
accelerators but also of the whole FPGA architecture.

At the end of the execution of Bambu, the TASTE design
flow can be applied to its outcome. From this point on, the
only significant differences with respect to a TASTE design

flow targeting a system not using FPGA are the generation
of the FPGA software drivers and the generation of the
bitstream to be loaded on the FPGA, but these steps are
completely transparent to the user.

5 EXPERIMENTAL RESULTS OF PDS ANALYSIS

In this section the accuracy, the correctness, and the com-
pleteness of the PDS analysis are evaluated by applying it to
the benchmarks of the following suites: DSP Stone [37], NAS
Parallel [38], OmpSCR [39], Powerstone [40], and Splash 2
[41]. Table 3 reports their characteristics: these benchmarks
contain a significant number of pointer parameters, despite
being designed for embedded systems. Moreover, even if
they have not been explicitly developed for space systems,
they implement algorithms which are used in this scenario
(e.g., image processing, data elaboration, graph analysis).

As described in Section 2, since to the best of our knowl-
edge there is not any other technique explicitly aimed at
computing the size of transferred data, the results obtained
with the proposed analysis technique cannot be compared
with the results of other techniques.

The real PDS of each pointer is collected by profiling
the memory allocations and accesses with an ad-hoc in-
strumented version of each analyzed benchmark run on
a LEON2 processor [42]. This is a 32-bit microprocessor
compliant with the SPARC V8 ISA, it is based on the LEON
architecture originally designed by the European Space
Agency, and it is currently developed by Cobham Gaisler
AB and licensed under GNU GPL.

Table 3 reports how many functions cannot be ana-
lyzed by PDS analysis because of the presence of one
of the unsupported patterns described in Section 3.1. All
the benchmarks from DSP Stone and Powerstone suites
can be fully examined since they do not include any of
the unsupported patterns. The NAS Parallel benchmarks
can be almost fully analyzed: a function of one of these
benchmarks cannot be analyzed because of the presence of
a global pointer which is initialized in a called function.
On the contrary, the number of functions of benchmarks
from OmpSCR and Splash 2 suites where the analysis fails
is larger (16 and 17 respectively). The patterns which cause
the failures are mainly the initialization of global pointers
in called functions and the functions returning pointers to
dynamically allocated memory.

The real PDSs of the pointers of all the other functions
have been compared with the results of the analysis to verify

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 12

TABLE 3
Characteristics of the benchmarks of each suite.

Number Avg. number Avg. number of Avg. number of Avg. number Avg. number of pointers
Suite of benchmarks of functions non-analyzable functions call sites of parameters included in parameters

DSP Stone 35 3.23 0.00 3.95 0.79 0.67
NAS Parallel 8 17.25 0.13 96.38 3.79 1.86

OmpSCR 17 14.94 0.94 76.00 2.33 0.83
Powerstone 10 6.00 0.00 15.10 1.13 0.42

Splash 2 12 26.62 1.41 204.50 2.47 0.94

TABLE 4
Results of application of PDS analysis on all the functions

Average overestimation
Suite Actual Pointer Parameters %Overestimations Relative Absolute (bytes)

DSP Stone 93 0% 0% 0
NAS Parallel 1,434 0% 0% 0

OmpSCR 1,072 1.56% 0.01% 0.25
Powerstone 64 1.97% 0.01% 0.98

Splash 2 2,307 3.89% 0.01% 1.33

Actual Pointer Parameters is the overall number of parameters of the functions of the benchmarks of the suite which are pointers or which include
at least a pointer; Overestimations is the percentage of parameters for which the PDS analysis computes a PDS larger than the real; Average
overestimation is the average size of the overestimations of PDS.

TABLE 5
Results of application of PDS analysis only on misestimated functions.

Average overestimation Maximum Overestimation
Suite Relative Absolute (bytes) Relative Absolute (bytes)

DSP Stone 0% 0 0% 0
NAS Parallel 0% 0 0% 0

OmpSCR 37.12% 16.22 86.97% 80
Powerstone 55.5% 5 55.54% 5

Splash 2 37.5% 34.21 80.00% 640

Average overestimation is the average size of the overestimations of PDS; Maximum overestimation is the largest computed overestimation.

its correctness (i.e., a computed PDS should be always not
smaller than the real PDS) and accuracy (i.e., how much
large is the difference between the computed PDS and the
real PDS). For the sake of brevity, the results of the bench-
marks belonging to the same suite have been aggregated
and reported in Table 4 and Table 5. Note that, all the
results, originally computed in terms of pointed element
size (i.e., the number of elements of pointed type), have
been converted in bytes to allow the aggregation of the data.
The computation of the average and of the maximum of
the absolute overestimations in bytes can produce different
results for different architectures because of the different
data sizes: the data reported in the tables use the same
data sizes considered by GNU GCC when targeting LEON2
processor. On the contrary, the average and the maximum of
the relative overestimations do not depend on the particular
target architecture.

