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Abstract
Efficiency and scalability are crucial issues in

Knowledge Discovery in Databases (KDD). Our
approach to these challenging issues is to devise generic,
set-based KDD primitives which are insensitive to the
order in which data elements are processed. Such
primitives facilitate the exploitation of parallelism.
Furthermore, these primitives are generic in that they
support a wide selection of rule-induction and instance-
based learning KDD algorithms. We present the results of
running the primitives on two commercially-available
parallel database platforms. We show that scalable
parallel performance is possible on large databases.

1. Introduction.

Knowledge Discovery in Databases (KDD), or Data
Mining, consists of extracting interesting, useful
knowledge from real-world databases [8]. Despite the
great demand for KDD in large databases, “conventional”
KDD algorithms have been applied mainly to relatively
small samples of data (typically less than 5,000 tuples)
and do not have any integration at all with Relational
DBMSs. Next-generation KDD systems will face the
challenge of coping with huge amounts of data stored in
data warehouses and of being tightly integrated with
database systems in a corporate-wide scale.

However, the application of KDD algorithms to large
databases faces serious scalability problems, particularly
in respect of problem of excessive processing time. For
instance, Cohen [7] remarks that the processing time of
the rule-pruning method of C4.5, a well-known decision-
tree-based KDD algorithm, scales roughly as the cube of
the number of tuples. As a result, Cohen estimates that this
method would take 79 years on a 150-MHz processor in
order to process 500,000 tuples. As another example,
Provost & Aronis [20] report that a sequential version of
the RL algorithm is impractical (i.e. takes too long to run)
on data sets of more than 70,000 tuples, and that a

massively-parallel version of the RL algorithm is usually
faster than its sequential version when the number of
tuples is greater than 10,000.

It should be emphasized that, no matter how fast a
sequential KDD algorithm is, its time complexity is at
least Ω(N), where N is the number of tuples. Parallel
processing offers the possibility of reducing this lower
bound to Ω(N/p), where p is the number of processors.
Hence, parallelism seems to be the great hope to scale up
next-generation KDD systems.

Our approach to improved efficiency (shorter
processing time) in KDD consists of exploiting data
parallelism in KDD via carefully-designed primitives. In
this paper we propose generic, set-oriented primitives to
support the data-intensive operations of algorithms
belonging to two major KDD paradigms, namely Rule
Induction (RI) and Instance-Based Learning (IBL). A
discussion of the pros and cons of these paradigms in the
context of KDD is beyond the scope of this paper. Here
we briefly remark that these two paradigms have
complementary strengths and weaknesses, so that each of
them tends to achieve good results in domains where the
other might not do very well [18]. Indeed, the integration
of RI and IBL is an emergent trend in KDD [24], [1]. The
scope of this paper is restricted to relational databases.

This paper is organized as follows. Section 2
introduces our set-oriented, primitive-based framework
for KDD. Section 3 proposes a primitive for the Rule
Induction paradigm, while Section 4 proposes a primitive
for the Instance-Based Learning paradigm. Both Sections
also report results of experiments evaluating the efficiency
in the exploitation of data parallelism on parallel database
servers. Finally, Section 5 presents the conclusions.

2. A Set-Oriented, Primitive-Based
Framework for Knowledge Discovery in
Databases.

A central theme of this paper is the development of
generic, well-defined, context-free primitives that capture
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the core operations underlying a number of KDD
algorithms, as it will be shown later. We stress that
developing generic KDD primitives is important because
no single algorithm can be expected to perform well
across all domains [18], [23].

We assume that the database system has a client-server
architecture - adopted by most current systems. Figure 1
illustrates the main differences between the
“conventional” framework for KDD and our set-oriented
architectural framework. In this Figure the relative size of
the squares, circles and triangles (representing
respectively data, KDD algorithm and discovered
knowledge) roughly indicate the size of the corresponding
object.

