104 research outputs found

    The List Coloring Reconfiguration Problem for Bounded Pathwidth Graphs

    Full text link
    We study the problem of transforming one list (vertex) coloring of a graph into another list coloring by changing only one vertex color assignment at a time, while at all times maintaining a list coloring, given a list of allowed colors for each vertex. This problem is known to be PSPACE-complete for bipartite planar graphs. In this paper, we first show that the problem remains PSPACE-complete even for bipartite series-parallel graphs, which form a proper subclass of bipartite planar graphs. We note that our reduction indeed shows the PSPACE-completeness for graphs with pathwidth two, and it can be extended for threshold graphs. In contrast, we give a polynomial-time algorithm to solve the problem for graphs with pathwidth one. Thus, this paper gives precise analyses of the problem with respect to pathwidth

    Using contracted solution graphs for solving reconfiguration problems.

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    Using Contracted Solution Graphs for Solving Reconfiguration Problems

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    Using contracted solution graphs for solving reconfiguration problems

    Get PDF
    We introduce a dynamic programming method for solving reconfiguration problems, based on contracted solution graphs, which are obtained from solution graphs by performing an appropriate series of edge contractions that decrease the graph size without losing any critical information needed to solve the reconfiguration problem under consideration. As an example, we consider a well-studied problem: given two k-colorings alpha and beta of a graph G, can alpha be modified into beta by recoloring one vertex of G at a time, while maintaining a k-coloring throughout? By applying our method in combination with a thorough exploitation of the graph structure we obtain a polynomial-time algorithm for (k-2)-connected chordal graphs

    Reconfiguring Graph Colorings

    Get PDF
    Graph coloring has been studied for a long time and continues to receive interest within the research community \cite{kubale2004graph}. It has applications in scheduling \cite{daniel2004graph}, timetables, and compiler register allocation \cite{lewis2015guide}. The most popular variant of graph coloring, k-coloring, can be thought of as an assignment of kk colors to the vertices of a graph such that adjacent vertices are assigned different colors. Reconfiguration problems, typically defined on the solution space of search problems, broadly ask whether one solution can be transformed to another solution using step-by-step transformations, when constrained to one or more specific transformation steps \cite{van2013complexity}. One well-studied reconfiguration problem is the problem of deciding whether one k-coloring can be transformed to another k-coloring by changing the color of one vertex at a time, while always maintaining a k-coloring at each step. We consider two variants of graph coloring: acyclic coloring and equitable coloring, and their corresponding reconfiguration problems. A k-acylic coloring is a k-coloring where there are more than two colors used by the vertices of each cycle, and a k-equitable coloring is a k-coloring such that each color class, which is defined as the set of all vertices with a particular color, is nearly the same size as all others. We show that reconfiguration of acyclic colorings is PSPACE-hard, and that for non-bipartite graphs with chromatic number 3 there exist two k-acylic colorings fsf_s and fef_e such that there is no sequence of transformations that can transform fsf_s to fef_e. We also consider the problem of whether two k-acylic colorings can be transformed to each other in at most \ell steps, and show that it is in XP, which is the class of algorithms that run in time O(nf(k))O(n^{f(k)}) for some computable function ff and parameter kk, where in this case the parameter is defined to be the length of the reconfiguration sequence plus the length of the longest induced cycle. We also show that the reconfiguration of equitable colorings is PSPACE-hard and W[1]-hard with respect to the number of vertices with the same color. We give polynomial-time algorithms for Reconfiguration of Equitable Colorings when the number of colors used is two and also for paths when the number of colors used is three

    Counting subgraphs of coloring graphs

    Full text link
    The chromatic polynomial πG(k)\pi_{G}(k) of a graph GG can be viewed as counting the number of vertices in a family of coloring graphs Ck(G)\mathcal C_k(G) associated with (proper) kk-colorings of GG as a function of the number of colors kk. These coloring graphs can be understood as a reconfiguration system. We generalize the chromatic polynomial to πG(H)(k)\pi_G^{(H)}(k), counting occurrences of arbitrary induced subgraphs HH in these coloring graphs, and we prove that these functions are polynomial in kk. In particular, we study the chromatic pairs polynomial πG(P2)(k)\pi_{G}^{(P_2)}(k), which counts the number of edges in coloring graphs, corresponding to the number of pairs of colorings that differ on a single vertex. We show two trees share a chromatic pairs polynomial if and only if they have the same degree sequence, and we conjecture that the chromatic pairs polynomial refines the chromatic polynomial in general. We also instantiate our polynomials with other choices of HH to generate new graph invariants.Comment: 25 pages, 14 figure
    corecore