71,668 research outputs found

    A multiple criteria supplier segmentation using outranking and value function methods

    Full text link
    [EN] Suppliers play a key role in supply chain management which involves evaluation for supplier selection problem, as well as other complex issues that companies should take into account. The purpose of this research is to develop and test an integrated system, which allows qualifying providers and also supplier segmentation by monitoring their performance based on a multiple criteria tool for systematic decision making. This proposal consists in a general procedure to assess suppliers based mainly on exploiting all reliable databases of the company. Firstly, for each group of products, their evaluation criteria are defined collaboratively in order to determine their critical and strategic performance, which are then integrated with other criteria that are specific of the suppliers and represent relevant aspects for the company, also classified by critical and strategic dimensions. Two multiple criteria methods, compensatory and non-compensatory, are used and compared so as to point out their strengths, weaknesses and flexibility for the supplier evaluation in different contexts, which are usually relevant in the supply chain management. A value function approach is the appropriate method to qualify providers to be included in the panel of approved suppliers of the company as this process depends only on own features of the supplier. On the other hand, outranking methods such as PROMETHEE have shown greater potential and robustness to develop portfolios with suppliers that should be partners of the company, as well as to identify other types of relationships, such as long term contracts, market policies or to highlight those to be removed from their portfolio. These results and conclusions are based on an empirical research in a multinational company for food, pharmaceuticals and chemicals. This system has shown a great impact as it represents the first supplier segmentation proposal applied to industry, in which decision making not only takes into account opinions and judgements, but also integrates historical data and expert knowledge. This approach provides a robust support system to inform operative, tactical and strategic decisions, which is very relevant when applying an advanced management in practice.This research has been partially developed with the support of the Ministry of Economy and Competitiveness (Ref. ECO2011-27369) and Ministry of Education (Marina Segura, scholarship of Training Plan of University Teaching).Segura, M.; Maroto, C. (2017). A multiple criteria supplier segmentation using outranking and value function methods. Expert Systems with Applications. 69:87-100. doi:10.1016/eswa.2016.10.031S871006

    A methodology to select suppliers to increase sustainability within supply chains