In the “conventional” framework for KDD - Figure
1(a) - the square representing data is small and the circle
representing the KDD algorithm (running only on the
client) is big. In other words, a small data sample is
downloaded from the Server to the Client, and all the
procedures of the KDD algorithm are executed on the
Client.

In contrast, in our framework - Figure 1(b) - the data is
kept on a Parallel Database Server. Hence, the square
representing data is big, indicating that a larger database
can be mined, and the circle representing the KDD

algorithm is now split into two circles, the largest of them
representing set-oriented primitives running on the Server
(performing the most time-consuming operations) and the
smallest of them representing KDD supervisory
procedures running on the Client. Finally, the triangle
representing the discovered knowledge is the same in both
Figures 1(a) and 1(b), since a data-parallel version of a
KDD algorithm discovers the same knowledge as its
sequential counterpart.

Note that in our framework the KDD algorithm does
not have direct access to the data. That algorithm simply
sends database queries to the Parallel Database Server,
which uses automatic parallel-query-optimization methods
to efficiently access the data and returns the query results
to the Client. The database queries submitted by the Client
are actually requests for the execution of set-oriented
primitives. We map these primitives into SQL. Despite its
limitations, SQL is the industry-standard query language
of Relational DBMS. Furthermore, it is a declarative
interface, effectively decoupling applications
programmers from low-level computational and
architectural details. The result is an efficient, easy-to-use
framework for KDD that takes advantage of high-
performance parallel database servers.

                                                                                                    Client
                  Database Server
                                                                                                                         knowledge
                                                data  sample                               KDD
                                                                          data               algorithm

 (a) The “conventional” KDD framework.

                    Parallel Database Server                                                       Client

                                                                     database query                         knowledge
                     data                    set-orient.                                        kdd
                                               primitives                                         alg.
                                                                       query  results

(b) Our framework for KDD.

Figure 1. The “conventional” KDD framework vs. our set-oriented framework.



For the sake the efficiency, as a pre-processing step for
the KDD algorithm we execute a query which selects - out
of the whole database - the task-relevant data set, i.e. the
subset of tuples and attributes to be accessed by the KDD
algorithm. The result of this query is stored as a new
relation, called the Mine relation. Hence, we avoid the use
of computationally-expensive join operations during the
KDD algorithm. The Mine relation can be stored as a
snapshot, as a new base relation or as a materialized view.
We stress that this approach is compatible with the
concept of the data warehouse. Actually, a data warehouse
can be seen as a materialized view over multiple,
autonomous data sources [30].

To summarize, in our framework a KDD primitive
should satisfy four requirements, as mentioned below. The
next two Sections propose primitives satisfying these
requirements.
(1)  Well-defined specification - Its input, output and
processing should be precisely defined.
(2) Generality - It should find use in a number of KDD
algorithms;
(3) Computational significance - In a given KDD
algorithm it should occur frequently and/or take a
significant part of the total processing time of the
algorithm.
(4) Set-oriented nature - It should process many-tuples-at-
a-time, independently of the order of the tuples.

3. A Primitive for Rule Induction (RI)
Algorithms.

A rule is a knowledge-representation structure of the
form: “if P then Q”, where P is a conjunction of attribute-
value conditions and Q is a goal-attribute-value pair
indicating the class predicted by the rule. In the Rule
Induction (RI) paradigm the KDD algorithm can be cast
as a heuristic search in the space of candidate rules (CRs).
In essence, a RI algorithm can be viewed as the iterative
process of selecting the “best” CR according to a CR-
evaluation function, expanding it (generating new CRs)
and evaluating the just-generated CRs. The expansion of
the selected CR involves the application of specialization
and/or generalization operations to the CR. (In general a
conjunctive CR is specialized by adding conditions to it,
and it is generalized by removing conditions from it). This
process is repeated until a satisfactory set of CRs is found
[15].

As discussed above, in our KDD framework the Mine
relation (i.e. the subset of tuples and attributes to be
accessed by the KDD algorithm) is stored on a Parallel
Database Server. The Client selects the next CR to be
expanded, and then expands it. However, in order to carry
out CR-evaluation operations, the Client sends SQL
queries to the server. This is the kind of operation for

which the primitive proposed in this Section has been
developed.

