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Abstract

Recently, the framework of reconfiguration problem is studied intensively in the field

of theoretical computer science. The framework of reconfiguration deals with the

problem where we wish to find a step-by-step transformation between initial and

target configurations while preserving a constraint of some combinatorial search

problem, and each step must respect a fixed reconfiguration rule. In this thesis

we study a generalization of an well-studied reconfiguration problem k-coloring

reconfiguration. In k-coloring reconfiguration, we are given two feasi-

ble k-colorings of a graph G, and asked to determine whether one coloring can be

transformed into the other by recoloring one vertex at a time, while always main-

taining a feasible k-coloring. In this thesis we generalize the reconfiguration rule of

k-coloring reconfiguration by restricting recolorable pair of color, in the form of a

(directed/undirected) graph whose vertex set is the color set {1, 2, . . . , k}, and give

a precise analysis of the complexity status of the generalized problem with respect

to the graph class of the graph whose vertices are colors.
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Chapter 1

Introduction

1.1 Reconfiguration

In the field of theoretical computer science, (combinatorial) reconfiguration is a

framework which models the “dynamic” situation where we wish to find step-by-step

transformation between two feasible states in which all intermediate states are also

feasible and each step respects a fixed reconfiguration rule. A classical example of

reconfiguration problem is sliding block puzzle, such as the 15-puzzle [22]: the feasi-

ble states are the arrangements of distinct 15 rectangle blocks on a 4×4 rectangle

grid, and the reconfiguration rule is to slide a block to an empty square on the grid

(See Fig 1.1).

(Combinatorial) reconfiguration problem can be viewed as a problem asking

reachability of two vertices of reconfiguration graph, whose vertices are feasible states

and edges represent a fixed reconfiguration rule. In the example of 15-puzzle, the

solution graph has all arrangements of blocks as the vertex set, and two vertices

(arrangements) are joined by edge if one can be obtained by sliding a block of the

another arrangement. The vertex set of reconfiguration graph is often defined as

a solution space of well-studied search problem, such as independent set [20],

boolean satisfiability [25, 21], shortest path [6, 7], matching [17].
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1 2 3 4
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9 10 11 12

13 14 15

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

1 2 3 4

5 6 7 8

9 10 11

13 14 15 12

Figure 1.1: Arrangements and reconfiguration rule of 15-puzzle.
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(c)

Figure 1.2: (a) An input graph G, (b) a recolorablity graph R with four colors 1, 2,
3 and 4, and (c) an (f0 → f7)-reconfiguration sequence.

In this thesis we investigate coloring reconfiguration problem [8, 12],

which is one of the most well-studied reconfiguration problem. Let G be a graph

with vertex set V (G) and edge set E(G). A mapping f : V (G) → C from V to a

color set C = {1, 2, . . . , k} of size k is called k-coloring of G if f(v) 6= f(w) holds

for any edge vw ∈ E(G). Two colorings f, f ′ of a graph G are called adjacent if

they are differ on exactly one vertex, i.e., |{f(v) 6= f ′(v) | v ∈ V (G)}| = 1. For a

graph G and its two k-colorings f0, ft, Coloring reconfiguration asks whether

there exists a sequence 〈f0, f1, . . . , fr〉 of k-colorings where fi, fi+1 are adjacent, and

fr = ft. Such a sequence is called reconfiguration sequence.

Figure 1.2(c) shows an reconfiguration sequence 〈f0, f1, . . . , f7〉 of 4-colorings of

a graph G, which is a complete graph K3 illustrated in Figure 1.2(a).

Coloring reconfiguration problem can be viewed as a reachability problem
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on a reconfiguration graph, whose vertices are colorings, and whose adjacency relation

is also an adjacency relation of colorings.

1.2 Known and related results

Coloring reconfiguration has been studied from various viewpoints [3, 4, 5, 8,

9, 10, 12, 14, 26, 15, 18, 19, 27, 28]. In particular, a sharp analysis has been obtained

from the viewpoint of the number k of colors: Bonsma and Cereceda [8] showed that

coloring reconfiguration is PSPACE-complete for any fixed number k of col-

ors at least four. On the other hand, Cereceda et al. [12] proved that coloring

reconfiguration can be solved in polynomial time if the number k of colors is

at most three. This computing time was later improved to linear time by Johnson

et al. [19]. Besides the number of colors, the complexity status of coloring re-

configuration has been clarified based on several “standard” measures. From

the viewpoint of graph classes, coloring reconfiguration problem is known to

be PSPACE-complete even for planar bipartite graph [8]. For bounded treewidth

graph [3], chordal graph [5] and line graphs of trees [18], there are sufficient con-

ditions that reconfiguration graph is connected. From the viewpoint of general-

ization of coloring, list coloring reconfiguration [14, 15, 18], H-coloring

reconfiguration [11, 27] and their generalization CSP reconfiguration [9]

are studied intensively.

As with other reconfiguration problems, bounded length variant is also studied

for coloring reconfiguration: we are asked to find a transformation sequence

of the length at most `. Johnson et al [19] showed that the shortest length a

reconfiguration sequence of 3-coloring reconfiguration can be computed in

linear time if it exists. On the other hand, Bonsma et al. [9] showed that k-coloring
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reconfiguration is W[1]-hard for any fixed number k of colors at least four.

1.3 Our problem

In this paper we introduce the concept of “recolorability” and generalize coloring

reconfiguration problem. For an integer k ≥ 1, let C be the color set of k colors

1, 2, . . . , k. Let G be a graph with vertex set V (G) and edge set E(G). Recall that

a k-coloring of G is a mapping f : V (G)→ C such that f(v) 6= f(w) holds for any

edge vw ∈ E(G). The recolorability on C is given in terms of an undirected graph

R, called the recolorability graph on C, such that V (R) = C; each edge ij ∈ E(R)

represents a “recolorable” pair of colors i, j ∈ V (R) = C. Then, two k-colorings f

and f ′ of G are adjacent (under R) if the following two conditions hold:

(a)
∣∣{v ∈ V (G) : f(v) 6= f ′(v)}

∣∣ = 1, that is, f ′ can be obtained from f by

recoloring a single vertex v ∈ V (G); and

(b) if f(v) 6= f ′(v) for a vertex v ∈ V (G), then f(v)f ′(v) ∈ E(R), that is, the

colors f(v) and f ′(v) form a recolorable pair.

For each i ∈ {1, 2, . . . , 7}, two 4-colorings fi−1 and fi in Figure 1.2(c) are adjacent

under the recolorability graph R in Figure 1.2(b). As defined above, the known

adjacency relation for coloring reconfiguration requires only Condition (a)

above, that is, we can recolor a vertex from any color to any color directly. Observe

that this corresponds to the case where R is a complete graph of size k, and hence

our adjacency relation generalizes the known one.

Given a graph G, two k-colorings f0 and fr of G, and a recolorability graph R

on C, the coloring reconfiguration problem under R-recolorability is

the decision problem of determining whether there exists a sequence 〈f0, f1, . . . , f`〉

of k-colorings of G such that f` = fr and fi−1 and fi are adjacent under R for
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1 2 3 1 2

(a) (b)

3 2

(c)

Figure 1.3: (a) Recolorability graph R with three colors 1, 2 and 3, and (b) and (c)
3-colorings f0 and fr of a graph consisting of a single edge, respectively.

all i ∈ {1, 2, . . . , `}; such a desired sequence is called an (f0 → fr)-reconfiguration

sequence, and its length (i.e., the number of recoloring steps) is defined as `. For

example, the sequence 〈f0, f1, . . . , f7〉 in Figure 1.2(c) is an (f0 → f7)-reconfiguration

sequence whose length is 7.