    Full text link
    [EN] Sustainability practice within supply chains remains in an early development phase. Enterprises still need tools that support the integration of sustainability strategy into their activity, and to align their sustainability strategy with the supplier selection process. This paper proposes a methodology using a multi-criteria technique to support supplier selection decisions by taking two groups of inputs that integrate sustainability performance: supply chain performance and supplier assessment criteria. With the proposed methodology, organisations will have a tool to select suppliers based on their development towards sustainability and on their alignment with the supply chain strategy towards sustainability. The methodology is applied to an agri-food supply chain to assess sustainability in the supplier selection process.The authors of this publication acknowledge the contribution of Project GV/2017/065 'Development of a decision support tool for the management and improvement of sustainability in supply chains', funded by the Regional Valencian Government. Also, the authors acknowledge Project 691249, RUC-APS: Enhancing and implementing knowledge-based ICT solutions within high risk and uncertain conditions for agriculture production systems (www.ruc-aps.eu), funded by the European Union according to funding scheme H2020-MSCA-RISE-2015.Verdecho SĂĄez, MJ.; AlarcĂłn Valero, F.; PĂ©rez Perales, D.; Alfaro Saiz, JJ.; RodrĂ­guez RodrĂ­guez, R. (2021). A methodology to select suppliers to increase sustainability within supply chains. Central European Journal of Operations Research. 29:1231-1251. https://doi.org/10.1007/s10100-019-00668-3S1231125129Agarwal G, Vijayvargy L (2012) Green supplier assessment in environmentally responsive supply chains through analytical network process. In: Proceedings international multiconference of engineers and computer scientists, Hong KongAgeron B, Gunasekaran A, Spalanzani A (2012) Sustainable supply management: an empirical study. Int J Prod Econ 140(1):168–182Akarte MM, Surendra NV, Ravi B, Rangaraj N (2001) Web based casting supplier evaluation using analytical hierarchy process. J Oper Res Soc 52:511–522Alfaro Saiz JJ, RodrĂ­guez R, Ortiz Bas A, Verdecho MJ (2010) An information architecture for a performance management framework by collaborating SMEs. Comput Ind 61:676–685Alfaro JJ, Ortiz A, RodrĂ­guez R (2007) Performance measurement system for enterprise networks. Int J Prod Perform Manag 56(4):305–334Awasthi A, Govindan K, Gold S (2018) Multi-tier sustainable global supplier selection using a fuzzy AHP-VIKOR based approach. Int J Prod Econ 195:106–117Azadnia AH, Ghadimi P, Zameri M, Saman M, Wong KY, Heavey C (2013) An integrated approach for sustainable supplier selection using fuzzy logic and fuzzy AHP. Appl Mech Mater 315:206–221Azimifard A, Moosavirad SH, Ariafar S (2018) Selecting sustainable supplier countries for Iran’s steel industry at three levels by using AHP and TOPSIS methods. Resour Pol 57:30–44Bai C, Sarkis J (2010) Integrating sustainability into supplier selection with grey system and rough set methodologies. Int J Prod Econ 124:252–264Bhagwat R, Sharma MK (2007) Performance measurement of supply chain management: a balanced scorecard approach. Comput Ind Eng 53(1):43–62Bititci US, Mendibil K, Martinez V, Albores P (2005) Measuring and managing performance in extended enterprises. Int J Oper Prod Manag 25(4):333–353Brewer PC, Speh TW (2000) Using the balanced scorecard to measure supply chain performance. J Bus Logist 21(1):75–93Bullinger HJ, KĂŒhner M, Hoof AV (2002) Analysing supply chain performance using a balanced measurement method. Int J Prod Res 40(15):3533–3543Chan FTS (2003) Interactive selection model for supplier selection process: an analytical hierarchy process approach. Int J Prod Res 41(15):3549–3579De Boer L, Labro E, Morlacchi P (2001) A review of methods supporting supplier selection. Eur J Purch Supply Manag 7(2):75–89Degraeve Z, Labro E, Roodhooft F (2000) An evaluation of supplier selection methods from a total cost of ownership perspective. Eur J Oper Res 125(1):34–58Dobos I, Vörösmarty G (2014) Green supplier selection and evaluation using DEA-type composite indicators. Int J of Prod Econ 157(11):273–278Dou Y, Sarkis J (2010) A joint location and outsourcing sustainability analysis for a strategic offshoring decision. Int J Prod Res 48(2):567–592Dyllick T, Hockerts K (2002) Beyond the business case for corporate sustainability. Bus Strategy Environ 11:130–141Falatoonitoosi E, Leman Z, Sorooshian S (2013) Modeling for green supply chain evaluation. Math Probl Eng 2013:1–9Farzad T, Rasid OM, Aidy A, Rosnah MY, Alireza E (2008) AHP approach for supplier evaluation and selection in a steel manufacturing company. JIEM 1(2):54–76Ferreira LMDF, Silva C, Garrido Azevedo S (2016) An environmental balanced scorecard for supply chain performance measurement (Env_BSC_4_SCPM). Benchmark Int J 23(6):1398–1422Figge F, Hahn T, Schaltegger S, Wagner M (2002) The sustainability balanced scorecard: linking sustainability management to business strategy. Bus Strat Env 11:269–284Folan P, Browne J (2005) Development of an extended enterprise performance measurement system. Prod Plan Control 16(6):531–544Freeman J, Chen T (2015) Green supplier selection using an AHP-entropy-TOPSIS framework. Supply Chain Manag 20:327–340Genovese A, Koh L, Bruno G, Esposito E (2013) Greener supplier selection: state of the art and some empirical evidence. Int J Prod Res 51(10):2868–2886Ghodsypour SH, O’Brien C (1998) A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int J Prod Econ 56–57:199–212Glock CH, Grosse EH, Ries JM (2017) Decision support models for supplier development: systematic literature review and research agenda. Int J Prod Econ 194:246–260Govindan K, Khodaverdi R, Jafarian A (2013) A fuzzy multi criteria approach for measuring sustainability performance of a supplier based on triple bottom line approach. J Clean Prod 47:345–354Govindan K, Rajendran S, Sarkis J, Murugesan P (2015) Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. J Clean Prod 98:66–83Gunasekaran A, Patel C, Tirtiroglu E (2001) Performance measures and metrics in a supply chain environment. Int J Oper Prod Manag 21(1/2):71–87Ho W, Xu X, Dey PK (2010) Multi-criteria decision making approaches for supplier evaluation and selection: a literature review. Eur J Oper Res 202:16–24Hsu CW, Hu AH (2009) Applying hazardous substance management to supplier selection using analytic network process. J Clean Prod 17(2):255–264Hsu CW, Kuo TC, Chen SH, Hu