13 research outputs found

    Performance Boundary Identification for the Evaluation of Automated Vehicles using Gaussian Process Classification

    Get PDF
    Safety is an essential aspect in the facilitation of automated vehicle deployment. Current testing practices are not enough, and going beyond them leads to infeasible testing requirements, such as needing to drive billions of kilometres on public roads. Automated vehicles are exposed to an indefinite number of scenarios. Handling of the most challenging scenarios should be tested, which leads to the question of how such corner cases can be determined. We propose an approach to identify the performance boundary, where these corner cases are located, using Gaussian Process Classification. We also demonstrate the classification on an exemplary traffic jam approach scenario, showing that it is feasible and would lead to more efficient testing practices.Comment: 6 pages, 5 figures, accepted at 2019 IEEE Intelligent Transportation Systems Conference - ITSC 2019, Auckland, New Zealand, October 201

    Multi-Robot Coordination with Environmental Disturbances

    Get PDF
    Multi-robot systems are increasingly deployed in environments where they interact with humans. From the perspective of a robot, such interaction could be considered a disturbance that causes a well-planned trajectory to fail. This dissertation addresses the problem of multi-robot coordination in scenarios where the robots may experience unexpected delays in their movements. Prior work by ฤŒรกp, Gregoire, and Frazzoli introduced a control law, called RMTRACK, which enables robots in such scenarios to execute pre-planned paths in spite of disturbances that affect the execution speed of each robot while guaranteeing that each robot can reach its goal without collisions and without deadlocks. We extend that approach to handle scenarios in which the disturbance probabilities are unknown when execution starts and are non-uniform across the environment. The key idea is to โ€˜repairโ€™ a plan on-the-fly, by swapping the order in which a pair of robots passes through a mutual collision region (i.e. a coordination space obstacle), when making such a change is expected to improve the overall performance of the system. We introduce a technique based on Gaussian processes to estimate future disturbances, and propose two algorithms for testing, at appropriate times, whether a swap of a given obstacle would be beneficial. Tests in simulation demonstrate that our algorithms achieve significantly smaller average travel time than RMTRACK at only a modest computational expense. However, deadlock may arise when rearranging the order in which robots pass collision regions and other obstacles. We provide a precise definition of deadlock using a graphical representation and prove some of its important properties. We show how to exploit the representation to detect the possibility of deadlock and to characterize conditions under which deadlock may not occur. We provide experiments in simulated environments that illustrate the potential usefulness of our theory of deadlock

