10,177 research outputs found

    Sensing and mapping for interactive performance

    Get PDF
    This paper describes a trans-domain mapping (TDM) framework for translating meaningful activities from one creative domain onto another. The multi-disciplinary framework is designed to facilitate an intuitive and non-intrusive interactive multimedia performance interface that offers the users or performers real-time control of multimedia events using their physical movements. It is intended to be a highly dynamic real-time performance tool, sensing and tracking activities and changes, in order to provide interactive multimedia performances. From a straightforward definition of the TDM framework, this paper reports several implementations and multi-disciplinary collaborative projects using the proposed framework, including a motion and colour-sensitive system, a sensor-based system for triggering musical events, and a distributed multimedia server for audio mapping of a real-time face tracker, and discusses different aspects of mapping strategies in their context. Plausible future directions, developments and exploration with the proposed framework, including stage augmenta tion, virtual and augmented reality, which involve sensing and mapping of physical and non-physical changes onto multimedia control events, are discussed

    Toward hyper-realistic and interactive social VR experiences in live TV scenarios

    Get PDF
    © 2022 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Social Virtual Reality (VR) allows multiple distributed users getting together in shared virtual environments to socially interact and/or collaborate. This article explores the applicability and potential of Social VR in the broadcast sector, focusing on a live TV show use case. For such a purpose, a novel and lightweight Social VR platform is introduced. The platform provides three key outstanding features compared to state-of-the-art solutions. First, it allows a real-time integration of remote users in shared virtual environments, using realistic volumetric representations and affordable capturing systems, thus not relying on the use of synthetic avatars. Second, it supports a seamless and rich integration of heterogeneous media formats, including 3D scenarios, dynamic volumetric representation of users and (live/stored) stereoscopic 2D and 180Âș/360Âș videos. Third, it enables low-latency interaction between the volumetric users and a video-based presenter (Chroma keying), and a dynamic control of the media playout to adapt to the session’s evolution. The production process of an immersive TV show to be able to evaluate the experience is also described. On the one hand, the results from objective tests show the satisfactory performance of the platform. On the other hand, the promising results from user tests support the potential impact of the presented platform, opening up new opportunities in the broadcast sector, among others.This work has been partially funded by the European Union’s Horizon 2020 program, under agreement nÂș 762111 (VRTogether project), and partially by ACCIÓ, under agreement COMRDI18-1-0008 (ViVIM project). Work by Mario Montagud has been additionally funded by the Spanish Ministry of Science, Innovation and Universities with a Juan de la Cierva – IncorporaciĂłn grant (reference IJCI-2017-34611). The authors would also like to thank the EU H2020 VRTogether project consortium for their relevant and valuable contributions.Peer ReviewedPostprint (author's final draft

    Network streaming and compression for mixed reality tele-immersion

    Get PDF
    Bulterman, D.C.A. [Promotor]Cesar, P.S. [Copromotor

    Computational illumination for high-speed in vitro Fourier ptychographic microscopy

    Full text link
    We demonstrate a new computational illumination technique that achieves large space-bandwidth-time product, for quantitative phase imaging of unstained live samples in vitro. Microscope lenses can have either large field of view (FOV) or high resolution, not both. Fourier ptychographic microscopy (FPM) is a new computational imaging technique that circumvents this limit by fusing information from multiple images taken with different illumination angles. The result is a gigapixel-scale image having both wide FOV and high resolution, i.e. large space-bandwidth product (SBP). FPM has enormous potential for revolutionizing microscopy and has already found application in digital pathology. However, it suffers from long acquisition times (on the order of minutes), limiting throughput. Faster capture times would not only improve imaging speed, but also allow studies of live samples, where motion artifacts degrade results. In contrast to fixed (e.g. pathology) slides, live samples are continuously evolving at various spatial and temporal scales. Here, we present a new source coding scheme, along with real-time hardware control, to achieve 0.8 NA resolution across a 4x FOV with sub-second capture times. We propose an improved algorithm and new initialization scheme, which allow robust phase reconstruction over long time-lapse experiments. We present the first FPM results for both growing and confluent in vitro cell cultures, capturing videos of subcellular dynamical phenomena in popular cell lines undergoing division and migration. Our method opens up FPM to applications with live samples, for observing rare events in both space and time

    Natural human interaction in virtual immersive environments

    Get PDF
    REVERIE (REal and Virtual Engagement in Realistic Immersive Environments [1]) targets novel research to address the demanding challenges involved with developing state-of-the-art technologies for online human interaction. The REVERIE framework enables users to meet, socialise and share experiences online by integrating cutting-edge technologies for 3D data acquisition and processing, networking, autonomy and real-time rendering. In this paper, we describe the innovative research that is showcased through the REVERIE integrated framework through richly defined use-cases which demonstrate the validity and potential for natural interaction in a virtual immersive and safe environment. Previews of the REVERIE demo and its key research components can be viewed at www.youtube.com/user/REVERIEFP7

    A low-cost, flexible and portable volumetric capturing system

    Get PDF
    Multi-view capture systems are complex systems to engineer. They require technical knowledge to install and intricate processes to setup related mainly to the sensors’ spatial alignment (i.e. external calibration). However, with the ongoing developments in new production methods, we are now at a position where the production of high quality realistic 3D assets is possible even with commodity sensors. Nonetheless, the capturing systems developed with these methods are heavily intertwined with the methods themselves, relying on custom solutions and seldom - if not at all - publicly available. In light of this, we design, develop and publicly offer a multi-view capture system based on the latest RGB-D sensor technology. For our system, we develop a portable and easy-to-use external calibration method that greatly reduces the effort and knowledge required, as well as simplify the overall process

    Towards Live 3D Reconstruction from Wearable Video: An Evaluation of V-SLAM, NeRF, and Videogrammetry Techniques

    Full text link
    Mixed reality (MR) is a key technology which promises to change the future of warfare. An MR hybrid of physical outdoor environments and virtual military training will enable engagements with long distance enemies, both real and simulated. To enable this technology, a large-scale 3D model of a physical environment must be maintained based on live sensor observations. 3D reconstruction algorithms should utilize the low cost and pervasiveness of video camera sensors, from both overhead and soldier-level perspectives. Mapping speed and 3D quality can be balanced to enable live MR training in dynamic environments. Given these requirements, we survey several 3D reconstruction algorithms for large-scale mapping for military applications given only live video. We measure 3D reconstruction performance from common structure from motion, visual-SLAM, and photogrammetry techniques. This includes the open source algorithms COLMAP, ORB-SLAM3, and NeRF using Instant-NGP. We utilize the autonomous driving academic benchmark KITTI, which includes both dashboard camera video and lidar produced 3D ground truth. With the KITTI data, our primary contribution is a quantitative evaluation of 3D reconstruction computational speed when considering live video.Comment: Accepted to 2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), 13 page
    • 

    corecore