We emphasize that the concept of recolorability constraints changes the reacha-

bility of k-colorings drastically. For example, the (f0 → f7)-reconfiguration sequence

in Figure 1.2(c) is a shortest one between f0 and f7 under the recolorability graph

R in Figure 1.2(b). However, in coloring reconfiguration (in other words, if

R would be K4 and would have the edge joining colors 1 and 3), we can recolor the

vertex from 1 to 3 directly.

As another example, the instance illustrated in Figure 1.3 is a no-instance for

our problem, but is clearly a yes-instance for coloring reconfiguration with

k = 3.

1.4 Our contribution

In this thesis we investigate coloring reconfiguration from the viewpoints of

recolorability graph, irreversibility, and graph class.

1.4.1 Recolorability graph

We first classify the complexity status of coloring reconfiguration under R-

recolorability with respect to the structure of the recolorability R. Our results
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are summarized in Table 1.1. Our result of complexity status covers the cases

Table 1.1: Computational complexity of coloring reconfiguration under R-
recolorability

maximum number of cycles
contained in one connected component

maximum degree
∆(R) of R

at most one at least two

∆(R) ≤ 2 Linear (Such a graph does not exist)

∆(R) = 3
Some results

(See Section 3.4, 3.5)
PSPACE-c

∆(R) ≥ 3 PSPACE-c PSPACE-c

where the recolorability graph is a complete graph, therefore our results generalize

the known results of computational complexity of coloring reconfiguration

problem with respect to the number of colors [8, 12].

For the case where the recolorability graph R is of maximum degree at most

two, we also show that we can compute the shortest length of the reconfiguration

sequence in linear time. This is also a generalization of known result such that

the reconfiguration of the shortest length can be computed in linear time for 3-

coloring reconfigurationreconfiguration [19].

1.4.2 Irreversible rules

In this thesis we also generalize the recolorability graphs to directed graphs, and

introduce irreversible transformation rules to coloring reconfiguration. In our

setting of directed recolorability graph, a vertex can be recolored from a color c to

another color c′ only if there is a arc from c to c′ on the directed recolorablity graph.

Such an irreversible transformation rules have not been considered for coloring

reconfiguration problem, and such rules can capture the behavior of softwares
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and machines in the real world. We show the results of tractability and intractability:

the problem is NP-complete if the recolorability graph is polytree, on the other hand,

the problem is polynomial-time solvable if the recolorability graph is rooted tree.

1.4.3 Edge-coloring reconfiguration

We also study the complexity status of edge-coloring reconfiguration and

its generalization list edge-coloring reconfiguration. For about the com-

putational complexity of list edge-coloring reconfiguration problem, par-

tial answer is given by Ito et al. [18]: list edge-coloring reconfiguration is

PSPACE-complete for any fixed number of colors at least six, while it is polynomial-

time solvable if the number of colors is at most three. In this thesis we show that list

edge-coloring reconfiguration is PSPACE-complete for any fixed number of

colors at least four, and edge-coloring reconfiguration is PSPACE-complete

for any fixed number of colors at least five. These results also apply to the graphs

of bounded bandwidth.

1.5 Organization of this thesis

In Chapter 2, we give basic terminologies and notations of graph theory and the-

oretical computer science, and notions used for our problems. In Chapter 3 we

prove the computational hardness of coloring reconfiguration under R-

recolorability for some sorts of recolorability graph R. On the other hand,

in Chapter 4 we give polynomial-time algorithms of coloring reconfiguration

under R-recolorability for some sorts of recolorability graph R. In Chap-

ter 5 we study a further generalization of coloring reconfiguration under R-

recolorability, where the recolorability graph is undirected and transformation
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is generally irreversible. In Chapter 6 we also investigate coloring reconfigura-

tion problem from the viewpoint of graph classes. We show PSPACE-hardness of

edge-coloring reconfiguration and its generalization list edge-coloring

reconfiguration. Finally, in Chapter 7 we conclude our thesis.
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Chapter 2

Preliminaries

In this chapter, we present basic terminologies and notations widely used in this

thesis. We sometimes need additional definitions for description, which are given

when necessary.

2.1 Basic terminologies of graph theory

2.1.1 Graph and subgraphs

An (undirected) graph G is an ordered pair (V,E) of a set V of vertices and a set

E ⊆ {{v, w} | v, w ∈ V } of edges, which are unordered pairs (sets of size two) of

vertices. In this thesis we only deal with finite graph, whose vertex set is finite. We

sometimes denote by V (G) and E(G) the vertex set V and edge set E of a graph

G = (V,E). We often denote an edge {v, w} ∈ E by vw. If vw ∈ E then we call

v, w are adjacent or joined, and v, w is incident to vw. Also, if v, w ∈ V are adjacent

then w is called a neighbor of v. The neighborhood N(G, v) is a set of neighbors of

v in G, and the closed neighborhood N [G, v] is a set N(G, v) ∪ {v}.

A subgraph of a graph G = (V,E) is a graph G′ = (V ′, E ′) such that V ′ ⊆ V

and E ′ ⊆ E; and we sometimes denote it by G′ ⊆ G. Conversely, G is called a

supergraph of G′ if G′ is a subgraph of G. A subgraph G′ = (V ′, E ′) of G = (V,E)
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Figure 2.1: (a) A graph G with four vertices and five edges, (b) a (not induced)
subgraph of G, and (c) an induced subgraph G[{u,w, x}]

.

is induced by V ′, or simply called induced subgraph if vw ∈ E ⇒ vw ∈ E ′ for any

two vertices v, w ∈ V ′. We denote by G[V ′] a subgraph of G induced by V ′ ⊆ V (G).

Figure 2.1 shows an graph (Figure 2.1(a)) and its subgraph and induced subgraph

(Figure 2.1(b)(c)).

2.1.2 Walk, path, cycle, clique and connectedness

For a graph G, a sequence 〈v0, v1, . . . , v`〉 is called walk between v0 and v` if vivi+1 ∈

E(G) for each i ∈ {0, . . . , ` − 1}. The length of a walk 〈v0, v1, . . . , v`〉 is defined as

`. A walk without any repetition of vertices is called a path. A path 〈v0, v1, . . . , v`〉

is also called cycle if v`v0 is an edge. The terms “path” and “cycle” are also used

in terms of the subgraphs. For a path (cycle) 〈v0, v1, . . . , v`〉 of G, a subgraph

G′ = ({v0, v1, . . . , v`}, {v0v1, v1v2, . . . , v`−1v`}) of G is also called a path (cycle). A

subset V ′ ⊆ V (G) of the vertex set of a graph G is called clique if any two vertices

in V ′ are joined by an edge in G[V ′]. A graph G is connected if there exists a path

between any two vertices of G. A connected maximal induced subgraph of G is

called a connected component of G.
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2.1.3 Digraphs

A directed graph or a digraph is an ordered pair
−→
G = (V,A) of a set V of vertices

and a set A ⊆ {(v, w) | v, w ∈ V } of arcs, which are ordered pairs of vertices. For

a digraph (V,A), its underlying graph is an undirected graph (V,E) where E =

{{v, w} | (v, w) ∈ A}. We sometimes denote by V (
−→
G) and A(

−→
G) the vertex set V

and arc set A of a directed graph
−→
G . For an undirected graph G, we denote by

−→
G

a digraph whose underlying graph is G, and also denote by A(
−→
G) the arc set of

−→
G .

