2,322 research outputs found

    Nonlinear Attitude Filtering: A Comparison Study

    Get PDF
    This paper contains a concise comparison of a number of nonlinear attitude filtering methods that have attracted attention in the robotics and aviation literature. With the help of previously published surveys and comparison studies, the vast literature on the subject is narrowed down to a small pool of competitive attitude filters. Amongst these filters is a second-order optimal minimum-energy filter recently proposed by the authors. Easily comparable discretized unit quaternion implementations of the selected filters are provided. We conduct a simulation study and compare the transient behaviour and asymptotic convergence of these filters in two scenarios with different initialization and measurement errors inspired by applications in unmanned aerial robotics and space flight. The second-order optimal minimum-energy filter is shown to have the best performance of all filters, including the industry standard multiplicative extended Kalman filter (MEKF)

    Adaptive backstepping control for optimal descent with embedded autonomy

    Get PDF
    Using Lyapunov stability theory, an adaptive backstepping controller is presented in this paper for optimal descent tracking. Unlike the traditional approach, the proposed control law can cope with input saturation and failure which enables the embedded autonomy of lander system. In addition, this control law can also restrain the unknown bounded terms (i.e., disturbance). To show the controller’s performance in the presence of input saturation, input failure and bounded external disturbance, simulation was carried out under a lunar landing scenario

    Quasi-continuous higher-order sliding mode controller designs for spacecraft attitude tracking manoeuvres

    Get PDF
    This paper studies high-order sliding mode control laws to deal with some spacecraft attitude tracking problems. Second and third order quasi-continuous sliding control are applied to quaternion-based spacecraft attitude tracking manoeuvres. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov theory is used to show that tracking is achieved globally. An example of multiaxial attitude tracking manoeuvres is presented and simulation results are included to verify and compare the usefulness of the various controllers

    Quasi-continuous higher-order sliding-mode controllers for spacecraft-attitude-tracking manoeuvres

    Get PDF
    This paper studies higher order sliding-modecontrol laws to deal with some spacecraft-attitude-tracking problems. Quasi-continuous second- and third-order sliding controllers and differentiators are applied to quaternion-based spacecraftattitude- tracking maneuvers. A class of linear sliding manifolds is selected as a function of angular velocities and quaternion errors. The second method of Lyapunov is used to show that tracking is achieved globally. An example of multiaxial attitude-tracking maneuvers is presented, and simulation results are included to verify and compare the practical usefulness of the various controllers

    STR: a student developed star tracker for the ESA-LED ESMO moon mission

    Get PDF
    In the frame of their engineering degree, ISAE’s students are developing a Star Tracker, with the aim of being the core attitude estimation equipment of the European Moon Student Orbiter. This development goes on since several years and is currently in phase B. We intend to start building an integrated breadboard for the end of the academic year. The STR is composed of several sub-systems: the optical and detection sub-system, the electronics, the mechanics and the software. The optical detection part is based on an in-house developed new generation of APS detectors. The optical train is made of several lenses enclosed in a titanium tube. The electronics includes a FPGA for the pre-processing of the image and a microcontroller in order to manage the high level functions of the instrument. The mechanical part includes the electronics box, as well as the sensor baffle. The design is optimized to minimize the thermo-elastic noise of the assembly. Embedded on ESMO platform, this Star Tracker will be able to compute the satellite‘s attitude, taking into account the specific requirements linked to a Moon mission (illumination, radiation requirements and baffle adaptation to lunar orbit). In order to validate the design, software end-to-end simulation will include a complete simulation of the STR in its lunar dynamic environment. Therefore, we are developing a simple orbital model for the mission (including potential dazzling by celestial bodies)
    corecore