Table 4 reports the average results obtained by consider-
ing only the functions with at least one pointer parameter.
The results show how the number of function parameters
whose PDS is misestimated is very small (less than 4% in
the worst case). The proposed methodology computes accu-
rately the PDSs of all the pointer parameters of benchmarks
from DSP Stone and NAS Parallel suites since the memory
allocations and accesses are characterized by code patterns
with limited complexity. The benchmarks from Powerstone
suite have a more complex structure, but they can still be

accurately analyzed. The analysis has to make a conserva-
tive approximation introducing an overestimation of its PDS
only for one parameter of a function. The accuracy obtained
in the analysis of the functions of Splash 2 benchmarks is
instead slightly worse. These benchmarks are characterized
by the presence of more complex code patterns, like multiple
assignments of a same pointer, which introduce approxima-
tions in the computed PDSs. These approximations however
mainly concern some small auxiliary data structures of the
application: the PDSs of the main data, which are the object
of the most computational intensive parts of the applica-
tions, are correctly computed.

Table 5 reports the average and the maximum overes-
timations obtained by considering only misestimated func-
tions: both the functions without pointer parameters and
the functions correctly analyzed are not included in the
aggregated data of this table. These data show how, even
if the average and the maximum relative overestimations
introduced during the few inaccurate computations are
quite large (37.5% and 80.0%), their absolute sizes are very
small (the average is 34.21 bytes while the maximum is 640
bytes). For this reason, the further overhead in terms of data
transfer delay and memory usage caused by the inaccurate
computation of PDSs is not relevant. Finally, significant
overestimations are also obtained for a limited number of
parameters of benchmarks from OmpSCR suite. Even for
the benchmarks of this suite, the overestimations mainly

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 13

concern some auxiliary data, which are exploited in inter-
nal generation of execution reports, while the PDSs of the
main data are correctly computed: the absolute maximum
overestimation is indeed of only 80 bytes.

The experimental results obtained by analyzing a set
of embedded system benchmarks show how the proposed
analysis technique is effectively able to accurately compute
the PDSs of pointers for most of the functions. The few
overestimations indeed are small enough, in absolute value,
to not introduce any extra significant penalty in the data
transfer time nor in the FPGA memory resource usage.

6 CONCLUSIONS

In this paper an analysis technique to accurately identify the
pointed data sizes in legacy C applications has been pro-
posed. This technique has been integrated in a new design
flow for the automatic generation of hardware accelerators
integrated in the TASTE framework. The use of explicit
data transfers and of ASN.1 in TASTE indeed requires to
correctly compute the sizes of transferred data. The exper-
imental results show that the proposed analysis technique
is effectively able to accurately identify the pointed data
sizes in legacy C applications, allowing its integration in
the presented design flow.

REFERENCES

[1] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and
Z. Zhang, “High-level synthesis for fpgas: From prototyping to
deployment,” IEEE TCAD, vol. 30, no. 4, pp. 473–491, April 2011.

[2] P. Vogel, A. Marongiu, and L. Benini, “Lightweight virtual mem-
ory support for many-core accelerators in heterogeneous embed-
ded socs,” in 2015 International Conference on Hardware/Software
Codesign and System Synthesis (CODES+ISSS), Oct 2015, pp. 45–54.

[3] M. Lattuada, F. Ferrandi, and M. Perrotin, “Computer assisted
design and integration of fpga accelerators in aerospace systems,”
in 2016 IEEE Aerospace Conference, March 2016, pp. 1–11.

[4] European Space Agency, “TASTE,” http://taste.tuxfamily.org/.
[5] D. Ludtke, K. Westerdorff, K. Stohlmann, A. Borner, O. Maibaum,

T. Peng, B. Weps, G. Fey, and A. Gerndt, “OBC-NG: Towards a
reconfigurable on-board computing architecture for spacecraft,”
in Aerospace Conference, 2014 IEEE, March 2014, pp. 1–13.

[6] N. Wulf, A. George, and A. Gordon-Ross, “A framework to
analyze, compare, and optimize high-performance, on-board pro-
cessing systems,” in Aerospace Conference, 2012 IEEE, March 2012,
pp. 1–14.

[7] ——, “Memory-aware optimization of FPGA-based space sys-
tems,” in Aerospace Conference, 2015 IEEE, March 2015, pp. 1–13.