We denote by vw an edge joining two vertices v and w in an undirected graph, while

by (v, w) an arc from v to w in a digraph. A directed graph is simple if there is no

loop, that is an arc (v, v) for some vertex v. In this paper we only deal with simple

digraphs. A directed graph is oriented if it does not has both of arcs (v, w) and

(w, v) for any two vertices v, w. In this paper, we say that a digraph
−→
G is connected

if
−→
G is weakly connected, that is, the underlying graph G is connected. A vertex v

in a digraph
−→
G is called a source vertex if the in-degree of v is zero, while it is called

a sink vertex if the out-degree of v is zero. A sequence 〈v0, v1, v2, . . . , vl〉 of vertices

v0, v1, . . . , vl and arcs is called a forward walk from v0 on
−→
G if an arc from vi−1 to vi

exists for all i ∈ {1, 2, . . . , l}; while it is called a backward walk to v0 on
−→
G if an arc

from vi to vi−1 exists for all i ∈ {1, 2, . . . , l}. The length of forward (backward) walk

〈v0, v1, v2, . . . , v`〉 is `. A forward walk is called a directed path if it has no repetition

of a vertex in its sequence.

2.1.4 Graph classes of undirected graph

A graph is called a path (cycle) if itself is a path (cycle). A graph containing no

cycle is called a tree if connected, otherwise it is called a forest. Especially, a tree

of maximum degree three is called a binary tree. A graph G is called a complete if
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V (G) is a clique of G. A graph is called unicyclic if it contains exactly one cycle.

A graph is called planar if it can be drawn in the plane in such a way, its vertices

are point on the plane, and its edges are curves between two points, and there is no

crossing of any two edges.

A line graph L(G) of a graph G is defined as follows:

V (L(G)) = E(G)

E(L(G)) = {ee′ | e, e ∈ E(G), e ∩ e′ 6= ∅}.

Line graph is also a class of graphs where all graphs are line graph of some graph.

2.1.5 Graph classes of digraph

An oriented digraph
−→
G is called polytree if its underlying graph is a tree. A polytree

is also called rooted tree if it has a root vertex from which there are directed paths

to any vertex in V (
−→
G).

2.2 Terms of computational complexity

2.2.1 Problems

A problem is a language (set of strings) P ⊆ Σ∗ where Σ = {0, 1}. Each string

x ∈ Σ∗ is called an instance. An instance x is called yes-instance of a problem P if

x ∈ P , otherwise it is called no-instance of the problem P .

2.2.2 P and Polynomial-time reduction

P is the class of all problems which can be solved in polynomial-time. For two

problems P ,P ′, a reduction from P to P ′ is an algorithm which maps any instance

x ∈ Σ∗ to an instance y ∈ Σ∗ such that x ∈ P if and only if y ∈ P ′. If a reduction

runs in polynomial time, it is called a polynomial-time reduction.
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2.2.3 NP and NP-hardness

NP is the class of all problems which can be solved in nondeterministic polynomial-

time. A problem P is called NP-hard if for any problem P ′ in NP, there exists a

polynomial-time reduction from P ′ to P . A problem which is NP-hard and also in

NP is called NP-complete.

2.2.4 PSPACE and PSPACE-hardness

PSPACE is the class of all problems which can be solved in nondeterministic

polynomial-time. A problem P is called PSPACE-hard if for any problem P ′ in

PSPACE, there exists a polynomial-time reduction from P ′ to P . A problem which

is PSPACE-hard and also in PSPACE is called PSPACE-complete.

2.3 Terms used in this thesis

2.3.1 Coloring

Let C = {1, 2, . . . , k} be a color set of size k k-coloring of the graph G is a mapping

f : V (G)→ C such that for any edge vw ∈ E(G), f(v) 6= f(w) holds. For a graph

G and nonnegative integer k ≥ 1, coloring problem asks whether there exists a

k-coloring of G.

2.3.2 Adjacency and recolorability

Two k-colorings f, f ′ of a graph G are called adjacent if the following condition

holds:

(a) |{v ∈ V (G) | f(v) 6= f ′(v)}| = 1.

For a color set C = {1, 2, . . . , k}, a recolorability graph R is an undirected graph

whose vertex set is the color set C. For a recolorability graph R, two k-colorings f, f ′
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are called adjacent under R if the above condition (a) and the following condition

hold:

(b) For any vertex v ∈ V (G), if f(v) 6= f ′(v) then f(v)f ′(v) ∈ E(R).

2.3.3 Reconfiguration graph and reconfiguration sequence

For a graph G and a recolorability graph R, reconfiguration graph CR(G) is a graph

whose vertex set is a set of all k-colorings of G, and whose two vertices are joined

by an edge if they are adjacent under R.

For two colorings f, f ′ of G, a (f → f ′)-reconfiguration sequence under R is a

path between f and f ′ on CR(G).

If R is a complete graph whose vertex set is {1, 2, . . . , k}, we sometimes denote

CR(G) by Ck(G).

2.3.4 Frozen

Let G be a graph and R be a recolorability graph which has k colors. For a k-coloring

f of G, a vertex v ∈ V (G) is called frozen on f if for any (f → f ′)-reconfiguration

sequence f(v) = f ′(v). If G and R is trivial in the context, we denote the set of

vertices frozen on f by Frozen(f).

2.3.5 Coloring reconfiguration

For a graph G and a recolorability graph R which has k colors, and two k-colorings

f0, ft, coloring reconfiguration under R-recolorability asks whether

there exists an (f0 → fr)-reconfiguration sequence. We call f0 and fr initial and

target colorings respectively. We redefine the k-coloring reconfiguration as a

special case of coloring reconfiguration under R-recolorability where

R is a complete graph of size k.
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Chapter 3

Computational hardness

In this chapter, we clarify the computational hardness of the problem from the

viewpoint of recolorability graphs R. Through this section we assume R is connected

graph. Because if R is disconnected, any two vertices v, w whose initial colors a, b

are in mutually disconnected two components of R cannot have the same color,

therefore we can separate the instance into subinstances such that each of whose

graph is a subgraph induced by the vertices whose initial colors are in the same

connected component of R.

In Section 3.1, we first introduce the list variant of the problem. Interestingly, the

list variant is equivalent with the non-list one in our reconfiguration problem, and

hence it suffices to construct reductions to the list variant. In Section 3.2, we then

show that the list variant (and hence the non-list one) is PSPACE-complete for an

arbitrary recolorability graph with maximum degree at least four. In Section 3.3, we

show that coloring reconfiguration under R-recolorability is PSPACE-

complete for an arbitrary recolorability graph R which has more than one cycle.
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3.1 List recolorability

In the list variant, each vertex v of a graph G is associated with a subgraph RL(v)

of the common recolorablity graph R; we call RL(v) the list recolorability of v, and

sometime call the list assignment (mapping) RL the list R-recolorability. Note that

RL(v) is not necessarily a spanning subgraph of R. Let k = |V (R)|. Then, a k-

coloring f of G is called a list coloring of G if f(v) ∈ V (RL(v)) for all vertices v

in G. Observe that for any supergraph R′ of R, any list R-recolorability is also list

R′-recolorability. We say that two list colorings f and f ′ are adjacent under RL if

they differ in exactly one vertex v such that f(v)f ′(v) ∈ E(RL(v)). Analogous to

the R-reconfiguration graph, we define the RL-reconfiguration graph on G, denoted

by CRL
(G), as the undirected graph whose nodes correspond to list colorings of G,

and two nodes in CRL
(G) are joined by an edge if their corresponding list colorings

are adjacent under RL.

Let G be an input graph with a list R-recolorability RL. Then, for two list

colorings f0 and fr of G, the coloring reconfiguration problem under list

R-recolorability (the list variant, for short) is the decision problem of determin-

ing whether CRL
(G) contains an (f0 → fr)-reconfiguration sequence. Observe that

coloring reconfiguration under R-recolorability can be seen as the list

variant such that RL(v) = R holds for every vertex v ∈ V (G). Furthermore, note

that CRL
(G) forms a subgraph of CR(G).

Interestingly, the list variant for our reconfiguration problem is equivalent to the

non-list one, as in the following theorem.