3.1 Count by Group: a Primitive for Candidate
Rule (CR) Evaluation.

This Section introduces Count by Group, a generic
primitive to support Candidate Rule (CR) evaluation
operations, which constitute the principal data-intensive,
time-consuming activity of Rule Induction algorithms.
This primitive was developed to process categorical
attributes - i.e. attributes whose domain consist of a small
set of discrete values, or categories. Continuous attributes
would be discretized in a pre-processing phase. See [14]
for a modification of this primitive developed to cope with
continuous attributes and for a discussion of the pros and
cons of discretization in the context of KDD.

Firstly we specify the primitive in terms of its input
parameters, its output and its processing, as follows.
Count by Group has three input parameters, namely:
(a) A tuple-set descriptor - a logical conjunction of
attribute-value pairs describing the tuples covered by the
current CR.
(b) A candidate attribute - the attribute whose values will
be used to expand the current CR if the candidate attribute
is selected as the “best” one by a given evaluation
function;
(c) A goal attribute - the attribute whose value must be
predicted. This attribute is fixed during the execution of
the KDD algorithm.

The output of Count by Group is shown in Figure 2(a).
This is an m x n matrix extended with totals of rows and
columns. m is the number of distinct candidate-attribute
values and n is the number of distinct goal-attribute values
(or classes). Each cell (i,j) - i=1,...,m and j=1,...,n - of this
matrix contains the number of tuples satisfying the tuple-
set descriptor with candidate-attribute value Ai and goal-
attribute value Gj.

Figure 2(b) shows a simple example of the output of
Count by Group, based on two attributes of a company's
database: Training and Job-status. It is assumed that the
goal attribute Training can take on two values - whether
or not a given employee has had some training in the
company - and the candidate attribute Job-status can also
take on two values - employee has part-time or full-time
job. In this example, 100 employees were counted - i.e.
100 tuples satisfied the tuple-set descriptor. Intuitively,
Figure 2(b) says that Job-status - in particular the part-
time value of Job-status - is relevant to discriminate
among employees with and without training. Hence, Job-
status values (or at least its part-time value) could be
selected (depending on the goodness of other candidate
attributes) to compose the antecedent of classification
rules which have the Training attribute as its consequent.



The processing of Count by Group essentially consists
of counting the number of tuples in each partition (group
of tuples with the same value for the Group by attributes)
formed by a relational Group by statement. This
processing is implemented in a declarative style by Query
1, followed by a trivial computation of rows and columns
totals.

Note that Count by Group is computationally
significant, since the construction of the matrix shown in
Figure 2(a) is the bottleneck of KDD algorithms analyzing
very large DBMSs. Hence, it is crucial to speed up the
execution of this primitive. Moreover, Count by Group
has a set-oriented semantics, since it operates on many
tuples at a time in an order-independent fashion.

             G1    .  .   .   .   .   G n      Total

   A1      C11 . .  .  .  . C1n     C1+                                                            some           no
    .          .   .  .  .  .  .  .          .                                                            training     training   Total
    .          .   .  .  .  .  .  .          .
    .          .   .  .  .  .  .  .          .                                          part-time         0             30           30
   Am         Cm1 . .  .  .  Cmn        Cm+                                       full-time        60            10           70

 Total    C+1 . .  .  .  . C+n      C++                                           Total           60            40         100

           (a) General structure of the output                                                       (b) An example of the output of
           of the Count by Group primitive.                                                        the Count by Group primitive.

Figure 2. Structure of the output of the Count by Group primitive.

                                                SELECT Candidate_attribute, Goal_attribute, COUNT(*)
                                                FROM Mine_Relation
                                                WHERE Tuple-Set_Descriptor
                                                GROUP BY Candidate_attribute, Goal_attribute

                                             Query 1.  SQL query underlying the Count by Group primitive.