[8] J. Greco, G. Cieslewski, A. Jacobs, I. Troxel, and A. George, “Hard-
ware/software interface for high-performance space computing
with FPGA coprocessors,” in Aerospace Conference, 2006 IEEE, 2006,
pp. 10 pp.–.

[9] M. Deshmukh, B. Weps, P. Isidro, and A. Gerndt, “Model driven
language framework to automate command and data handling
code generation,” in Aerospace Conference, 2015 IEEE, March 2015,
pp. 1–9.

[10] R. Nane, V. M. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T.
Chen, H. Hsiao, S. Brown, F. Ferrandi, J. Anderson, and K. Bertels,
“A survey and evaluation of fpga high-level synthesis tools,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, vol. 35, no. 10, pp. 1591–1604, Oct 2016.

[11] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona,
T. Czajkowski, S. D. Brown, and J. H. Anderson, “Legup:
An open-source high-level synthesis tool for fpga-based
processor/accelerator systems,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 2, pp. 24:1–24:27, Sep. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2514740

[12] Xilinx, “Vivado Design Suitei - High-Level Synthesis,”
http://www.xilinx.com, 2016.

[13] J. Villarreal, A. Park, W. Najjar, and R. Halstead, “Designing
modular hardware accelerators in c with roccc 2.0,” in 2010 18th
IEEE Annual International Symposium on Field-Programmable Custom
Computing Machines, May 2010, pp. 127–134.

[14] O. Dubuisson and P. Fouquart, ASN.1: Communication Between Het-
erogeneous Systems. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2001.

[15] OpenMP, “Application Program Interface, version 4.0,” July 2013.
[Online]. Available: http://www.openmp.org

[16] J. C. Beyer, E. J. Stotzer, A. Hart, and B. R. de Supinski, “OpenMP
for accelerators,” ser. IWOMP’11. Berlin, Heidelberg: Springer-
Verlag, 2011, pp. 108–121.

[17] R. Ferrer, J. Planas, P. Bellens, A. Duran, M. Gonzalez, X. Mar-
torell, R. M. Badia, E. Ayguade, and J. Labarta, “Optimizing the
exploitation of multicore processors and GPUs with OpenMP and
OpenCL,” ser. LCPC’10. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 215–229.

[18] J. E. Stone, D. Gohara, and G. Shi, “OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems,” IEEE Des.
Test, vol. 12, no. 3, pp. 66–73, May 2010.

[19] H. R. Zohouri, N. Maruyama, A. Smith, M. Matsuda, and
S. Matsuoka, “Evaluating and optimizing opencl kernels for
high performance computing with fpgas,” in Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis, ser. SC ’16. Piscataway, NJ,
USA: IEEE Press, 2016, pp. 35:1–35:12. [Online]. Available:
http://dl.acm.org/citation.cfm?id=3014904.3014951

[20] OpenACC, “Application Program Interface, version 1.0,”
November 2011. [Online]. Available: http://www.openacc.org

[21] V. T. Chakaravarthy, “New results on the computability and com-
plexity of points–to analysis,” SIGPLAN Not., vol. 38, no. 1, pp.
115–125, Jan. 2003.

[22] M. Hind, “Pointer analysis: haven’t we solved this problem yet?”
ser. PASTE ’01. New York, NY, USA: ACM, 2001, pp. 54–61.

[23] S. Yong and S. Horwitz, “Pointer-range analysis,” in Static Anal-
ysis, ser. Lecture Notes in Computer Science, R. Giacobazzi, Ed.
Springer Berlin Heidelberg, 2004, vol. 3148, pp. 133–148.

[24] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K.
Zadeck, “Efficiently computing static single assignment form and
the control dependence graph,” ACM Transactions on Programming
Languages and Systems, vol. 13, no. 4, pp. 451–490, Oct 1991.

[25] W. W. Cheng, B.and Hwu, “Modular interprocedural pointer
analysis using access paths: design, implementation, and
evaluation,” SIGPLAN Not., vol. 35, no. 5, pp. 57–69, May 2000.
[Online]. Available: http://doi.acm.org/10.1145/358438.349311

[26] M. Gonzalez Harbour, J. Gutierrez Garcia, J. Palencia Gutierrez,
and J. Drake Moyano, “MAST: Modeling and analysis suite for real
time applications,” in Real-Time Systems, 13th Euromicro Conference
on, 2001., 2001, pp. 125–134.