AH (2013) Using DEMATEL to develop a carbon management model of supplier selection in green supply chain management. J Clean Prod 56:164–172Huan SH, Sheoran SK, Wang G (2004) A review and analysis of supply chain operations reference (SCOR) model. Supply Chain Manag Int J 9(9):23–29Hutchins M, Sutherland JH (2008) An exploration of measures of social sustainability and their application to supply chain decisions. J Clean Prod 16(15):1688–1698Igarashi M, Boer L, Magerholm Fet A (2013) What is required for greener supplier selection? A literature review and conceptual model development. J Purch Supply Manag 19(4):247–263Jimenez-Jimenez D, MartĂ­nez-Costa M, Sanchez Rodriguez C (2019) The mediating role of supply chain collaboration on the relationship between information technology and innovation. J Knowl Manag 23(3):548–567Kaplan RS, Norton DP (1992) The balanced scorecard: measures that drive performance. Harvard Bus Rev 70(1):71–79Luthra S, Govindan K, Kannan D, Kumar Mangla S, Prakash Garg C (2017) An integrated framework for sustainable supplier selection and evaluation in supply chains. J Clean Prod 140:1686–1698Maestrini V, Luzzini D, Maccarrone P, Caniato F (2017) Supply chain performance measurement systems: a systematic review and research agenda. Int J Prod Econ 183A:299–315Masella C, Rangone A (2000) A contingent approach to the design of vendor selection systems for different types of co-operative customer/supplier relationships. Int J Oper Prod Manag 20(1):70–84Miller GA (1956) The magical number seven, plus or minus two: some limits on our capacity for processing information. Psychol Rev 63:81–97Mohammed A, Harris I, Govindan K (2019) A hybrid MCDM-FMOO approach for sustainable supplier selection and order allocation. Int J Prod Econ 217:171–184Motevali-Haghighi S, Torabi SA, Ghasemi R (2016) An integrated approach for performance evaluation in sustainable supply chain networks (with a case study). J Clean Prod 137:579–597Nawaz W, Koç M (2018) Development of a systematic framework for sustainability management of organizations. J Clean Prod 171:1255–1274Nie X (2013) Green suppliers selecting based on analytic hierarchy process for biotechnology industry. In: Zhong Z (ed) Proceedings of the international conference on information engineering and applications. Springer, London, pp 253–260Nielsen IE, Banaeian N, GoliƄska P, Mobli H, Omid M (2014) Green supplier selection criteria: from a literature review to a flexible framework for determination of suitable criteria. In: Golinska P (ed) Logistics operations, supply chain management and sustainability. Springer, Cham, pp 79–99Noci G (1997) Designing ‘green’ vendor rating systems for the assessment of a supplier’s environmental performance. Eur J Purch Supply Manag 3(2):103–114Petersen KJ, Handfield RB, Ragatz GL (2005) Supplier integration into new product development: coordinating product, process and supply chain design. J Oper Manag 23:371–388Pishchulov G, Trautrims A, Chesney T, Gold S, Schwab L (2019) The voting analytic hierarchy process revisited: a revised method with application to sustainable supplier selection. Int J Prod Econ 211:166–179Popovic T, Kraslawski A, Barbosa-PĂłvoa A, Carvalho A (2017) Quantitative indicators for social sustainability assessment of society and product responsibility aspects in supply chains. J Int Stud 10(4):9–36Qorri A, Mujki Z, Kraslawski A (2018) A conceptual framework for measuring sustainability performance of supply chains. J Clean Prod 189:570–584Reefke H, Trocchi M (2013) Balanced scorecard for sustainable supply chains: design and development guidelines. Int J Prod Perform Manag 62(8):805–826Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New YorkSaaty RW (1987) The analytic hierarchy process: what it is and how it is used. Math Model 9(3–5):161–176Saaty TL (2008) Decision making with the analytic hierarchy process. Int J Serv Sci 1(1):83–98Saaty TL, Ozdemir MS (2003) Why the magic number seven plus or minus two. Math Comput Model 38(3–4):233–244Seuring S, MĂŒller M (2008) From a literature review to a conceptual framework for sustainable supply chain management. J Clean Prod 16:1699–1710Shaik M, Abdul-Kader W (2011) Green supplier selection generic framework: a multi-attribute utility theory approach. Int J Sustain Eng 4(1):37–56Shi P, Yan B, Shi S, Ke C (2015) A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach. Inf Technol Manag 16(1):39–49Superdecisions (2018) Tutorial on hierarchical decision models. Creative Decisions Foundation. https://www.superdecisions.com/sd_resources/v28_man03.pdf. Accessed 7 Jan 2018Thakkar J, Kanda A, Deshmukh S (2009) Supply chain performance measurement framework for small and medium scale enterprises. Benchmark Int J 16(5):702–723Theißen S, Spinler S (2014) Strategic analysis of manufacturer–supplier partnerships: an ANP model for collaborative CO2 reduction management. Eur J Oper Res 233(2):383–397Tseng ML, Lim M, Wong WP (2015) Sustainable supply chain management: a closed-loop network hierarchical approach. Ind Manag Data Syst 115(3):436–461Uysal F (2012) An integrated model for sustainable performance measurement in supply chain. Proc Soc Behav Sci 62:689–694Valenzuela L, Maturana S (2016) Designing a three-dimensional performance measurement system (SMD3D) for the wine industry: a Chilean example. Agric Syst 142:112–121Verdecho MJ, Alfaro-Saiz JJ, Rodriguez-Rodriguez R, Ortiz-Bas A (2012) A multi-criteria approach for managing inter-enterprise collaborative relationships. Omega 40:249–263Virender P, Jayant A (2014) A green supplier selection model for an agriculture-machinery industry. Int J Appl Eng Res 9(5):597–605Weber CA, Current JR, Benton WC (1991) Vendor selection criteria and methods. Eur J Oper Res 50(1):2–18Xu L, Kumar DT, Madan Shankar K, Kannan D, Chen G (2013) Analyzing criteria and sub-criteria for the corporate social responsibility-based supplier selection process using AHP. Int J Adv Manuf Technol 68(1–4):907–916Xu Z, Qin J, Liu J, MartĂ­nez L (2019) Sustainable supplier selection based on AHP Sort II in interval type-2 fuzzy environment. Inf Sci 483:273–293Zaklad A, McKnight R, Kosansky A, Piermarini J (2004) The social side of the supply chain. Ind Eng 36(2):40–44Zhe S, Wong NT, Lee LH (2013) Using data envelopment analysis for supplier evaluation with environmental considerations. In: International systems conference, OrlandoZimmer K, Fröhling M, Schultmann F (2016) Sustainable supplier management: a review of models supporting sustainable supplier selection, monitoring and development. Int J Prod Res 54(5):1412–144