                                Table 1.  List of some CR-evaluation measures, as well as KDD algorithms
                                               computing them, that are supported by the primitive Count by Group.

Candidate-Rule evaluation measure KDD algorithm or system
Information Gain ICET [26]

Information Gain Ratio C4.5 [21]
Reduction of Gini Diversity Index CART [5]

Orthogonality between class vectors O-BTree [9]
J-measure CUPID [17]

Resubstitution Error SWAP-1 [27]
Chi-squared 49er [31]

Cramer’s Coefficient regularity-based clustering [25]
Tau measure of association KDW [19]

Category Utility COBWEB [10]



Count by Group is generic, in the sense that it can be
used to measure the quality of a Candidate Rule (CR) in a
number of KDD algorithms. To show this generality, we
list in Table 1 ten major quality measures of CRs that can
be computed via this primitive. For each CR’s quality
measure we mention one KDD algorithm or system
computing that measure. Due to space limitations, we do
not discuss these measures here - see Table 1’s references.
For a discussion about how the Count values shown in
Figure 2(a) are used to implement each of the CR-
evaluation measures listed in Table 1, see [11].

3.2. Computational Results.

In order to evaluate the efficiency in the exploitation
of data parallelism when running Count by Group, we
have done several experiments. We first describe the
experiments running the primitive Count by Group alone,
regardless of any KDD algorithm. Later in this Section we
mention results of applying Count by Group to a full KDD
algorithm.

To evaluate the exploitation of data parallelism in
Count by Group alone, this primitive was run on synthetic
databases, which were randomly generated according to a
uniform probability distribution. The number of tuples in
the Mine relation varied from 100k tuples to 500k tuples.
The number of attributes was fixed at ten (including the
goal attribute). In all the experiments the candidate
attribute had domain cardinality of 10 and the goal
attribute had domain cardinality of 2 (common values in
practice), so that the output of Count by Group was a
matrix with 20 cells.

The experiments were done on an IBM SP2 running
DB2 Parallel Edition [4]. Each SP2 node runs at about
250 Mflops and has 256 Mbytes of memory. We varied
both the number of SP2 processor nodes used to process
the primitive and the number of conditions in the Where
clause of Query 1. The results are shown in Figures 3 and
4, where the horizontal axis shows the number of k tuples
in the Mine relation and the vertical axis shows the
processing time (measured in seconds). Figure 3 shows
the time taken by Count by Group on the SP2 varying the
number of processor nodes (2, 3 and 4 nodes). More
precisely, Figure 3(a) shows the results for 0 conditions in
the Where clause of Query 1 - i.e. the Where clause is void
and all tuples of the Mine relation are counted by the
primitive. Figure 3(b) shows the corresponding results for
2 conditions in the Where clause of Query 1. In both
graphs the processing time scales linearly with the number
of tuples.

Figure 4 shows the running time of Count by Group on
the SP2 for a fixed number of processor nodes - 2 nodes
in Figure 4(a) and 4 nodes in Figure 4(b) - varying the
number of conditions in the Where clause of Query 1. The
running times in the case of 2 and 4 conditions are almost
co-linear, and they are significantly shorter than the
running time in the case of 0 conditions. This is due to the
fact that in the case of 2 and 4 conditions the number of
tuples counted by the primitive is much smaller than the
number of tuples in the Mine relation. In general, the
larger the number of conditions in the Where clause of
Query 1, the smaller the number of counted tuples, since
that clause is a conjunction of conditions.
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Figure 3.  Time on SP2, for a fixed number of conditions on the Where clause.
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Figure 4. Time on SP2, for a fixed number of processor nodes.