Theorem 1. Coloring reconfiguration under list R-recolorability can

be reduced to coloring reconfiguration under R-recolorability in time
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Figure 3.1: (a) Recolorability graph R such that RL(v) ⊆ R for any vertex v ∈ V (G),
(b) a vertex v ∈ V (G) with the list recolorability RL(v), and (c) the vertex v in G′,
where the (red) thick dotted part corresponds to forbidding the pair of colors 1 and
2 in E(R) \ E(RL(v)) and the (blue) thick part corresponds to forbidding the pair
of colors 2 and 3 in E(R) \ E(RL(v)).

polynomial in |V (G)| and |V (R)|, where G is an input graph of the list variant.

Proof. Let G be an input graph for the list variant with a list R-recolorability

RL, and suppose that we are given two list colorings f0 and fr of G. Then, we

construct a corresponding instance of coloring reconfiguration under R-

recolorability; we denote by G′ the corresponding graph, and by f ′0 and f ′r the

corresponding initial and target k-colorings of G′, respectively, where k = |V (R)|.

Indeed, we will give a gadget which forbids recoloring a vertex v ∈ V (G) directly

from a color i to another color j for each pair ij ∈ E(R) \E(RL(v)). Note that, for

each color i in V (R)\V (RL(v)), we can add the vertex i toRL(v) as an isolated vertex

(by adding the forbidding gadgets between i and all colors j such that ij ∈ E(R)).

Then, since f0 and fr are list colorings of G, both f0(v) 6= i and fr(v) 6= i hold and

hence v is never recolored to the isolated color i.

To construct such a forbidding gadget, we will use a (newly added) clique of size

k = |V (R)| such that all vertices are colored with distinct colors. Notice that no

vertex in the clique can be recolored to any color, that is, they are frozen vertices
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on the k-coloring. We use this property, and construct the corresponding instance,

as follows.

Construction.

We first add to G a new clique Kk of k vertices r1, r2, . . . , rk. Then, for each

vertex v ∈ V (G), consider any pair of colors i and j such that ij ∈ E(R)\E(RL(v)).

We add a new vertex vij to G, and join it with v. In addition, we join vij with all

vertices in V (Kk) \ {ri, rj}. (See Figure 3.1(a)–(c) as an example of the application

of this procedure.) Let G′ be the resulting graph after applying the procedure

above to all vertices v ∈ V (G) and all pairs ij ∈ E(R) \ E(RL(v)). For notational

convenience, we denote by VF the set of all vertices vij in G′ that are newly added for

each vertex v ∈ V (G) and ij ∈ E(R)\E(RL(v)). We note that V (G′) is partitioned

into V (G), V (Kk), and VF . Furthermore, each vertex vij ∈ VF satisfies N(G′, vij) ∩

V (G) = {v}. We always denote by v this unique vertex in N(G′, vij)∩V (G) for each

vertex vij ∈ VF . Then, the corresponding k-colorings f ′0 and f ′r of G′ are defined as

follows: for each l ∈ {0, r} and a vertex w ∈ V (G′),

f ′l (w) =


fl(w) if w ∈ V (G);

i if w = ri ∈ V (Kk);

j if w = vij ∈ VF and fl(v) = i; and

i otherwise, that is, w = vij ∈ VF and fl(v) 6= i.

Then, all vertices r1, r2, . . . , rk are frozen on both f ′0 and f ′r (indeed, under any

recolorability graph). This completes the construction of the corresponding instance.

Clearly, this construction can be done in time polynomial in |V (G)| and k = |V (R)|.

Correctness.

We now show that CRL
(G) contains an (f0 → fr)-reconfiguration sequence if and

only if CR(G′) contains an (f ′0 → f ′r)-reconfiguration sequence.



3.1 List recolorability 19

We first prove the only-if direction. Consider the first edge in an (f0 → fr)-

reconfiguration sequence S on CRL
(G). Suppose that it corresponds to recoloring

a vertex v ∈ V (G) from the color f0(v) = i to another color j. Then, the list

recolorability RL(v) of v contains an edge ij. Recall that RL(v) is a subgraph of

R. Therefore, ij ∈ E(R). Since S correctly recolors v from i to j, any vertex

in N(G, v) is not colored with j in f0. However, there may exist a vertex w in

N(G′, v) \ V (G) which is colored with j in f ′0. By the construction of G′, such a

vertex w must be contained in VF . Since f ′0(w) = j, we can assume w = vi′j for some

color i′. Notice that i′ 6= i holds, because ij ∈ E(RL(v)). Therefore, we can recolor

w from j to another color i′ ( 6= i), and then recolor v to j. In this way, CR(G′)

contains a path corresponding to the first edge in S on CRL
(G). By repeatedly

applying the procedure above, we can obtain an coloring f satisfying f(v) = f ′r(v)

for any vertex v ∈ V (G′) \ VF . Then we can directly recolor each v ∈ VF from f(v)

to f ′r(v) if f(v) 6= f ′r(v) since no neighbor vertex in N(G′, v) ⊆ V (G) ∪ V (Kk) is

colored neither f(v) nor f ′r(v) and f(v)f ′r(v) ∈ E(R(v)). Therefore there exists an

(f ′0 → f ′r)-reconfiguration sequence on CR(G′).

We then prove the if direction. Consider the first edge in an (f ′0 → f ′r)-

reconfiguration sequence S ′ on CR(G′). Suppose that it corresponds to recoloring

a vertex v ∈ V (G′) from the color f ′0(v) = i to another color j. Since any vertex

in V (Kk) is frozen on f ′0, the vertex v must be in V (G′) \ V (Kk) = V (G) ∪ VF . If

v ∈ VF , then we simply ignore the edge and repeat. We thus consider the case where

v ∈ V (G). If ij ∈ E(RL(v)), then we can simply recolor v from f0(v) = i to j; recall

that f0(w) = f ′0(w) for all vertices w ∈ V (G), and hence no vertex in N(G, v) is

colored with j on f0 if S ′ can recolor v from f ′0(v) to j. Finally, we thus consider the

case where v ∈ V (G) and ij 6∈ E(RL(v)). However, we claim that this case does not
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happen, as follows. In this case, G′ contains a vertex vij ∈ VF which is adjacent with

all vertices in V (Kk) \ {ri, rj}. Since every vertex rl in V (Kk) is frozen on f ′0 and

is colored with l, the vertex vij must be colored with either i or j in any k-coloring

which is reachable from f ′0 on CR(G′). Since v is adjacent with vij, this contradicts

the assumption that S ′ recolors v from i to j directly. Therefore, the final case does

not happen. In this way, CRL
(G) contains a path (an edge) corresponding to the

first edge in S ′ on CR(G′). By repeatedly applying the procedure above, we can

obtain an (f0 → fr)-reconfiguration sequence on CRL
(G).

Recall that for any supergraph R′ of R, any list R-recolorability is also a list

R′-recolorability, therefore we obtain the following corollary:

Corollary 1. Let R′ be an arbitrary supergraph of a recolorability graph R. Then,

Coloring reconfiguration under list R-recolorability can be reduced to

coloring reconfiguration under R′-recolorability in time polynomial in

|V (G)| and |V (R′)|, where G is an input graph of the list variant.

3.2 Recolorability graphs of maximum degree at

least four

We first consider the case where a recolorability graph is of maximum degree at

least four. We emphasize again that the following theorem holds for an arbitrary

recolorability graph R as long as the maximum degree of R is at least four.