    Probabilistic Framework for Behavior Characterization of Traffic Participants Enabling Long Term Prediction

    Get PDF
    This research aims at developing new methods that predict the behaviors of the human driven traffic participants to enable safe operation of autonomous vehicles in complex traffic environments. Autonomous vehicles are expected to operate amongst human driven conventional vehicles in the traffic at least for the next few decades. For safe navigation they will need to infer the intents as well as the behaviors of the human traffic participants using extrinsically observable information, so that their trajectories can be predicted for a time horizon long enough to do a predictive risk analysis and gracefully avert any risky situation. This research approaches this challenge by recognizing that any maneuver performed by a human driver can be divided into four stages that depend on the surrounding context: intent determination, maneuver preparation, gap acceptance and maneuver execution. It builds on the hypothesis that for a given driver, the behavior not only spans across these four maneuver stages, but across multiple maneuvers. As a result, identifying the driver behavior in any of these stages can help characterize the nature of all the subsequent maneuvers that the driver is likely to perform, thus resulting in a more accurate prediction for a longer time horizon. To enable this, a novel probabilistic framework is proposed that couples the different maneuver stages of the observed traffic participant together and associates them to a driving style. To realize this framework two candidate Multiple Model Adaptive Estimation approaches were compared: Autonomous Multiple Model (AMM) and Interacting Multiple Model(IMM) filtering approach. The IMM approach proved superior to the AMM approach and was eventually validated using a trajectory extracted from a real world dataset for efficacy. The proposed framework was then implemented by extending the validated IMM approach with contextual information of the observed traffic participant. The classification of the driving style of the traffic participant (behavior characterization) was then demonstrated for two use case scenarios. The proposed contextual IMM (CIMM) framework also showed improvements in the performance of the behavior classification of the traffic participants compared to the IMM for the identified use case scenarios. This outcome warrants further exploration of this framework for different traffic scenarios. Further, it contributes towards the ongoing endeavors for safe deployment of autonomous vehicles on public roads