We have also done some experiments to evaluate the
efficiency in the exploitation of data parallelism in the
context of a full TDIDT (Top-Down Induction of
Decision-Tree) algorithm. The results of these
experiments are described in detail in [13]. Overall the
results of these experiments were consistent with the
results reported above for the primitive Count by Group
alone. In particular the speed up (Sp) achieved by the use
of parallelism varied significantly across both the number
of tuples in the Mine relation and properties of different
versions of the TDIDT algorithm, but in general a roughly
linear Sp was achieved. As expected, the Sp increased
with the number of tuples, since the Client/Server
communication overhead becomes proportionally smaller
in this case.

4. A Primitive for Instance-Based Learning
(IBL) Algorithms.

In the Instance-Based Learning (IBL) paradigm the
KDD algorithm does not induce an explicit classification
model. It simply stores the data set, or a subset of it, and
uses the data rather than an induced model to classify new
tuples (instances) [2].

Note that although conventional algorithms of the IBL
paradigm do not induce any explicit model, they do
provides an explanation about how the classification of a
new tuple is done, which is important in the context of
KDD. When a new tuple is classified, the system can
show the user the classifying tuple, i.e. the most similar
stored tuple (the “nearest neighbor”) retrieved by the
system. (Furthermore, IBL can also be used to generalize
from individual tuples, e.g. by producing hyperrectangles
in the instance space that are easily interpretable by a
human user [22], or to extract highly summarized
information in the form of prototypes [29].)

In essence, when a new tuple has to be classified, an
IBL algorithm compares that tuple with all stored
instances and retrieves the “nearest” (most similar) - or the

k nearest, where k is a user-specified parameter - tuple(s)
to the new one, as determined by a distance metric. Then
the class of the retrieved tuple, or the prevalent class in
the k retrieved tuples, is assigned to the new tuple. IBL is
also known as the “(k-)Nearest-Neighbor” algorithm in
Statistics.

4.1. Compute Tuple Distances: a Primitive to
Compute Distance Metrics.

This Section introduces Compute Tuple Distances, a
generic primitive to support the computation of a distance
metric between a new tuple (to be classified) and all
stored tuples. This is the primary data-intensive, time-
consuming operation of IBL algorithms.

Let Dist(X,Y) be the distance between a stored tuple X
and a new tuple Y. Let Xi and Yi be the value of the i-th
attribute of the corresponding tuple, i=1...M, where M is
the number of attributes. In essence, the primitive
computes the core of the distance metric Dist(X,Y) used
by most IBL algorithms, as expressed by the formula (1),
where WX denotes the weight of the stored tuple X, Wi

denotes the weight of the i-th attribute, and disti(X i,Yi)
denotes the distance between the values Xi and Yi (see
below). The tuple weight WX usually indicates the quality
of the stored tuple X as a classifying tuple - see e.g. [29]
or [1]. The attribute weights Wi, i=1...M, indicate the
relevance of each attribute for predicting the class of a
tuple [28]. The exponent Exp in formula (1) is usually a
small integer, typically set to 1 or 2. When Exp = 1 we
have the Manhattan (“city-block”) distance, and when Exp
= 2 we have the Euclidean distance.

                                                  M

        Dist(X,Y) =  WX ( Σ Wi disti(X i,Yi)
Exp )1/Exp      (1)

                                      i=1

for continuous attributes:
disti(X i,Yi) = abs(Xi - Yi)    (2)



for categorical attributes:
disti(X i,Yi) = 0 if Xi = Yi ; or  disti(X i,Yi) = 1 if Xi ≠ Yi  (3)

Now we specify the primitive in terms of its input,
output and processing. The primitive Compute Tuple
Distances has four input parameters, namely:

(a) The attribute values of the new tuple - i.e. Yi ,
i=1...M;

(b) The exponent Exp in formula (1).
(c) The attribute weights Wi , i=1...M.
(d) The tuples weights WX for each tuple X stored in

the Mine relation.
The above parameters (c) and (d) are optional, i.e.

they are not used by several IBL algorithms. However,
parameters (a) and (b) are essential in any IBL algorithm
supported by the primitive. The output of Compute Tuple
Distances is simply the set of distance values between the
new tuple Y and each stored tuple X.