Theorem 2. Let R′ be any recolorability graph whose maximum degree is at

least four. Then, coloring reconfiguration under R′-recolorability is

PSPACE-complete.
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Proof. Observe that the problem can be solved in (most conveniently, nondetermin-

istic [24]) polynomial space, and hence it is in PSPACE. Therefore, we show that

the problem is PSPACE-hard for such a recolorability graph R′. Notice that, since

R′ is of maximum degree at least four, R′ is a supergraph of a star K1,4. Therefore,

by Corollary 1 it suffices to prove that the list variant remains PSPACE-hard even

for a list R-recolorability such that R = K1,4. (See Figure 3.2(a).) To show this,

we give a polynomial-time reduction from 4-coloring reconfiguration, which

is known to be PSPACE-complete [8].

Construction.

Let G be an input graph for 4-coloring reconfiguration, and let f0 and

fr be a two given 4-colorings of G; we assume the color set C = {1, 2, 3, 4}. As a

corresponding instance of the list variant, we take the same graph G in which the

list recolorability RL(v) of each vertex v ∈ V (G) is a star K1,4 such that its center

is a new color 5 and its leaves are the four colors 1, 2, 3 and 4. Then, both f0 and

fr are list colorings of the corresponding graph G, and we take the 4-colorings f0

and fr as the corresponding list colorings. This completes the construction of the

corresponding instance, and hence it is clearly done in polynomial time.

Correctness.

We prove that there exists an (f0 → fr)-reconfiguration sequence for 4-

coloring reconfiguration if and only if there exists an (f0 → fr)-

reconfiguration sequence for the list variant for the list R-recolorability RL, where

R = K1,4.

We first prove the only-if direction. Suppose that an (f0 → fr)-reconfiguration

sequence exists for 4-coloring reconfiguration, and let 〈f0, f1, . . . , f`〉 be such
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a sequence, where f` = fr. Then, for each i ∈ {0, 1, . . . , `− 1}, there exists exactly

one vertex vpi ∈ V (G) such that fi(vpi) 6= fi+1(vpi). In addition, we know that both

fi(vpi) and fi+1(vpi) are contained in {1, 2, 3, 4}. For each i ∈ {0, 1, . . . , ` − 1}, we

define a list coloring f ′i of G, as follows: for each vertex v ∈ V (G),

f ′i(v) =

{
5 if v = vpi ;
fi(v) otherwise.

Recall that, for all vertices v ∈ V (G), the color 5 is contained in RL(v) and is

adjacent with all the other colors 1, 2, 3, 4 in RL(v). (See Figure 3.2(a).) Therefore,

the sequence 〈f0, f ′0, f1, f ′1, . . . , f`−1, f ′`−1, f`〉 of list colorings of G forms an (f0 → fr)-

reconfiguration sequence for the list variant.

We then prove the if direction. Suppose that an (f0 → fr)-reconfiguration

sequence exists for the list variant for the list R-recolorability RL, and let

〈f0, f1, . . . , f`〉 be such a sequence, where f` = fr. For each i ∈ {0, 1, . . . , `}, we

define a mapping f ′i : V (G)→ {1, 2, 3, 4}, as follows: for each vertex v ∈ V (G),

f ′i(v) =

{
fi(v) if fi(v) ∈ {1, 2, 3, 4};
f ′i−1(v) if fi(v) = 5.

Note that, since f0 and fr (= f`) are 4-colorings of G, both f ′0 = f0 and f ′` =

f` = fr hold. We now claim that the sequence 〈f ′0, f ′1, . . . , f ′`〉 forms an (f0 → fr)-

reconfiguration sequence for 4-coloring reconfiguration (if needed, we delete

the redundant 4-colorings) by proving the following (a) and (b):

(a) f ′i is a 4-coloring of G for each i ∈ {0, 1, . . . , `}; and

(b)
∣∣{v ∈ V (G) : f ′i−1(v) 6= f ′i(v)}

∣∣ ≤ 1 for each i ∈ {1, 2, . . . , `}.

We first prove the claim (a) above. Let w be any vertex in G such that fi(w) = 5.

Then, in the corresponding mapping f ′i , the vertex w is colored with some color

fq(w) ∈ {1, 2, 3, 4} such that q = max{0 ≤ j ≤ i− 1 : fj(w) 6= 5}. Then, fj(w) = 5



3.3 Recolorability graphs with more than one cycle 23

1 2

34

5

(a)

1

2

3

4

(b)

1

2

34

5

6

(c)

Figure 3.2: (a) Recolorability graph K1,4. In our reduction, the star K1,4 with center
color 5 is the list recolorability of all vertices v ∈ V (G). (b) Recolorability graph
which is a diamond graph. (c) Recolorability graph which is a 2K3 + e graph.

for all j ∈ {q+ 1, q+ 2, . . . , i}, and hence every vertex v ∈ N(G,w)∪{w} is colored

with the same color fq(v), because any recoloring must be made via the color 5.

(See Figure 3.2(a).) Since fq is a list (proper) coloring of G, no vertex in N(G,w)

is colored with fq(w) = f ′i(w). This argument holds for all vertices in G which is

colored with 5 in fi, and hence f ′i is a (proper) 4-coloring of G.

We finally prove the claim (b) above. Let v be the vertex which is recolored

between fi−1 and fi, i ∈ {1, 2, . . . , `}. If v is recolored from a color in {1, 2, 3, 4} to

5, then we have f ′i = f ′i−1 and hence the claim holds. Note that v stays with the

same color f ′i(v) = fi−1(v) until it is recolored to some color in {1, 2, 3, 4}. Therefore,

the claim holds also for the case where v is recolored from a color in {1, 2, 3, 4, 5} to

another color in {1, 2, 3, 4}, because only v is recolored between fi−1 and fi.

3.3 Recolorability graphs with more than one cy-

cle

In this subsection, we consider the case where a recolorability graph R having more

than one cycle. Our result is expressed as follows:

Theorem 3. Let R be a recolorability graph such that |E(R)| > |V (R)|. Then

coloring reconfiguration under R-recolorability is PSPACE-complete.

By Theorem 1, it suffices to prove that the list variant remains PSPACE-hard
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for a list R-recolorability, such that |E(R)| > |V (R)|. We first characterize the

structure of R by two small graphs: A graph is called a diamond graph if it can be

obtained by deleting exactly one edge from a complete graph K4 of size four. (See

Figure 3.2(b)); a 2K3 + e graph is a graph obtained by adding exactly one edge to

disjoint union of two triangles K3. (See Figure 3.2(c).) The following lemma shows

that any graph R with |E(R)| > |V (R)| can be characterized by the maximum

degree of R and these two small graphs.

Lemma 1. Let R be a connected graph such that |E(R)| > |V (R)|. Then, R satisfies

at least one of the following statements:

(a) R has a vertex whose degree is at least four;

(b) R is a supergraph of some subdivision of a diamond graph; and

(c) R is a supergraph of some subdivision of a 2K3 + e graph.

Proof. We first remove vertices of degree one and their incident edges from R re-

peatedly until all the vertices of the resulting graph are of degree at least two. From

now on, we denote the resulting graph by R. Observe that R is connected and

satisfies |E(R)| > |V (R)|, because we delete only degree-one vertices and the same

number of edges. It suffices to prove that such a graph R satisfies one of the three

properties (a)–(c).

Since all vertices of R are of degree at least two, R has a cycle C. Moreover,

since |E(R)| > |V (R)|, C has a vertex v of degree at least three. Then we traverse

vertices in V (R) by the depth-first search which starts from v and secondary visit

any vertex in N(R, v) \N(C, v), until we reach a vertex that is already visited or is

contained in the cycle C. Since R has no degree-one vertex, there are the following

three cases as the result of the search:
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• If the search reaches v, then the degree of v is at least four; the case (a) holds.

• If the search reaches a vertex in V (C) \ {v}, then R contains a subdivision of

diamond; the case (b) holds.

• If the search reaches an already visited vertex which is not in V (C), then R

contains a subdivision of 2K3 + e; the case (c) holds.

Thus, the lemma holds.