    ๋„์‹ฌ ๊ต์ฐจ๋กœ์—์„œ์˜ ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ ์ฃผ๋ณ€ ์ฐจ๋Ÿ‰ ๊ฒฝ๋กœ ์˜ˆ์ธก ๋ฐ ๊ฑฐ๋™ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ)--์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› :๊ณต๊ณผ๋Œ€ํ•™ ๊ธฐ๊ณ„ํ•ญ๊ณต๊ณตํ•™๋ถ€,2020. 2. ์ด๊ฒฝ์ˆ˜.์ฐจ๋ž‘์šฉ ์„ผ์‹ฑ ๋ฐ ์ฒ˜๋ฆฌ๊ธฐ์ˆ ์ด ๋ฐœ๋‹ฌํ•จ์— ๋”ฐ๋ผ ์ž๋™์ฐจ ๊ธฐ์ˆ  ์—ฐ๊ตฌ๊ฐ€ ์ˆ˜๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์—์„œ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ๋กœ ์ดˆ์ ์ด ํ™•์žฅ๋˜๊ณ  ์žˆ๋‹ค. ์ตœ๊ทผ, ์ฃผ์š” ์ž๋™์ฐจ ์ œ์ž‘์‚ฌ๋“ค์€ ๋Šฅ๋™ํ˜• ์ฐจ๊ฐ„๊ฑฐ๋ฆฌ ์ œ์–ด, ์ฐจ์„  ์œ ์ง€ ๋ณด์กฐ, ๊ทธ๋ฆฌ๊ณ  ๊ธด๊ธ‰ ์ž๋™ ์ œ๋™๊ณผ ๊ฐ™์€ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์ด ์ด๋ฏธ ์ƒ์—…ํ™”ํ•˜๊ณ  ์žˆ๋‹ค. ์ด๋Ÿฌํ•œ ๊ธฐ์ˆ ์  ์ง„๋ณด๋Š” ์‚ฌ์ƒ๋ฅ  ์ œ๋กœ๋ฅผ ๋‹ฌ์„ฑํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ๊ธฐ์ˆ  ์—ฐ๊ตฌ ๋ถ„์•ผ๋ฅผ ๋Šฅ๋™ ์•ˆ์ „ ๊ธฐ์ˆ ์„ ๋„˜์–ด์„œ ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์œผ๋กœ ํ™•์žฅ์‹œํ‚ค๊ณ  ์žˆ๋‹ค. ํŠนํžˆ, ๋„์‹ฌ ๋„๋กœ๋Š” ์ธ๋„, ์‚ฌ๊ฐ์ง€๋Œ€, ์ฃผ์ฐจ์ฐจ๋Ÿ‰, ์ด๋ฅœ์ฐจ, ๋ณดํ–‰์ž ๋“ฑ๊ณผ ๊ฐ™์€ ๊ตํ†ต ์œ„ํ—˜ ์š”์†Œ๋ฅผ ๋งŽ์ด ๊ฐ–๊ณ  ์žˆ๊ธฐ ๋•Œ๋ฌธ์— ๊ณ ์†๋„๋กœ๋ณด๋‹ค ์‚ฌ๊ณ  ๋ฐœ์ƒ๋ฅ ๊ณผ ์‚ฌ์ƒ๋ฅ ์ด ๋†’์œผ๋ฉฐ, ์ด๋Š” ๋„์‹ฌ ๋„๋กœ์—์„œ์˜ ์ž์œจ์ฃผํ–‰์€ ํ•ต์‹ฌ ์ด์Šˆ๊ฐ€ ๋˜๊ณ  ์žˆ๋‹ค. ๋งŽ์€ ํ”„๋กœ์ ํŠธ๋“ค์ด ์ž์œจ์ฃผํ–‰์˜ ํ™˜๊ฒฝ์ , ์ธ๊ตฌํ•™์ , ์‚ฌํšŒ์ , ๊ทธ๋ฆฌ๊ณ  ๊ฒฝ์ œ์  ์ธก๋ฉด์—์„œ์˜ ์ž์œจ์ฃผํ–‰์˜ ํšจ๊ณผ๋ฅผ ํ‰๊ฐ€ํ•˜๊ธฐ ์œ„ํ•ด ์ˆ˜ํ–‰๋˜์—ˆ๊ฑฐ๋‚˜ ์ˆ˜ํ–‰ ์ค‘์— ์žˆ๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์œ ๋Ÿฝ์˜ AdaptIVE๋Š” ๋‹ค์–‘ํ•œ ์ž์œจ์ฃผํ–‰ ๊ธฐ๋Šฅ์„ ๊ฐœ๋ฐœํ•˜์˜€์œผ๋ฉฐ, ๊ตฌ์ฒด์ ์ธ ํ‰๊ฐ€ ๋ฐฉ๋ฒ•๋ก ์„ ๊ฐœ๋ฐœํ•˜์˜€๋‹ค. ๋˜ํ•œ, CityMobil2๋Š” ์œ ๋Ÿฝ ์ „์—ญ์˜ 9๊ฐœ์˜ ๋‹ค๋ฅธ ํ™˜๊ฒฝ์—์„œ ๋ฌด์ธ ์ง€๋Šฅํ˜• ์ฐจ๋Ÿ‰์„ ์„ฑ๊ณต์ ์œผ๋กœ ํ†ตํ•ฉํ•˜์˜€๋‹ค. ์ผ๋ณธ์—์„œ๋Š” 2014๋…„ 5์›”์— ์‹œ์ž‘๋œ Automated Driving System Research Project๋Š” ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ๊ณผ ์ฐจ์„ธ๋Œ€ ๋„์‹ฌ ๊ตํ†ต ์ˆ˜๋‹จ์˜ ๊ฐœ๋ฐœ ๋ฐ ๊ฒ€์ฆ์— ์ดˆ์ ์„ ๋งž์ถ”์—ˆ๋‹ค. ๊ธฐ์กด ์—ฐ๊ตฌ๋“ค์— ๋Œ€ํ•œ ์กฐ์‚ฌ๋ฅผ ํ†ตํ•ด ์ž์œจ์ฃผํ–‰ ์‹œ์Šคํ…œ์€ ๊ตํ†ต ์ฐธ์—ฌ์ž๋“ค์˜ ์•ˆ์ „๋„๋ฅผ ํ–ฅ์ƒ์‹œํ‚ค๊ณ , ๊ตํ†ต ํ˜ผ์žก์„ ๊ฐ์†Œ์‹œํ‚ค๋ฉฐ, ์šด์ „์ž ํŽธ์˜์„ฑ์„ ์ฆ์ง„์‹œํ‚ค๋Š” ๊ฒƒ์ด ์ฆ๋ช…๋˜์—ˆ๋‹ค. ๋‹ค์–‘ํ•œ ๋ฐฉ๋ฒ•๋ก ๋“ค์ด ์ธ์ง€, ๊ฑฐ๋™ ๊ณ„ํš, ๊ทธ๋ฆฌ๊ณ  ์ œ์–ด์™€ ๊ฐ™์€ ๋„์‹ฌ ๋„๋กœ ์ž์œจ์ฃผํ–‰์ฐจ์˜ ํ•ต์‹ฌ ๊ธฐ์ˆ ๋“ค์„ ๊ฐœ๋ฐœํ•˜๊ธฐ ์œ„ํ•˜์—ฌ ์‚ฌ์šฉ๋˜์—ˆ๋‹ค. ํ•˜์ง€๋งŒ ๋งŽ์€ ์ตœ์‹ ์˜ ์ž์œจ์ฃผํ–‰ ์—ฐ๊ตฌ๋“ค์€ ๊ฐ ๊ธฐ์ˆ ์˜ ๊ฐœ๋ฐœ์„ ๋ณ„๊ฐœ๋กœ ๊ณ ๋ คํ•˜์—ฌ ์ง„ํ–‰ํ•ด์™”๋‹ค. ๊ฒฐ๊ณผ์ ์œผ๋กœ ํ†ตํ•ฉ์ ์ธ ๊ด€์ ์—์„œ์˜ ์ž์œจ์ฃผํ–‰ ๊ธฐ์ˆ  ์„ค๊ณ„๋Š” ์•„์ง ์ถฉ๋ถ„ํžˆ ๊ณ ๋ ค๋˜์–ด ์•Š์•˜๋‹ค. ๋”ฐ๋ผ์„œ, ๋ณธ ๋…ผ๋ฌธ์€ ๋ณต์žกํ•œ ๋„์‹ฌ ๋„๋กœ ํ™˜๊ฒฝ์—์„œ ๋ผ์ด๋‹ค, ์นด๋ฉ”๋ผ, GPS, ๊ทธ๋ฆฌ๊ณ  ๊ฐ„๋‹จํ•œ ๊ฒฝ๋กœ ๋งต์— ๊ธฐ๋ฐ˜ํ•œ ์™„์ „ ์ž์œจ์ฃผํ–‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์„ ๊ฐœ๋ฐœํ•˜๋Š” ๊ฒƒ์„ ๋ชฉํ‘œ๋กœ ํ•˜์˜€๋‹ค. ์ œ์•ˆ๋œ ์ž์œจ์ฃผํ–‰ ์•Œ๊ณ ๋ฆฌ์ฆ˜์€ ๋น„ํ†ต์ œ ๊ต์ฐจ๋กœ๋ฅผ ํฌํ•จํ•œ ๋„์‹ฌ ๋„๋กœ ์ƒํ™ฉ์„ ์ฐจ๋Ÿ‰ ๊ฑฐ๋™ ์˜ˆ์ธก๊ธฐ์™€ ๋ชจ๋ธ ์˜ˆ์ธก ์ œ์–ด ๊ธฐ๋ฒ•์— ๊ธฐ๋ฐ˜ํ•˜์—ฌ ์„ค๊ณ„๋˜์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋™์ , ์ •์  ํ™˜๊ฒฝ ํ‘œํ˜„ ๋ฐ ์ข…ํšก๋ฐฉํ–ฅ ๊ฑฐ๋™ ๊ณ„ํš์„ ์ค‘์ ์ ์œผ๋กœ ๋‹ค๋ฃจ์—ˆ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์€ ๋„์‹ฌ ๋„๋กœ ์ž์œจ์ฃผํ–‰์„ ์œ„ํ•œ ๊ฑฐ๋™ ๊ณ„ํš ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ๊ฐœ์š”๋ฅผ ์ œ์‹œํ•˜์˜€์œผ๋ฉฐ, ์‹ค์ œ ๊ตํ†ต ์ƒํ™ฉ์—์„œ์˜ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ์ œ์•ˆ๋œ ์•Œ๊ณ ๋ฆฌ์ฆ˜์˜ ํšจ๊ณผ์„ฑ๊ณผ ์šด์ „์ž ๊ฑฐ๋™๊ณผ์˜ ์œ ์‚ฌ์„ฑ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค. ์‹ค์ฐจ ์‹คํ—˜ ๊ฒฐ๊ณผ๋Š” ๋น„ํ†ต์ œ ๊ต์ฐจ๋กœ๋ฅผ ํฌํ•จํ•œ ๋„์‹ฌ ์‹œ๋‚˜๋ฆฌ์˜ค์—์„œ์˜ ๊ฐ•๊ฑดํ•œ ์„ฑ๋Šฅ์„ ๋ณด์—ฌ์ฃผ์—ˆ๋‹ค.The foci of automotive researches have been expanding from passive safety systems to active safety systems with advances in sensing and processing technologies. Recently, the majority of automotive makers have already commercialized active safety systems, such as adaptive cruise control (ACC), lane keeping assistance (LKA), and autonomous emergency braking (AEB). Such advances have extended the research field beyond active safety systems to automated driving systems to achieve zero fatalities. Especially, automated driving on urban roads has become a key issue because urban roads possess numerous risk factors for traffic accidents, such as sidewalks, blind spots, on-street parking, motorcycles, and pedestrians, which cause higher accident rates and fatalities than motorways. Several projects have been conducted, and many others are still underway to evaluate the effects of automated driving in environmental, demographic, social, and economic aspects. For example, the European project AdaptIVe, develops various automated driving functions and defines specific evaluation methodologies. In addition, CityMobil2 successfully integrates driverless intelligent vehicles in nine other environments throughout Europe. In Japan, the Automated Driving System Research Project began on May 2014, which focuses on the development and verification of automated driving systems and next-generation urban transportation. From a careful review of a considerable amount of literature, automated driving systems have been proven to increase the safety of traffic users, reduce traffic congestion, and improve driver convenience. Various methodologies have been employed to develop the core technology of automated vehicles on urban roads, such as perception, motion planning, and control. However, the current state-of-the-art automated driving algorithms focus on the development of each technology separately. Consequently, designing automated driving systems from an integrated perspective is not yet sufficiently considered. Therefore, this dissertation focused on developing a fully autonomous driving algorithm in urban complex scenarios using LiDAR, vision, GPS, and a simple path map. The proposed autonomous driving algorithm covered the urban road scenarios with uncontrolled intersections based on vehicle motion prediction and model predictive control approach. Mainly, four research issues are considered: dynamic/static environment representation, and longitudinal/lateral motion planning. In the remainder of this thesis, we will provide an overview of the proposed motion planning algorithm for urban autonomous driving and the experimental results in real traffic, which showed the effectiveness and human-like behaviors of the proposed algorithm. The proposed algorithm has been tested and evaluated using both simulation and vehicle tests. The test results show the robust performance