The processing of this primitive consists of computing
formula (1). To compute disti(X i,Yi) we consider two
cases. If the i-th attribute is continuous (ordinal), we use
formula (2) where abs(x) denotes the absolute (unsigned)
value of x. We assume that continuous attributes are
normalized to avoid an attribute having a weight much
larger than others in the distance metric just because its
absolute values happen to be much larger. We use the
well-known linear normalization method, i.e.
X i = |Xi - Xmin| / (Xmax - Xmin), where Xmin and Xmax are
respectively the minimum and the maximum values of
attribute Xi’s domain.

If the i-th attribute is categorical (non-ordinal), we use
the overlap distance metric, which essentially counts the
number of distinct attribute values, as given by formula
(3). However, the mapping of formula (3) into SQL is not
trivial, since we cannot specify a conditional command (if)
within an SQL query. Our solution is as follows.

We assume, without loss of generality, that the
attribute values are stored in the database as small integer
numbers, i.e. alphanumeric values such as “low” and
“high” are converted to numerical codes such as 1 and 2
as a pre-processing step. Then we compute disti(X i,Yi) as
follows: disti(X i,Yi) = ceiling(abs(Xi - Yi)/c), where c is
any constant equal to or greater than the cardinality of the
i-th attribute’s domain (for practical purposes, say
c = 100). The function ceiling(x) returns the smallest
integer number which is equal to or greater than x. Note
that whenever Xi ≠ Yi the function call ceiling(abs(Xi -
Y i)/c) will return the value of its parameter rounded up to
1. Both ceiling() and abs() functions are available in major
DBMSs such as Oracle 7.X.

Query 2 shows the general structure of a set-oriented
IBL algorithm implemented via the primitive Compute
Tuple Distances. Conceptually speaking, Query 2 can be
divided into two sequential steps. First, the SELECT
within the WHERE...IN clause is executed to select the
nearest stored tuple to the new tuple. Then, the class of the
selected tuple is retrieved by the outer SELECT. A
detailed example of the application of Compute Tuple
Distances to support an IBL algorithm (without tuple
weighting nor attribute weights) is shown in Query 3. In
this example the Mine relation has two predicting
attributes: the first one categorical and the second one
continuous. The Manhattan distance is used.

SELECT    class
FROM       Mine_relation
WHERE    Dist(X,Y)   IN
(SELECT  MIN(Dist(X,Y))  FROM Mine_relation)

Query 2. The general structure of a set-oriented IBL
algorithm mapped into SQL.

SELECT    class
FROM       Mine_relation
WHERE    ceiling(abs(X1 - Y1)/k) + abs(X2 - Y2)  IN
(SELECT  MIN(ceiling(abs(X1 - Y1)/k) +
                  abs(X2 - Y2))  FROM  Mine_relation)

Query 3. Example of a set-oriented IBL algorithm
mapped into SQL.

Note that the primitive Compute Tuple Distances is
very computationally significant, since it accesses all the
attributes and all the tuples of the Mine relation. In this
sense, it has an ideal potential for data parallelism.
Moreover, it obviously has a set-oriented semantics, since
it operates on many tuples at a time in an order-
independent fashion.

To show the generality of Compute Tuple Distances,
we list in Table 2 some IBL or hybrid IBL/RI algorithms
whose data-intensive, distance-metric computation is
supported by this primitive. Due to space limitations, for
each algorithm we only mention whether or not it uses
attribute weights or tuple weights in the distance metric -
the optional input parameters of the primitive. Refer to the
original references for details of these algorithms. A more
detailed discussion about how Compute Tuple Distances
supports these algorithms can be found in [11]. The last
two systems in Table 2 are actually general methodologies
for integrating RI and IBL algorithms, so that the
underlying IBL algorithm can use or ignore attribute
weights or tuple weights in their distance metric.



Table 2. List of some IBL algorithms supported by the primitive Compute Tuple Distances.