[27] F. Singhoff, J. Legrand, L. Nana, and L. Marcé, “Cheddar:
A Flexible Real Time Scheduling Framework,” Ada Lett.,
vol. XXIV, no. 4, pp. 1–8, Nov. 2004. [Online]. Available:
http://doi.acm.org/10.1145/1046191.1032298

[28] P. Feiler, D. Gluch, and J. Hudak, “The Architecture
Analysis & Design Language (AADL): An Introduction,”
Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, Tech. Rep. CMU/SEI-2006-TN-011, 2006.
[Online]. Available: http://resources.sei.cmu.edu/library/asset-
view.cfm?AssetID=7879

[29] Cobham Gaisler AB, “GR-CPCI-XC4V Leon Compact-PCI De-
veopment board,” http://www.gaisler.com.

[30] Politecnico di Milano, “Panda framework,”
http://panda.dei.polimi.it.

[31] G. De Micheli, R. Ernst, and W. Wolf, Eds., Readings in Hard-
ware/Software Co-design. Norwell, MA, USA: Kluwer Academic
Publishers, 2002.

[32] “OpenGEODE,” http://opengeode.net.

[33] S. Callanan, D. J. Dean, and E. Zadok, “Extending gcc with
modular gimple optimizations,” in Proceedings of the 2007 GCC
Developers’ Summit, Ottawa, Canada, July 2007, pp. 31–37.

[34] L. J. Hendren, C. Donawa, M. Emami, G. R. Gao, Justiani, and
B. Sridharan, “Designing the McCAT Compiler Based on a Family
of Structured Intermediate Representations,” in 5th International
Workshop on Languages and Compilers for Parallel Computing, 1993,
pp. 406–420.

IEEE TRANSACTIONS ON MULTI-SCALE COMPUTING SYSTEMS 14

[35] “ARM Advanced Microcontroller Bus Architecture
(AMBA),” http://www.arm.com/products/system-ip/amba-
specifications.php.

[36] Cobham Gaisler AB, “GRLIB Ip Library,”
http://www.gaisler.com.

[37] V. z̆ivojnović, J. M. Velarde, C. Schläger, and H. Meyr, “DSP-
STONE: A DSP-oriented benchmarking methodology,” in ICSPAT
’94, 1994.

[38] D. Bailey, T. Harris, W. Saphir, R. Van Der Wijngaart, A. Woo, and
M. Yarrow, “The NAS Parallel Benchmarks 2.0,” Tech. Rep.

[39] A. J. Dorta, C. Rodriguez, F. de Sande, and A. Gonzalez-Escribano,
“The openmp source code repository,” in PDP, 2005, pp. 244–250.

[40] A. Malik, B. Moyer, and D. Cermak, “A low power unified cache
architecture providing power and performance flexibility (poster
session),” in ISLPED ’00. New York, NY, USA: ACM, 2000, pp.
241–243.

[41] S. C. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The
SPLASH-2 programs: characterization and methodological consid-
erations,” in ISCA, 1995, pp. 24–36.

[42] Cobham Gaisler AB, “Leon 2 Processor.” [Online]. Available:
http://www.gaisler.com

Marco Lattuada received the Master and the
PhD degrees in Computer Engineering from Po-
litecnico di Milano, Italy, in 2006 and 2010 re-
spectively. In 2012 and in 2013 he was vis-
iting researcher at European Space Agency.
Since 2010, he has been temporary researcher
and lecturer at Dipartimento di Elettronica, In-
formazione e Bioingegneria of Politecnico di Mi-
lano. His research interests include methodolo-
gies for embedded system design and in partic-
ular High Level Synthesis, performance estima-

tion and automatic generation of code for multiprocessor heterogeneous
architectures.

Fabrizio Ferrandi received his Laurea (cum
laude) in Electronic Engineering in 1992 and
the Ph.D. degree in Information and Automa-
tion Engineering (Computer Engineering) from
the Politecnico di Milano, Italy, in 1997. He has
been an Assistant Professor at the Politecnico di
Milano, until 2002. Currently, he is an Associate
Professor at the Dipartimento di Elettronica, In-
formazione e Bioingegneria of the Politecnico di
Milano. His research interests include synthesis,
verification simulation and testing of digital cir-

cuits and systems. Fabrizio Ferrandi is a Member of IEEE, of the IEEE
Computer Society and of the Test Technology Technical Committee.

Maxime Perrotin received his Diploma in En-
gineering from the Conservatoire National des
Arts et Mtiers in 2001 (Diplme d’Ingnieur). Af-
ter working in the space industry he joined the
European Space Agency as technical officer. He
took the lead of the R&D activities related to
formal methods, modelling and code generation,
and is providing engineering support to satellite
development, with a special focus on in-orbit
demonstration missions, such as formation flying
systems.

