3 research outputs found

    A Novel Rayleigh Dynamical Model for Remote Sensing Data Interpretation

    Get PDF
    © 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.This article introduces the Rayleigh autoregressive moving average (RARMA) model, which is useful to interpret multiple different sets of remotely sensed data, from wind measurements to multitemporal synthetic aperture radar (SAR) sequences. The RARMA model is indeed suitable for continuous, asymmetric, and nonnegative signals observed over time. It describes the mean of Rayleigh-distributed discrete-time signals by a dynamic structure including autoregressive (AR) and moving average (MA) terms, a set of regressors, and a link function. After presenting the conditional likelihood inference for the model parameters and the detection theory, in this article, a Monte Carlo simulation is performed to evaluate the finite signal length performance of the conditional likelihood inferences. Finally, the new model is applied first to sequences of wind speed measurements, and then to a multitemporal SAR image stack for land-use classification purposes. The results in these two test cases illustrate the usefulness of this novel dynamic model for remote sensing data interpretation

    Deep Pyramidal Residual Networks for Spectral-Spatial Hyperspectral Image Classification

    Get PDF
    Convolutional neural networks (CNNs) exhibit good performance in image processing tasks, pointing themselves as the current state-of-the-art of deep learning methods. However, the intrinsic complexity of remotely sensed hyperspectral images still limits the performance of many CNN models. The high dimensionality of the HSI data, together with the underlying redundancy and noise, often makes the standard CNN approaches unable to generalize discriminative spectral-spatial features. Moreover, deeper CNN architectures also find challenges when additional layers are added, which hampers the network convergence and produces low classification accuracies. In order to mitigate these issues, this paper presents a new deep CNN architecture specially designed for the HSI data. Our new model pursues to improve the spectral-spatial features uncovered by the convolutional filters of the network. Specifically, the proposed residual-based approach gradually increases the feature map dimension at all convolutional layers, grouped in pyramidal bottleneck residual blocks, in order to involve more locations as the network depth increases while balancing the workload among all units, preserving the time complexity per layer. It can be seen as a pyramid, where the deeper the blocks, the more feature maps can be extracted. Therefore, the diversity of high-level spectral-spatial attributes can be gradually increased across layers to enhance the performance of the proposed network with the HSI data. Our experiments, conducted using four well-known HSI data sets and 10 different classification techniques, reveal that our newly developed HSI pyramidal residual model is able to provide competitive advantages (in terms of both classification accuracy and computational time) over the state-of-the-art HSI classification methods
    corecore