28,819 research outputs found

    Modular Customizable ROS-Based Framework for Rapid Development of Social Robots

    Full text link
    Developing socially competent robots requires tight integration of robotics, computer vision, speech processing, and web technologies. We present the Socially-interactive Robot Software platform (SROS), an open-source framework addressing this need through a modular layered architecture. SROS bridges the Robot Operating System (ROS) layer for mobility with web and Android interface layers using standard messaging and APIs. Specialized perceptual and interactive skills are implemented as ROS services for reusable deployment on any robot. This facilitates rapid prototyping of collaborative behaviors that synchronize perception with physical actuation. We experimentally validated core SROS technologies including computer vision, speech processing, and GPT2 autocomplete speech implemented as plug-and-play ROS services. Modularity is demonstrated through the successful integration of an additional ROS package, without changes to hardware or software platforms. The capabilities enabled confirm SROS's effectiveness in developing socially interactive robots through synchronized cross-domain interaction. Through demonstrations showing synchronized multimodal behaviors on an example platform, we illustrate how the SROS architectural approach addresses shortcomings of previous work by lowering barriers for researchers to advance the state-of-the-art in adaptive, collaborative customizable human-robot systems through novel applications integrating perceptual and social abilities

    Who am I talking with? A face memory for social robots

    Get PDF
    In order to provide personalized services and to develop human-like interaction capabilities robots need to rec- ognize their human partner. Face recognition has been studied in the past decade exhaustively in the context of security systems and with significant progress on huge datasets. However, these capabilities are not in focus when it comes to social interaction situations. Humans are able to remember people seen for a short moment in time and apply this knowledge directly in their engagement in conversation. In order to equip a robot with capabilities to recall human interlocutors and to provide user- aware services, we adopt human-human interaction schemes to propose a face memory on the basis of active appearance models integrated with the active memory architecture. This paper presents the concept of the interactive face memory, the applied recognition algorithms, and their embedding into the robot’s system architecture. Performance measures are discussed for general face databases as well as scenario-specific datasets

    On the Integration of Adaptive and Interactive Robotic Smart Spaces

    Get PDF
    © 2015 Mauro Dragone et al.. This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivatives 3.0 License. (CC BY-NC-ND 3.0)Enabling robots to seamlessly operate as part of smart spaces is an important and extended challenge for robotics R&D and a key enabler for a range of advanced robotic applications, such as AmbientAssisted Living (AAL) and home automation. The integration of these technologies is currently being pursued from two largely distinct view-points: On the one hand, people-centred initiatives focus on improving the user’s acceptance by tackling human-robot interaction (HRI) issues, often adopting a social robotic approach, and by giving to the designer and - in a limited degree – to the final user(s), control on personalization and product customisation features. On the other hand, technologically-driven initiatives are building impersonal but intelligent systems that are able to pro-actively and autonomously adapt their operations to fit changing requirements and evolving users’ needs,but which largely ignore and do not leverage human-robot interaction and may thus lead to poor user experience and user acceptance. In order to inform the development of a new generation of smart robotic spaces, this paper analyses and compares different research strands with a view to proposing possible integrated solutions with both advanced HRI and online adaptation capabilities.Peer reviewe

    Multi-Modal Human-Machine Communication for Instructing Robot Grasping Tasks

    Full text link
    A major challenge for the realization of intelligent robots is to supply them with cognitive abilities in order to allow ordinary users to program them easily and intuitively. One way of such programming is teaching work tasks by interactive demonstration. To make this effective and convenient for the user, the machine must be capable to establish a common focus of attention and be able to use and integrate spoken instructions, visual perceptions, and non-verbal clues like gestural commands. We report progress in building a hybrid architecture that combines statistical methods, neural networks, and finite state machines into an integrated system for instructing grasping tasks by man-machine interaction. The system combines the GRAVIS-robot for visual attention and gestural instruction with an intelligent interface for speech recognition and linguistic interpretation, and an modality fusion module to allow multi-modal task-oriented man-machine communication with respect to dextrous robot manipulation of objects.Comment: 7 pages, 8 figure

    'Playing robot': an interactive sound installation in human-robot interaction design for new media art

    Get PDF
    In this study artistic human-robot interaction design is in- troduced as a means for scientific research and artistic inves- tigations. It serves as a methodology for situated cognition integrating empirical methodology and computational mod- eling, and is exemplified by the installation playing robot. Its artistic purpose is to aid to create and explore robots as a new medium for art and entertainment. We discuss the use of finite state machines to organize robots’ behavioral reac- tions to sensor data, and give a brief outlook on structured observation as a potential method for data collection

    Beyond Gazing, Pointing, and Reaching: A Survey of Developmental Robotics

    Get PDF
    Developmental robotics is an emerging field located at the intersection of developmental psychology and robotics, that has lately attracted quite some attention. This paper gives a survey of a variety of research projects dealing with or inspired by developmental issues, and outlines possible future directions
    • 

    corecore