of urban scenarios, including uncontrolled intersections.Chapter 1 Introduction 1 1.1. Background and Motivation 1 1.2. Previous Researches 4 1.3. Thesis Objectives 9 1.4. Thesis Outline 10 Chapter 2 Overview of Motion Planning for Automated Driving System 11 Chapter 3 Dynamic Environment Representation with Motion Prediction 15 3.1. Moving Object Classification 17 3.2. Vehicle State based Direct Motion Prediction 20 3.2.1. Data Collection Vehicle 22 3.2.2. Target Roads 23 3.2.3. Dataset Selection 24 3.2.4. Network Architecture 25 3.2.5. Input and Output Features 33 3.2.6. Encoder and Decoder 33 3.2.7. Sequence Length 34 3.3. Road Structure based Interactive Motion Prediction 36 3.3.1. Maneuver Definition 38 3.3.2. Network Architecture 39 3.3.3. Path Following Model based State Predictor 47 3.3.4. Estimation of predictor uncertainty 50 3.3.5. Motion Parameter Estimation 53 3.3.6. Interactive Maneuver Prediction 56 3.4. Intersection Approaching Vehicle Motion Prediction 59 3.4.1. Driver Behavior Model at Intersections 59 3.4.2. Intention Inference based State Prediction 63 Chapter 4 Static Environment Representation 67 4.1. Static Obstacle Map Construction 69 4.2. Free Space Boundary Decision 74 4.3. Drivable Corridor Decision 76 Chapter 5 Longitudinal Motion Planning 81 5.1. In-Lane Target Following 82 5.2. Proactive Motion Planning for Narrow Road Driving 85 5.2.1. Motivation for Collision Preventive Velocity Planning 85 5.2.2. Desired Acceleration Decision 86 5.3. Uncontrolled Intersection 90 5.3.1. Driving Phase and Mode Definition 91 5.3.2. State Machine for Driving Mode Decision 92 5.3.3. Motion Planner for Approach Mode 95 5.3.4. Motion Planner for Risk Management Phase 98 Chapter 6 Lateral Motion Planning 105 6.1. Vehicle Model 107 6.2. Cost Function and Constraints 109 Chapter 7 Performance Evaluation 115 7.1. Motion Prediction 115 7.1.1. Prediction Accuracy Analysis of Vehicle State based Direct Motion Predictor 115 7.1.2. Prediction Accuracy and Effect Analysis of Road Structure based Interactive Motion Predictor 122 7.2. Prediction based Distance Control at Urban Roads 132 7.2.1. Driving Data Analysis of Direct Motion Predictor Application at Urban Roads 133 7.2.2. Case Study of Vehicle Test at Urban Roads 138 7.2.3. Analysis of Vehicle Test Results on Urban Roads 147 7.3. Complex Urban Roads 153 7.3.1. Case Study of Vehicle Test at Complex Urban Roads 154 7.3.2. Closed-loop Simulation based Safety Analysis 162 7.4. Uncontrolled Intersections 164 7.4.1. Simulation based Algorithm Comparison of Motion Planner 164 7.4.2. Monte-Carlo Simulation based Safety Analysis 166 7.4.3. Vehicle Tests Results in Real Traffic Conditions 172 7.4.4. Similarity Analysis between Human and Automated Vehicle 194 7.5. Multi-Lane Turn Intersections 197 7.5.1. Case Study of a Multi-Lane Left Turn Scenario 197 7.5.2. Analysis of Motion Planning Application Results 203 Chapter 8 Conclusion & Future Works 207 8.1. Conclusion 207 8.2. Future Works 209 Bibliography 210 Abstract in Korean 219Docto
    corecore