    Improving Food Supply Chain Management by a Sustainable Approach to Supplier Evaluation

    Full text link
    [EN] Increasing food supply chain sustainability means having to deal with many conflicting aspects and involves producers, several departments in distribution companies, and consumers. The objectives of this research are to develop models to solve real-world supplier evaluation problems and validate them with real data on fresh fruits in a supermarket chain. Literature review and results from a survey with managers from purchasing, logistics, and quality departments of a food distribution company are used to establish criteria, to first model the assessment of products and, second, to model supplier evaluation. A multicriteria hybrid approach is proposed, using multi-attribute utility theory (MAUT) to assess the quality of products and Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE) to complete their evaluation with strategic criteria to be included in the second phase. The results allow companies to rank suppliers by product and classify them according to the main criteria categories, such as product strategy, food safety, economic, logistic, commercial, green image and corporate social responsibility. A sorting approach is also applied to obtain ordered groups of suppliers. Finally, the models proposed can form the core of a decision support system in order to create and monitor the supplier base in food distribution companies, as well as to inform sustainable decision making.This research was funded by the Regional Ministry of Education, Research, Culture and Sport of the Autonomous Government of the Valencian Region, Spain, grant number AICO/2017/066.Segura Maroto, M.; Maroto Álvarez, MC.; Segura GarcĂ­a Del RĂ­o, B.; Casas-Rosal, JC. (2020). Improving Food Supply Chain Management by a Sustainable Approach to Supplier Evaluation. Mathematics. 8(11):1-23. https://doi.org/10.3390/math8111952S123811Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16-24. doi:10.1016/j.ejor.2009.05.009Zimmer, K., Fröhling, M., & Schultmann, F. (2015). Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research, 54(5), 1412-1442. doi:10.1080/00207543.2015.1079340Aouadni, S., Aouadni, I., & RebaĂŻ, A. (2019). A systematic review on supplier selection and order allocation problems. Journal of Industrial Engineering International, 15(S1), 267-289. doi:10.1007/s40092-019-00334-yChai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. doi:10.1016/j.eswa.2012.12.040Chai, J., & Ngai, E. W. T. (2020). Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. Expert Systems with Applications, 140, 112903. doi:10.1016/j.eswa.2019.112903Wetzstein, A., Hartmann, E., Benton jr., W. C., & Hohenstein, N.-O. (2016). A systematic assessment of supplier selection literature – State-of-the-art and future scope. International Journal of Production Economics, 182, 304-323. doi:10.1016/j.ijpe.2016.06.022Ansari, Z. N., & Kant, R. (2017). A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. Journal of Cleaner Production, 142, 2524-2543. doi:10.1016/j.jclepro.2016.11.023Schramm, V. B., Cabral, L. P. B., & Schramm, F. (2020). Approaches for supporting sustainable supplier selection - A literature review. Journal of Cleaner Production, 273, 123089. doi:10.1016/j.jclepro.2020.123089Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of Cleaner Production, 98, 66-83. doi:10.1016/j.jclepro.2013.06.046Rajeev, A., Pati, R. K., Padhi, S. S., & Govindan, K. (2017). Evolution of sustainability in supply chain management: A literature review. Journal of Cleaner Production, 162, 299-314. doi:10.1016/j.jclepro.2017.05.026Demir, L., Akpınar, M. E., Araz, C., & Ilgın, M. A. (2018). A green supplier evaluation system based on a new multi-criteria sorting method: VIKORSORT. Expert Systems with Applications, 114, 479-487. doi:10.1016/j.eswa.2018.07.071Diaz-Balteiro, L., GonzĂĄlez-PachĂłn, J., & Romero, C. (2017). Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research, 258(2), 607-616. doi:10.1016/j.ejor.2016.08.075Thies, C., KieckhĂ€fer, K., Spengler, T. S., & Sodhi, M. S. (2019). Operations research for sustainability assessment of products: A review. European Journal of Operational Research, 274(1), 1-21. doi:10.1016/j.ejor.2018.04.039Konys. (2019). Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base. Sustainability, 11(15), 4208. doi:10.3390/su11154208Segura, M., Maroto, C., & Segura, B. (2019). Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability, 11(21), 5875. doi:10.3390/su11215875Memari, A., Dargi, A., Akbari Jokar, M. R., Ahmad, R., & Abdul Rahim, A. R. (2019). Sustainable supplier selection: A multi-criteria intuitionistic fuzzy TOPSIS method. Journal of Manufacturing Systems, 50, 9-24. doi:10.1016/j.jmsy.2018.11.002Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283. doi:10.1016/j.eswa.2016.06.030Chang, L., Ouzrout, Y., Nongaillard, A., Bouras, A., & Jiliu, Z. (2014). Multi-criteria decision making based on trust and reputation in supply chain. International Journal of Production Economics, 147, 362-372. doi:10.1016/j.ijpe.2013.04.014Ekici, A. (2013). An improved model for supplier selection under capacity constraint and multiple criteria. International Journal of Production Economics, 141(2), 574-581. doi:10.1016/j.ijpe.2012.09.013Lin, R.-H. (2012). An integrated model for supplier selection under a fuzzy situation. International Journal of Production Economics, 138(1), 55-61. doi:10.1016/j.ijpe.2012.02.024Amid, A., Ghodsypour, S. H., & O’Brien, C. (2011). A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics, 131(1), 139-145. doi:10.1016/j.ijpe.2010.04.044Chen, Y.-J. (2011). Structured methodology for supplier selection and evaluation in a supply chain. Information Sciences, 181(9), 1651-1670. doi:10.1016/j.ins.2010.07.026Zeydan, M., Çolpan, C., & Çobanoğlu, C. (2011). A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications, 38(3), 2741-2751. doi:10.1016/j.eswa.2010.08.064ƞen, C. G., Baraçlı, H., ƞen, S., & BaƟlıgil, H. (2009). An integrated decision support system dealing with qualitative and quantitative objectives for enterprise software selection. Expert Systems with Applications, 36(3), 5272-5283. doi:10.1016/j.eswa.2008.06.070Bottani, E., & Rizzi, A. (2008). An adapted multi-criteria approach to suppliers and products selection—An application oriented to lead-time reduction. International Journal of Production Economics, 111(2), 763-781. doi:10.1016/j.ijpe.2007.03.012Segura, M., & Maroto, C. (2017). A multiple criteria supplier segmentation using outranking and value function methods. Expert Systems with Applications, 69, 87-100. doi:10.1016/j.eswa.2016.10.031Trapp, A. C., & Sarkis, J. (2016). Identifying Robust portfolios of suppliers: a sustainability selection and development perspective. Journal of Cleaner Production, 112, 2088-2100. doi:10.1016/j.jclepro.2014.09.062Araz, C., & Ozkarahan, I. (2007). Supplier evaluation and management system for strategic sourcing based on a new multicriteria sorting procedure. International Journal of Production Economics, 106(2), 585-606. doi:10.1016/j.ijpe.2006.08.008Boran, F. E., Genç, S., Kurt, M., & Akay, D. (2009). A multi-criteria intuitionistic fuzzy group decision making for supplier selection with TOPSIS method. Expert Systems with Applications, 36(8), 11363-11368. doi:10.1016/j.eswa.2009.03.039Zopounidis, C., & Doumpos, M. (2002). Multicriteria classification and sorting methods: A literature review. European Journal of Operational Research, 138(2), 229-246. doi:10.1016/s0377-2217(01)00243-0Brans, J. P., Vincke, P., & Mareschal, B. (1986). How to select and how to rank projects: The Promethee method. European Journal of Operational Research, 24(2), 228-238. doi:10.1016/0377-2217(86)90044-5Nemery, P., & Lamboray, C. (2007). ℱlow S\mathcal{S} ort: a flow-based sorting method with limiting or central profiles. TOP, 16(1), 90-113. doi:10.1007/s11750-007-0036-xLau, H., Nakandala, D., & Shum, P. K. (2018). A business process decision model for fresh-food supplier evaluation. Business Process Management Journal, 24(3), 716-744. doi:10.1108/bpmj-01-2016-0015D-Sight CDM http://www.d-sight.com/solutions/d-sight-cdmNemery, P., Lidouh, K., & Mareschal, B. (2011). On the usefulness of taking the weights into account in the GAIA visualisations. International Journal of Information and Decision Sciences, 3(3), 228. doi:10.1504/ijids.2011.041585Nemery, P., Ishizaka, A., Camargo, M., & Morel, L. (2012). Enriching descriptive information in ranking and sorting problems with visualizations techniques. Journal of Modelling in Management, 7(2), 130-147. doi:10.1108/17465661211242778Xu, Z. (2000). On consistency of the weighted geometric mean complex judgement matrix in AHP. European Journal of Operational Research, 126(3), 683-687. doi:10.1016/s0377-2217(99)00082-xOrtiz‐Barrios, M., Miranda‐De la Hoz, C., LĂłpez‐Meza, P., Petrillo, A., & De Felice, F. (2019). A case of food supply chain management with AHP, DEMATEL, and TOPSIS. Journal of Multi-Criteria Decision Analysis, 27(1-2), 104-128. doi:10.1002/mcda.169

    Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies

    Full text link
    [EN] Supplier evaluation is a relevant task of supply chain management where multicriteria methods make great contributions to manufacturing industries. This is not the case in food distribution companies, which have a key role in providing safe and affordable food to society. The purpose of this research is to measure the sustainability of products and suppliers in food distribution companies through a multiple criteria approach. Firstly, the system proposed provides indicators to qualify products and assess the food quality, using the compensatory Multi-Attribute Utility Theory (MAUT) model. Secondly, these indicators are included in supplier evaluation, which takes economic, environmental, and social criteria into account. MAUT and Preference Ranking Organisation Method for Enrichment Evaluation (PROMETHEE), a non-compensatory method, are used for supplier evaluation. This approach has been validated for fresh food in a supermarket chain, mainly using historical data. Partial indicators, such as food safety scores, together with global indicators of suppliers, inform the most appropriate decisions and the most appropriate relations between companies and providers. Poor performance in food safety can lead to the disqualification of some suppliers. MAUT is good for qualifying products and is easy to apply at the operational level in logistic platforms, while PROMETHEE is more suitable for supplier segmentation, as it helps to identify supplier strengths and weaknesses.This research was funded by the Regional Ministry of Education, Research, Culture and Sport of the Autonomous Government of the Valencian Region, Spain, grant number AICO/2017/066.Segura Maroto, M.; Maroto Álvarez, MC.; Segura GarcĂ­a Del RĂ­o, B. (2019). Quantifying the Sustainability of Products and Suppliers in Food Distribution Companies. Sustainability. 11(21):1-18. https://doi.org/10.3390/su11215875S1181121Thies, C., KieckhĂ€fer, K., Spengler, T. S., & Sodhi, M. S. (2019). Operations research for sustainability assessment of products: A review. European Journal of Operational Research, 274(1), 1-21. doi:10.1016/j.ejor.2018.04.039Diaz-Balteiro, L., GonzĂĄlez-PachĂłn, J., & Romero, C. (2017). Measuring systems sustainability with multi-criteria methods: A critical review. European Journal of Operational Research, 258(2), 607-616. doi:10.1016/j.ejor.2016.08.075Zimmer, K., Fröhling, M., & Schultmann, F. (2015). Sustainable supplier management – a review of models supporting sustainable supplier selection, monitoring and development. International Journal of Production Research, 54(5), 1412-1442. doi:10.1080/00207543.2015.1079340Chai, J., & Ngai, E. W. T. (2020). Decision-making techniques in supplier selection: Recent accomplishments and what lies ahead. Expert Systems with Applications, 140, 112903. doi:10.1016/j.eswa.2019.112903Chai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: A systematic review of literature. Expert Systems with Applications, 40(10), 3872-3885. doi:10.1016/j.eswa.2012.12.040Govindan, K., Rajendran, S., Sarkis, J., & Murugesan, P. (2015). Multi criteria decision making approaches for green supplier evaluation and selection: a literature review. Journal of Cleaner Production, 98, 66-83. doi:10.1016/j.jclepro.2013.06.046Ansari, Z. N., & Kant, R. (2017). A state-of-art literature review reflecting 15 years of focus on sustainable supply chain management. Journal of Cleaner Production, 142, 2524-2543. doi:10.1016/j.jclepro.2016.11.023Ho, W., Xu, X., & Dey, P. K. (2010). Multi-criteria decision making approaches for supplier evaluation and selection: A literature review. European Journal of Operational Research, 202(1), 16-24. doi:10.1016/j.ejor.2009.05.009Rajeev, A., Pati, R. K., Padhi, S. S., & Govindan, K. (2017). Evolution of sustainability in supply chain management: A literature review. Journal of Cleaner Production, 162, 299-314. doi:10.1016/j.jclepro.2017.05.026Demir, L., Akpınar, M. E., Araz, C., & Ilgın, M. A. (2018). A green supplier evaluation system based on a new multi-criteria sorting method: VIKORSORT. Expert Systems with Applications, 114, 479-487. doi:10.1016/j.eswa.2018.07.071Dweiri, F., Kumar, S., Khan, S. A., & Jain, V. (2016). Designing an integrated AHP based decision support system for supplier selection in automotive industry. Expert Systems with Applications, 62, 273-283. doi:10.1016/j.eswa.2016.06.030Chang, L., Ouzrout, Y., Nongaillard, A., Bouras, A., & Jiliu, Z. (2014). Multi-criteria decision making based on trust and reputation in supply chain. International Journal of Production Economics, 147, 362-372. doi:10.1016/j.ijpe.2013.04.014Ekici, A. (2013). An improved model for supplier selection under capacity constraint and multiple criteria. International Journal of Production Economics, 141(2), 574-581. doi:10.1016/j.ijpe.2012.09.013Lin, R.