Algorithm or system. weighted tuples? weighted attributes?
IB1, IB2, IB3 [2] no no
GA-WKNN [16] no yes

TIBL [29] yes no
CoRCase [1] yes yes

Integrated rule/case base [24] possibly possibly
Integrated decision-tree/CBR [3] possibly possibly

4.2. Computational Results.

Experiments were performed with three databases.
Two of them were obtained from the LIACC at the
University of Porto and were used in the Esprit project
Statlog [18], viz. the Shuttle and the Letter data sets. In
the former the predicting attributes concern the position of
radiators in a NASA space shuttle and the classes are the
appropriate actions to be taken during a space shuttle
flight, whereas in the latter the goal is to recognize a letter
as one of the 26 letters of the alphabet. The third database
used in our experiments was obtained from the Labour
Force Survey (LFS) data, produced by the UK’s
Department of Employment. The goal attribute is
Managerial Status, which can take on two values (or
classes), namely manager/supervisor or employee. The
number of [tuples; attributes] in the Mine relation for each
of these databases is respectively [43,500; 9], [15,000; 16]
and [113,432; 11]. Although these data sets are not huge,
they are large enough for testing purposes and they are
one order of magnitude larger than the data sets reported
in the majority of the IBL literature (typically less than
5,000 tuples).

We did experiments comparing a MIMD machine,
namely the White Cross WX9010 parallel database server,
against an Ingres 6.4 DBMS running on a 25-MHz, 24-
MBytes-RAM Sun IPC. In all experiments, our results
refer to main memory databases (i.e. disk activity is
excluded). The White Cross WX9010 (release 3.2.1.2)
has 12 T425 transputers, each with 16 Mbytes RAM, each
rated at about 12 MIPS and 25 MHz [6]. Note that each
transputer belongs to the same technology generation and
has roughly the same MIP rate as the Sun IPC
workstation. Ten out of the 12 transputers are actually
used to process the query in parallel. The WX9010 is a
main-memory shared-nothing machine. It is a back-end
SQL server attached to an Ethernet LAN. Although this

machine is a relatively small, entry-level system, it is
interesting for our experiments for two reasons. First, it
has a very high rate of scanning tuples: 3 million
tuples/sec. Second, it was specifically designed for
Decision Support Systems applications (including KDD),
rather than for OLTP applications.

In all the experiments we used the Manhattan
Distance. The results are shown in Tables 3 and 4. Table 3
presents speed up results for a simple IBL algorithm
(called IBL-1), which classifies test tuples according to
Query 2. Table 4 presents speed up results for a more
elaborate IBL algorithm (called IBL-2), which classifies
test tuples according to Query 2 extended to consider
attribute weights. In both Tables the columns have the
following meaning. The first column indicates the
database. The second and third columns show the average
time (in seconds) taken by the corresponding SQL query
in Sun/Ingres and on the WX9010, respectively.
Unfortunately, the current version of the WX9010 system
does not allow the direct execution of Query 2 as a single
query. Hence, we estimated the time that Query 2 would
take (if it was implemented as a single query) on the
WX9010 by executing simpler queries on this machine.
The fourth column shows the speed up (Sp) of the
WX9010 over Sun/Ingres.

We are aware that it is common for papers on
experiments with parallelization to show the behavior of
the algorithm on a range of processor numbers. However,
in our case the WX9010 is a commercially-available
parallel database server to whose firmware we do not have
access, so that we cannot control the number of processors
used by the machine. Hence, our experiments investigate
the behaviour of the speed up for different databases. This
is important because it allows us to study the behavior of
the speed up for different numbers of categorical and
continuous attributes and different number of tuples.

Table 3. Speed up for  (unweighted) IBL-1.

Database  Sun (s)  WX (s)     Sp
  Letter   45.1     7.1     6.3
 Shuttle   59.8     6.4     9.3
   LFS 519.4   27.4   19.9



Table 4. Speed up for (weighted) IBL-2.

