32,428 research outputs found

    Low Size-Complexity Inductive Logic Programming: The East-West Challenge Considered as a Problem in Cost-Sensitive Classification

    Get PDF
    The Inductive Logic Programming community has considered proof-complexity and model-complexity, but, until recently, size-complexity has received little attention. Recently a challenge was issued "to the international computing community" to discover low size-complexity Prolog programs for classifying trains. The challenge was based on a problem first proposed by Ryszard Michalski, 20 years ago. We interpreted the challenge as a problem in cost-sensitive classification and we applied a recently developed cost-sensitive classifier to the competition. Our algorithm was relatively successful (we won a prize). This paper presents our algorithm and analyzes the results of the competition

    A Genetic Programming Framework for Two Data Mining Tasks: Classification and Generalized Rule Induction

    Get PDF
    This paper proposes a genetic programming (GP) framework for two major data mining tasks, namely classification and generalized rule induction. The framework emphasizes the integration between a GP algorithm and relational database systems. In particular, the fitness of individuals is computed by submitting SQL queries to a (parallel) database server. Some advantages of this integration from a data mining viewpoint are scalability, data-privacy control and automatic parallelization

    Inference in classifier systems

    Get PDF
    Classifier systems (Css) provide a rich framework for learning and induction, and they have beenı successfully applied in the artificial intelligence literature for some time. In this paper, both theı architecture and the inferential mechanisms in general CSs are reviewed, and a number of limitations and extensions of the basic approach are summarized. A system based on the CS approach that is capable of quantitative data analysis is outlined and some of its peculiarities discussed

    Local Rule-Based Explanations of Black Box Decision Systems

    Get PDF
    The recent years have witnessed the rise of accurate but obscure decision systems which hide the logic of their internal decision processes to the users. The lack of explanations for the decisions of black box systems is a key ethical issue, and a limitation to the adoption of machine learning components in socially sensitive and safety-critical contexts. %Therefore, we need explanations that reveals the reasons why a predictor takes a certain decision. In this paper we focus on the problem of black box outcome explanation, i.e., explaining the reasons of the decision taken on a specific instance. We propose LORE, an agnostic method able to provide interpretable and faithful explanations. LORE first leans a local interpretable predictor on a synthetic neighborhood generated by a genetic algorithm. Then it derives from the logic of the local interpretable predictor a meaningful explanation consisting of: a decision rule, which explains the reasons of the decision; and a set of counterfactual rules, suggesting the changes in the instance's features that lead to a different outcome. Wide experiments show that LORE outperforms existing methods and baselines both in the quality of explanations and in the accuracy in mimicking the black box
    • …
    corecore