If Lemma 1(a) holds for the recolorability graph R, then coloring recon-

figuration under R-recolorability is PSPACE-complete by Theorem 4.4.

Therefore it suffices to prove the PSPACE-completeness for the cases (b) and (c),

i.e., we will show that coloring reconfiguration under R-recolorability

is PSPACE-complete if the recolorability graph R is any subdivision of diamond or

2K3 + e.

1

2 3
2-4 4-1 1-2 2-4 4-3

v
w

(a)

1-2-3 2-4 4-1 1-2 2-4 4-3

v
w

(b)

Figure 3.3: (a) An example of (2, 4)-forbidding path from v to w and, (b) an example
of (2, 4)-forbidding path from v to w with a recolorability constraint

In the rest of section we use the notion of (a, b)-forbidding paths which was

introduced in [8]. A path graph from v to w and its list is called (a, b)-forbidding path

from v to w if the color combination (a, b) can not be assigned to the vertices u and

v, respectively at the same time. In forbidding path, any other color combinations

are called admissible. Figure 3.3(a) shows an example of a forbidding path. We

cannot assign the colors 2 and 3 to the vertices u and v respectively at same time.
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Indeed, this notion was defined for conventional coloring reconfiguration problem

without recolorability. In our situation, besides forbidding the inadmissible pairs, we

also have to consider the structure of the recolorability. Two admissible pairs (x, y)

and (x′, y′) are called adjacent if x = x′ and yy′ ∈ E(R), of xx′ ∈ E(R) and y = y′.

We must ensure that two colorings f, f ′ corresponding two adjacent admissible pairs

(x, y), (x′, y′) are reachable, that is, there is a sequence f0, f1, . . . , ft such that f0 = f ,

ft = f ′ and for some i ∈ {0, 1, . . . , t − 1}, colorings f0, f1, . . . , fi correspond to

the admissible pair (x, y), and the rest colorings fi+1, fi+2, . . . , ft correspond to the

admissible pair (x′, y′). To deal with such a situation the conventional definition of

the forbidding path is insufficient. For our purpose we give generalized definition

of forbidding path for coloring reconfiguration with the recolorability constraint. A

path graph G from u to w with its list R-recolorability RL are called (a, b)-forbidding

path from u to v if the following properties hold:

(a) There exists no list coloring f of G such that f(u) = a and f(v) = b.

(b) For any admissible pair (x, y) the subgraph of RL-reconfiguration graph in-

duced by the colorings f such that f(u) = x and f(v) = y, is connected.

(c) Let (x, y) and (x′, y′) be two admissible pairs. If x = x′ and yy′ ∈ E(RL(v)), or

xx′ ∈ E(RL(u)) and y = y′, then there exist two colorings f and f ′ such that

(f(u), f(v)) = (x, y), (f ′(u), f ′(v)) = (x′, y′) and f, f ′ are adjacent on CRL
(G).

In our proof we only deal with (a, b)-forbidding paths from u to v where the

list recolorability of u, v are paths of length one or two, as shown in Figure 3.3(b).

Therefore we often use a notation like “(2, 4)-forbidding path from 1-2-3 to 4-3”

where “1-2-3” means some vertex whose list recolorability is a path consists of the

colors 1, 2, 3.
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A typical (a, b)-forbidding path from u to v consists of a path u,w1, w2, . . . , wp, v

whose all intermediate vertices have list recolorability RL(wi) of size two such that:

(i) There is a walk c1, c2, . . . , cp+1 on R, satisfying ci 6= ci+2 for all i ∈ {1, . . . , p−

1};

(ii) for any i ∈ {1, . . . , p}, V (RL(wi)) = {ci, ci+1} and E(RL(wi)) = {cici+1}; and

(iii) c1 = a, c2 /∈ V (RL(u)), cp /∈ V (RL(v)), cp+1 = b hold.

Lemma 2. A path u,w1, w2, . . . , wp, v and its list recolorability RL satisfying the

above conditions (i)(ii)(iii) is an (a, b)-forbidding path from u to v.

Proof. We show that all of the conditions (a)(b)(c) of the definition of the (a, b)-

forbidding path hold for such a path. The proof depends on the induction on the

length p of the path w1, w2, . . . , wp.

First consider the case where p = 1, then V (RL(w1)) = {a, b} and E(RL(w1)) =

{ab} hold. Moreover, by the condition (iii), b /∈ RL(u) and a /∈ RL(v). For this

case the condition (a) holds since if the colors a, b are assigned to the vertices u, v

respectively, the vertex w1 cannot be colored by neither a or b.

To show that the condition (b) holds for any admissible pair of the case p = 1,

we consider two cases. Let (x, y) ∈ V (RL(u))×V (RL(v))\{(a, b)} be an admissible

pair. If x 6= a and y 6= b, then the colorings which map (u, v) to (x, y) are limited

to only two colorings which map w1 to a and b respectively. Obviously they are

adjacent under RL. Otherwise, one of the cases x = a and y = b holds, then the

color of w1 uniquely determined. Therefore the condition (b) holds for the case

p = 1.

Let (x, y) and (x′, y′) be two admissible pairs such that x = x′ and yy′ ∈

E(RL(v)). For the condition (c), we consider two cases: For the case x 6= a, two
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adjacent colorings f, f ′ such that f(w1) = f ′(w1) = a exist for each admissible pair,

since y, y′ cannot be the color a by the condition (iii). Otherwise we have x = a

and then, two adjacent colorings f, f ′ such that f(w1) = f ′(w1) = b exist for each

admissible pair, since y, y′ cannot be b because of the definition of constraint of

admissible pair.

For the case p > 1, we focus on the subpath u,w1, . . . , wp. For notational

convenience we denote whole path u,w1, . . . , wp, v by G, and denote the subpath

u,w1, . . . , wp by G \ v. Notice that G \ v satisfies the conditions (i)(ii)(iii) therefore

is a (a, cp)-forbidding path from u to wp by the induction hypothesis. Then the

following hold:

(a′) There is no coloring f such that f(u) = a and f(wp) = cp.

(b′) CRL
(G \ v)[{f : f(u) = x, f(wp) = y}] is connected for any admissible pair

(x, y).

(c′) For any two admissible pairs (x, y) and (x′, y′) such that x = x′ and yy′ ∈

E(RL(v)), or xx′ ∈ E(RL(u)) and y = y′, there are two coloring f, f ′ satisfying

f(u) = x, f(v) = y, f ′(u) = x′, f ′(v) = y′, which are adjacent on CRL
(G \ v).

Consider the condition (a) for the case p > 1. If there is a coloring f satisfying

f(u) = a and f(v) = b, then the color of the vertex wp must be f(wp) = cp, this is

forbidden by the property (a′).

To show that the condition (b) holds for the case p > 1, consider two cases: Let

(x, y) be an admissible pair. If a coloring f satisfies f(u) = a, then wp must have

the color f(wp) = cp+1 = b, and by property (b′), Fa,cp+1 = CRL
(G \ v)[{f : f(u) =

a, f(wp) = cp+1}] is connected (indeed it consists of single coloring). Therefore
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CRL
(G)[{f : f(u) = a, f(v) = y}] is connected for any admissible pair (a, y). Oth-

erwise we have x = f(u) 6= a and we have two possibility of the color of the vertex

wp, f(wp) = cp or f(wp) = cp+1. Fx,cp = CRL
(G \ v)[{f : f(u) = x, f(wp) = cp}] and

Fx,cp+1 = CRL
(G \ v)[{f : f(u) = x, f(wp) = cp+1}] are also connected by the prop-

erty (b′), and by the property (c′) there are two coloring f(x,cp),(x,cp+1) ∈ V (Fx,p)

and f(x,cp+1),(x,cp) ∈ V (Fx,cp+1) which are adjacent on CRL
(G \ v). Therefore

CRL
(G)[{f : f(u) = x, f(v) = y}] is connected for any admissible pair (x, y).