Database  Sun (s)  WX (s)     Sp
  Letter   56.3    19.0     3.0
 Shuttle   79.9    24.8     3.2
   LFS 506.3    50.8     9.9
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Figure 5. Speed up of IBL-1 and IBL-2

In both Tables 3 and 4, as expected the Sp is smaller
in the case of the Letter database. Due to the small size of
this database, the communication overhead between the
client and the WX9010 server represents a significant part
of the total query processing time, so reducing the Sp.
However, the Sp is larger in the Shuttle database and is
particularly large in the LFS database, the largest database
used in the experiments.

In general attribute weighting turned out to
significantly increase query processing time, particularly
for the WX9010. This can be seen in Figure 5, which
compares the Sp associated with the two IBL algorithms -
i.e. it compares the Sp shown in the last column of Table 3
against the Sp shown in the last column of Table 4, for
each database. The Sp is significantly smaller in the case
of the attribute-weighting algorithm IBL-2 (for all the
three databases). The large drop in the Sp (e.g. from 9.3
for IBL-1 to 3.2 for IBL-2 in the case of the Shuttle
database) is somewhat surprising. The reason for this Sp
drop seems to be that the SQL query of IBL-2 is more
complex, since each term disti in Equation (1) must be
multiplied by the corresponding weight Wi. In theory, this
should not significantly reduce the Sp, since the
introduction of attribute weights in Equation (1) does not
reduce its potential for the exploitation of data
parallelism. However, the WX9010, unlike Ingres, is very
sensitive to the arithmetic complexity of Equation (1).
Hence, although the Data-in-Memory techniques of the
WX9010 are very effective for relational selection
operations, they seem not to be so effective for “complex”
arithmetic operations.

5. Conclusions.

We have proposed generic, set-oriented primitives for
two important KDD paradigms, namely Rule Induction
(RI) and Instance-Based Learning (IBL). This has allowed
us to create a set-oriented, data-parallel framework for
KDD which improves the scalability of KDD algorithms
and uses Parallel Database Servers to significantly reduce
the processing time of KDD algorithms. We have
demonstrated the generality of the proposed primitives
and evaluated the efficiency in the exploitation of data
parallelism. Note that due to their generality, a significant
speed up in the execution of the proposed primitives (by
exploiting parallelism) will lead to a significant speed up
in a number of different KDD algorithms.

To measure the efficiency in the exploitation of data
parallelism we did several experiments. The processing-
time results reported in this paper can be summarized as
follows. The running time of the RI primitive on an IBM
SP2 scales linearly with the number of tuples, at least for a
small number of processor nodes (Figures 3 and 4). This
is consistent with the results reported in [13] for a
decision-tree-building algorithm.

When running a simple IBL algorithm (without
attribute weighting), the 12-node WX9010 achieves a
speed up of about one order of magnitude over the Sun
uniprocessor (Table 3). When running a more elaborate
IBL algorithm (with attribute weighting) the speed up is
reduced by a factor of about two (Table 4 and Figure 5),
indicating that the WX9010 is quite sensitive to the
complexity of the arithmetic expression used to compute
the distance metric.



Several directions for future work are possible. It
would be interesting to extend these experiments for other
databases, other Parallel Database Servers (PDS) and
other KDD algorithms, to generalize the results reported
above. In addition, so far we have focused on a generic
framework to integrate KDD algorithms, relational
databases and parallel processing. Our studies could be
extended to a deeper investigation about how to optimize
the database queries underlying the proposed primitives
(e.g. what is the best data partitioning strategy to minimize
inter-processor communication costs). Note that
conclusions stemming from this kind of investigation tend
to be dependent on a specific PDS architecture. In
practice, however, since a given organization usually has
just one or a couple of different PDS, it would make sense
for that organization to make a deeper study of inter-
processor communication costs when executing the
proposed primitives on its particular PDS. Finally, the
proposed set-oriented, primitive-based framework might
be extended for other KDD paradigms, such as genetic
algorithms and neural networks. A preliminary work about
a set-oriented, generic primitive for the genetic
programming paradigm is discussed in [12].
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