-H. (2012). An integrated model for supplier selection under a fuzzy situation. International Journal of Production Economics, 138(1), 55-61. doi:10.1016/j.ijpe.2012.02.024Amid, A., Ghodsypour, S. H., & O’Brien, C. (2011). A weighted max–min model for fuzzy multi-objective supplier selection in a supply chain. International Journal of Production Economics, 131(1), 139-145. doi:10.1016/j.ijpe.2010.04.044Chen, Y.-J. (2011). Structured methodology for supplier selection and evaluation in a supply chain. Information Sciences, 181(9), 1651-1670. doi:10.1016/j.ins.2010.07.026Zeydan, M., Çolpan, C., & Çobanoğlu, C. (2011). A combined methodology for supplier selection and performance evaluation. Expert Systems with Applications, 38(3), 2741-2751. doi:10.1016/j.eswa.2010.08.064ƞen, C. G., Baraçlı, H., ƞen, S., & BaƟlıgil, H. (2009). An integrated decision support system dealing with qualitative and quantitative objectives for enterprise software selection. Expert Systems with Applications, 36(3), 5272-5283. doi:10.1016/j.eswa.2008.06.070Bottani, E., & Rizzi, A. (2008). An adapted multi-criteria approach to suppliers and products selection—An application oriented to lead-time reduction. International Journal of Production Economics, 111(2), 763-781. doi:10.1016/j.ijpe.2007.03.012Govindan, K., KadziƄski, M., & Sivakumar, R. (2017). Application of a novel PROMETHEE-based method for construction of a group compromise ranking to prioritization of green suppliers in food supply chain. Omega, 71, 129-145. doi:10.1016/j.omega.2016.10.004Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57. doi:10.1016/j.omega.2014.11.009Rezaei, J., & Ortt, R. (2013). Multi-criteria supplier segmentation using a fuzzy preference relations based AHP. European Journal of Operational Research, 225(1), 75-84. doi:10.1016/j.ejor.2012.09.037Segura, M., & Maroto, C. (2017). A multiple criteria supplier segmentation using outranking and value function methods. Expert Systems with Applications, 69, 87-100. doi:10.1016/j.eswa.2016.10.031Bloemhof, J. M., & Soysal, M. (2016). Sustainable Food Supply Chain Design. Springer Series in Supply Chain Management, 395-412. doi:10.1007/978-3-319-29791-0_18Grimm, J. H., Hofstetter, J. S., & Sarkis, J. (2014). Critical factors for sub-supplier management: A sustainable food supply chains perspective. International Journal of Production Economics, 152, 159-173. doi:10.1016/j.ijpe.2013.12.011Lau, H., Nakandala, D., & Shum, P. K. (2018). A business process decision model for fresh-food supplier evaluation. Business Process Management Journal, 24(3), 716-744. doi:10.1108/bpmj-01-2016-0015Beske, P., Land, A., & Seuring, S. (2014). Sustainable supply chain management practices and dynamic capabilities in the food industry: A critical analysis of the literature. International Journal of Production Economics, 152, 131-143. doi:10.1016/j.ijpe.2013.12.026Schmitt, E., Galli, F., Menozzi, D., Maye, D., Touzard, J.-M., Marescotti, A., 
 Brunori, G. (2017). Comparing the sustainability of local and global food products in Europe. Journal of Cleaner Production, 165, 346-359. doi:10.1016/j.jclepro.2017.07.039Behzadian, M., Kazemzadeh, R. B., Albadvi, A., & Aghdasi, M. (2010). PROMETHEE: A comprehensive literature review on methodologies and applications. European Journal of Operational Research, 200(1), 198-215. doi:10.1016/j.ejor.2009.01.021The PROMETHEE Bibliographical Databasehttp://www.promethee-gaia.net/bibliographical-database.htmlChen, Y.-H., Wang, T.-C., & Wu, C.-Y. (2011). Strategic decisions using the fuzzy PROMETHEE for IS outsourcing. Expert Systems with Applications, 38(10), 13216-13222. doi:10.1016/j.eswa.2011.04.137Araz, C., & Ozkarahan, I. (2007). Supplier evaluation and management system for strategic sourcing based on a new multicriteria sorting procedure. International Journal of Production Economics, 106(2), 585-606. doi:10.1016/j.ijpe.2006.08.008Dulmin, R., & Mininno, V. (2003). Supplier selection using a multi-criteria decision aid method. Journal of Purchasing and Supply Management, 9(4), 177-187. doi:10.1016/s1478-4092(03)00032-3Seuring, S. (2013). A review of modeling approaches for sustainable supply chain management. Decision Support Systems, 54(4), 1513-1520. doi:10.1016/j.dss.2012.05.053Brandenburg, M., Govindan, K., Sarkis, J., & Seuring, S. (2014). Quantitative models for sustainable supply chain management: Developments and directions. European Journal of Operational Research, 233(2), 299-312. doi:10.1016/j.ejor.2013.09.032Xu, Z. (2000). On consistency of the weighted geometric mean complex judgement matrix in AHP. European Journal of Operational Research, 126(3), 683-687. doi:10.1016/s0377-2217(99)00082-xKonys. (2019). Green Supplier Selection Criteria: From a Literature Review to a Comprehensive Knowledge Base. Sustainability, 11(15), 4208. doi:10.3390/su11154208D-Sight CDMhttp://www.d-sight.com/solutions/d-sight-cd