Finally we show that the condition (c) holds for the case p > 1. Let (x, y) and

(x′, y′) be admissible pairs of G. We have the following cases:

• For the case y = y′,

– if x or x′ is a, then y must not be b. For this case two adjacent colorings

f, f ′ such that f(u) = x, f ′(u) = x′, f(wi) = f ′(wi) = ci+1 for all i ∈

{1, . . . , p}, and f(v) = f ′(v) = y exist.

– if x, x′ are not a, there are two adjacent colorings f, f ′ such that f(u) =

x, f ′(u) = x′, f(wi) = f ′(wi) = ci for all i ∈ {1, . . . , p}, and f(v) =

f ′(v) = y exist.

• For the case x = x′,

– if x = a then y, y′ cannot be b. For this case two adjacent colorings f, f ′

such that f(u) = f ′(u) = a, f(wi) = f ′(wi) = ci+1 for all i ∈ {1, . . . , p},

and f(v) = y, f ′(v) = y′ exist.

– Otherwise, x 6= a then case two adjacent colorings f, f ′ such that f(u) =

f ′(u) = x, f(wi) = f ′(wi) = ci for all i ∈ {1, . . . , p}, and f(v) = y, f ′(v) =

y′ exist.
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We call such a path (a, b)-forbidding path from u to v induced by walk c1, c2, . . . , cp+1.

Fig. 3.3 shows an example of such (2, 4)-forbidding path from 1-2-3 to 2-4 induced by

walk 2, 4, 1, 2, 4, where the recolorability graph R is the diamond shown in Figure 3.2.

In the following lemma we show that the PSPACE-completeness holds for the

case of Lemma 1(b).

Lemma 3. Let R be any recolorability graph which is obtained by subdividing

the edges of diamond. Then, coloring reconfiguration under list R-

recolorability is PSPACE-complete.

Proof. According to Theorem 1, it suffices to prove that the list variant under list

R-recolorability remains PSPACE-hard.

A subdivision of diamond consists of two degree three vertices c0 and c∞, and

three edge disjoint paths X, Y, Z connecting c0 and c∞. (See Fig. 3.4(a).)

c0 = 4 cY1 = 1

cX1 = 2

cZ1 = 3

cYy

cXx

cZz

c∞

(a)

c0 = 4

cY1 = 1

cZ1 = 3

c∞ = 2

cYy

cZz

(b)

Figure 3.4: Subdivisions of diamond determined by tuple (x, y, z) for the case where
(a) x > 0, and (b) x = 0.

If subdivision R is obtained without subdividing the edge between two degree

three vertices, then at most one of the paths X, Y, Z is not exist, and in such a

case c0 and c∞ are adjacent. (See Fig. 3.4(b).) Without loss of generality, we

assume only the path X may not exist. We identify a subdivision of diamond by

3-tuple of integers (x, y, z), where x ≥ 0, y, z ≥ 1 and x ≤ y ≤ z. Three paths
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X, Y, Z connecting c0 and c∞ are consists of x, y, z vertices respectively. We denote

the vertices of path X by cX1 , c
X
2 , . . . , c

X
x along the path. cX1 , c

X
x are adjacent to

c0, c∞ respectively. cY1 , . . . , c
Y
y and cZ1 , . . . , c

Z
z are defined analogously. In the case of

x = 0, the path X is removed and c0 and c∞ are adjacent. For instance, diamond is

determined by 3-tuple (0, 1, 1).

If R is determined by 3-tuple (x, y, z), we assume cX1 = 2, cY1 = 1, cZ1 = 3, and

c0 = 4 for the case x > 0, otherwise we let c∞ = 2 by appropriate renaming of

colors. Notice that the color 4 is of degree three and the colors 1, 2, 3 are adjacent

to 4.

To show PSPACE-completeness, we give a polynomial-time reduction from non-

deterministic constraint logic (NCL, for short) [16].

Nondeterministic constraint logic.

An NCL “machine” is specified by an undirected graph together with an assign-

ment of weights from {1, 2} to each edge of the graph. An (NCL) configuration of

this machine is an orientation (direction) of the edges such that the sum of weights

of in-coming arcs at each vertex is at least two. Fig. 3.5(a) illustrates a configu-

ration of an NCL machine, where each weight-2 edge is depicted by a thick (blue)

line and each weight-1 edge by a thin (orange) line. Then, two NCL configurations

are adjacent if they differ in a single edge direction. Given an NCL machine and

its two configurations, it is known to be PSPACE-complete to determine whether

there exists a sequence of adjacent NCL configurations which transforms one into

the other [16].

In fact, the problem remains PSPACE-complete even for and/or constraint

graphs, which consist only of two types of vertices, called “NCL and vertices” and

“NCL or vertices.” A vertex of degree three is called an NCL and vertex if its
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v
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Figure 3.5: (a) A configuration of an NCL machine, (b) NCL and vertex u, and (c)
NCL or vertex v.

three incident edges have weights 1, 1 and 2. (See Figure 3.5(b).) An NCL and

vertex u behaves as a logical and, in the following sense: the weight-2 edge can be

directed outward for u if and only if both two weight-1 edges are directed inward

for u. Note that, however, the weight-2 edge is not necessarily directed outward

even when both weight-1 edges are directed inward. A vertex of degree three is

called an NCL or vertex if its three incident edges have weights 2, 2 and 2. (See

Figure 3.5(c).) An NCL or vertex v behaves as a logical or: one of the three edges

can be directed outward for v if and only if at least one of the other two edges is

directed inward for v. It should be noted that, although it is natural to think of

NCL and/or vertices as having inputs and outputs, there is nothing enforcing this

interpretation; especially for NCL or vertices, the choice of input and output is

entirely arbitrary because an NCL or vertex is symmetric. For example, the NCL

machine in Figure 3.5(a) is an and/or constraint graph. From now on, we call

an and/or constraint graph simply an NCL machine, and call an edge in an NCL

machine an NCL edge.

Gadgets.

We first subdivide every NCL edge vw into a path vv′w′w of length three by

adding two new vertices v′ and w′; the newly added vertices v′ and w′ are called

connectors for v and w, respectively. (See Figure 3.6(a) and (b).) We call the edge
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v w

(a)

v wv′ w′

(b) (c)

Figure 3.6: (a) An NCL edge vw, (b) its subdivision into a path vv′w′w, and (c) the
resulting graph which corresponds to the NCL machine in Figure 3.5(a), where each
connector is depicted by a (red) large circle and each link edge by a thick (green)
line.

v′w′ a link edge between two NCL vertices v and w, and call the edges vv′ and

ww′ NCL one-third edges for v and w, respectively. Notice that every vertex in the

resulting graph belongs to exactly one of stars K1,3 such that the center v of each

K1,3 corresponds to an NCL and/or vertex and the three leaves are connectors for

v. Furthermore, these stars are all mutually disjoint, and joined together by link

edges. (See Figure 3.6(c) as an example.)

Therefore, our reduction involves constructing three types of gadgets which cor-

respond to link edges and stars of NCL and/or vertices. In our gadgets, all con-

nectors v′ for NCL and/or vertices v have the same list recolorability LR(v′) such

that V (LR(v′)) = {2, 4} and E(LR(v′)) = {24}. Then, in our reduction, assigning

the color 4 to v′ always corresponds to directing the NCL one-third edge vv′ from

v′ to v (i.e., the inward direction for v), while assigning the color 2 to v′ always

corresponds to directing vv′ from v to v′ (i.e., the outward direction for v).

(i) Link edge gadget.