    SUPPLIER SELECTION AND EVALUATION IN PAPER SUPPLY CHAIN

    Get PDF
    ABSTRACTMore competitive environment, selective raw materials acquisition, its complexity and dynamics have encouraged the actors of paper supply chain to pay more attention in all their functions, including supplier selection and evaluation. The selection of  right suppliers is the first strategic decision determining the success in implementation of supply chain management. This research aimed  to analyze the configuration of paper supply chain (PSC), and to develop a model for the supplier selection and evaluation in the PSC with Analytical Hierarchy Process (AHP) approach. The configuration of PSC was analyzed through its four elements of structures, business processes, resources, and management. To give more detailed description, a case study in PT Kertas Leces (PTKL), a second oldest integrated paper mill in Indonesia, was undertaken. . In this case, PTKL played  as an intermediary manufacturer that produces paper in parent rolls, and then delivered  them to the  costumers, mostly of other manufacturers, as converters and distributors. All processes in customer order cycle and manufacturing cycle were  executed in response to a customer order (pull processes), whereas in procurement cycle were  performed in anticipation of production demand (push processes). Proposed AHP model consisted  of five levels of hierarchies, i.e. goal, criteria, sub-criteria, rating scales, and alternatives. Nineteen subcriteria grouped into four criteria were identified. Its application on a specific supplier selection of recovered paper resulted in cost as the most important criteria, followed by the quality, delivery, and service and management of organization. The use of proposed AHP model indicates that it can be applied to improve the decision-making in supplier selection with a set of systematic and comprehensive analysis.Keywords: paper supply chain, supplier selection, AH

    SUPPLIER SELECTION AND EVALUATION IN PAPER SUPPLY CHAIN

    Get PDF
    ABSTRACTMore competitive environment, selective raw materials acquisition, its complexity and dynamics have encouraged the actors of paper supply chain to pay more attention in all their functions, including supplier selection and evaluation. The selection of  right suppliers is the first strategic decision determining the success in implementation of supply chain management. This research aimed  to analyze the configuration of paper supply chain (PSC), and to develop a model for the supplier selection and evaluation in the PSC with Analytical Hierarchy Process (AHP) approach. The configuration of PSC was analyzed through its four elements of structures, business processes, resources, and management. To give more detailed description, a case study in PT Kertas Leces (PTKL), a second oldest integrated paper mill in Indonesia, was undertaken. . In this case, PTKL played  as an intermediary manufacturer that produces paper in parent rolls, and then delivered  them to the  costumers, mostly of other manufacturers, as converters and distributors. All processes in customer order cycle and manufacturing cycle were  executed in response to a customer order (pull processes), whereas in procurement cycle were  performed in anticipation of production demand (push processes). Proposed AHP model consisted  of five levels of hierarchies, i.e. goal, criteria, sub-criteria, rating scales, and alternatives. Nineteen subcriteria grouped into four criteria were identified. Its application on a specific supplier selection of recovered paper resulted in cost as the most important criteria, followed by the quality, delivery, and service and management of organization. The use of proposed AHP model indicates that it can be applied to improve the decision-making in supplier selection with a set of systematic and comprehensive analysis.Keywords: paper supply chain, supplier selection, AH

    Gresilient supplier assessment and order allocation planning

    Get PDF
    Companies are under pressure to re-engineer their supply chains to ‘go green’ while simultaneously improving their resilience to cope with unexpected disruptions where the supplier selection decision plays a strategic role. We present a new approach to supplier evaluation and allocating the optimal order quantity from each supplier with respect to green and resilience (Gresilience) characteristics. An integrated framework that considers traditional business, green and resilience criteria and sub-criteria was developed, followed by a calculation of importance weight of criteria and sub-criteria using analytical hierarchy process (AHP). We evaluate suppliers using the technique for order of preference by similarity to ideal solution (TOPSIS). The obtained weights from AHP and TOPSIS were integrated into a developed multi-objective programming model used as an order allocation planner and the Δ-constraint method was used to solve the multi-objective optimization problem. TOPSIS was applied to select the final Pareto solution based on its closeness from the ideal solution. The applicability and effectiveness of the proposed approach was illustrated using a real case study through a comparatively meaningful ranking of suppliers. The study provides a helpful aid for managers seeking to improve their supply chain resilience along with ‘go green’ responsibilities

    THE IMPACT OF STRATEGIC PURCHASING TO THE SUPPLIER INVOLVEMENT THROUGH COMMUNICATION, COORDINATION AND COLLABORATION IN SMAAL AND MEDIUM ENTERPRISES

    Get PDF
    In recent times, the theory of purchasing and supply operations has been widely studied under a variety of labels and for a number of reasons. Realizing competitive advantage from organizational alignment and relation to materials supply is for a form of backward integration. In the process, the manufacturing organization obeys demands from distributors; purchasing is in turn re-structured and managed to achieve improved customer value for manufacturing; thereafter, the process addresses the suppliers to the organization (external integration) typically involving supplier rationalization and the introduction of supplier evaluation systems. Based on previous research, there was finding that strategic purchasing has been impact to communication, coordination and collaboration with supplier which is increase supplier involvement. According to a survey 100 respondent which was conducted by means questionnaires and 94 completed questionnaires were returned. Six responses were considered incomplete and had to be discarded, and this left 86 valid responses. This study result are strategic purchasing has a positive significant effect to communication is 0.314; positive significant effect to coordination is 0.336; and positive significant effect collaboration is 0.365. Communication and Collaboration directly will bring significant contribution to supplier involvement, but coordination is not directly. Key words: Strategic purchasing, communication, collaboration, coordination, supplier involvement
    • 

    corecore