Let v′w′ be a link edge, where v′ and w′ are connectors for NCL and/or vertices v

and w, respectively. Our link edge gadget Gv′w′ is a (4, 4)-forbidding path from 2-4 to

4-2 induced by walk c0, c
Y
1 , c

Y
2 , . . . , c

Y
y , c∞, c

Z
z , c

Z
z−1, . . . , c

Z
1 , c0. Fig. 3.7(a) illustrates
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an overview of link edge gadget, which is a (4, 4)-forbidding path from 2-4 to 4-2.

Fig. 3.7(b) is an instantiation of link edge gadget for the case R is diamond.

2-4 4-2

v′ w′

(a)

2-4 4-1 1-2 2-3 3-4 4-2

v′ w′

(b)

Figure 3.7: (a) An overview of link edge gadget. (b) Link edge gadget for the case
R is diamond.

If we assign 4 to v′ (the inward direction for v), then w′ must be colored with 2

(the outward direction for w); conversely, v′ must be colored with 2 if we assign 4

to w′. In particular, the gadget must forbid a list coloring which assigns 4 to both

v′ and w′ (the inward directions for both v and w), because such a list coloring

corresponds to the direction which contributes to both v and w illegally. On the

other hand, assigning 2 to both v′ and w′ (the outward directions for both v and

w) corresponds to the neutral orientation of the NCL edge vw which contributes to

neither v nor w, and hence we simply do not care such an orientation.

Fig. 3.8(c) illustrates an example of the RL-reconfiguration graph CRL
(Gv′w′) on

the link edge gadget Gv′w′ where R is diamond. Each rectangle corresponds to a

node of CRL
(Gv′w′), that is, a list coloring of Gv′w′ , where the underlined bold number

represents the color assigned to the vertex. Then, CRL
(Gv′w′) is connected, and there

is no list coloring which assigns 4 to both v′ and w′, as claimed above. Furthermore,

the reversal of the NCL edge vw can be simulated by the path on CRL
(Gv′w′) via the

neutral orientation of vw, as illustrated in Figure 3.8(c). Thus, this gadget works

correctly as a link edge.

(ii) And gadget. Our and gadget Gand for each NCL and vertex v has three

vertices va, vb, vc having the same list recolorability 2-4, which correspond to the
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v w

neutral

v w

v w

(a)

v wv′ w′

v wv′ w′

v wv′ w′

(b)

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

2-4 4-1 1-2 2-3 3-4 4-2

v′ w′

(c)

Figure 3.8: (a) Three orientations of an NCL edge vw, (b) their corresponding
orientations of the NCL one-third edges vv′ and ww′, and (c) all list colorings of the
link edge gadget Gv′w′ in the RL-reconfiguration graph CRL

(Gv′w′).

4-2
4
2

- 2-4

va vbvc

(a)

4-2 2-1 1-4 4-3 3-2
4
2

- 2-3 3-4 4-1 1-2 2-4

va vc vb

(b)

Figure 3.9: (a) An overview of and gadget. (b) Gand for the case R is diamond.

three connectors for v. va, vc and vc, vb are joined by (2, 2)-forbidding path from

4-2 to 2-4 induced by walk W , where W is (cX1 , c
X
2 , . . . , c

X
x , )c∞, c

Y
y , c

Y
y−1, . . . , c

Y
1 ,

c0, c
Z
1 , c

Z
2 , . . . , c

Z
z , c∞, c

X
x , c

X
x−1, . . . , c

X
1 , where the parenthesized part is omitted if x =

0.

Fig. 3.9(a) illustrates an overview of and gadget, where two (2, 2)-forbidding

paths from 4-2 to 2-4 are indicated by dotted lines. Fig. 3.9(b) is an instantiation

of and gadget for the case where R is diamond.

In the figure, the connectors va and vb come from the two weight-1 NCL edges,
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while the connector vc comes from the weight-2 NCL edge. We now explain this

gadget works as an NCL and vertex. The and gadget must forbid the case where

all the connectors va, vb and vc are colored with 2 at the same time (i.e., all NCL

one-third edges vva, vvb and vvc take the outward direction for v). In addition, the

gadget must simulate the following situation: vc can be colored with 2 (i.e., the

weight-2 edge vvc can take the outward direction for v) only when both va and vb

are colored with 4 at the same time (i.e., both the weight-1 edges vva and vvb take

the inward direction for v).

va vb

vc

(a)

2-4 2-4 2-4

2-4 2-4 2-4

va vc vb

2-4 2-4 2-4 2-4 2-4 2-4

2-4 2-4 2-4

(b)

21432434124

21432424124

21432423124

21432423424

21432423414

va vc vb

(c)

Figure 3.10: (a) All feasible orientations of the three NCL one-third edges incident to
an NCL and vertex together with their adjacency, (b) image of RL-reconfiguration
graph CRL

(Gand) on the and gadget Gand, and (c) the inside of the rightmost (green)
thick box in the image which corresponds to assigning the colors 2, 4 and 4 to va, vc
and vb, respectively, where we simply write the colors assigned to Gand by a sequence
of colors.

Fig. 3.10(a) illustrates all feasible orientations of the three NCL one-third edges

vva, vvb and vvc, whose corresponding assignments of colors to the connectors are

depicted in Figure 3.10(b). Due to the space limitation, in Figure 3.10(b), we only

indicate the colors assigned to va, vc and vb. As an example, for the caseR is diamond

we show all list (proper) colorings of Gand that assign the colors 2, 4 and 4 to va,

vc and vb, respectively. Then, as illustrated in Figure 3.10(c), these list colorings
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are “internally connected,” that is, any two list colorings are reconfigurable with

each other without recoloring any connector of Gand. This property is due to the

condition (b) of the definition of forbidding path. Furthermore, this gadget preserves

the “external adjacency” in the following sense: if we contract the list colorings in

CRL
(Gand) having the same color assignments to the connectors into a single vertex,

then the resulting graph is exactly the graph depicted in Figure 3.10(a) and (b). This

property is due to the condition (c) of the definition of forbidding path. Therefore,

we can conclude that our and gadget correctly works as an NCL and vertex.

2
4

- 2
4

- 2
4

-

1-4-3 1-4-3 1-4-3

va vb vc

vab vca vbc

(a)

2
4

- 2
4

- 2
4

-

1-4-3 1-4-3 1-4-3

va vb vc

vab

vca

vbc

1-2 3-2 1-23-2 1-2 3-2

4-2 2-3 3-4 4-1 1-2 2-4 4-2 2-3 3-4 4-1 1-2 2-4

2-43-24-31-42-14-2

(b)

Figure 3.11: (a) An overview of out or gadget. (b) An instantiation of or gadget
for the case R is diamond.

(iii) Or gadget.
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Figure 3.12: Outline of RL-reconfiguration graph CRL
(Gor) on the or gadget Gor.

Fig. 3.11(a) illustrates an overview of our or gadget Gor for each NCL or vertex

v, where va, vb and vc correspond to the three connectors for v.

Our or gadget consists of six vertices and nine forbidding paths. Three vertices

vab, vbc, vca have the same list recolorability 1-4-3. Gor has three types of forbidding

paths:

• (1, 2)-forbidding path from 1-4-3 to 2-4 (denoted by dotted line);

• (3, 2)-forbidding path from 1-4-3 to 2-4 (denoted by dashed line); and

• (4, 4)-forbidding path from 1-4-3 to 1-4-3 (denoted by dotted dashed line)

Each forbidding path can be induced by the walk on R as follows:

• (1, 2)-forbidding path from 1-4-3 to 2-4 can be induced by the walk

cY1 , c
Y
2 , . . . , c

Y
y , c∞(, cXx , c

X
x−1, . . . , c

X
1 );
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• (3, 2)-forbidding path from 1-4-3 to 2-4 can be induced by the walk

cZ1 , c
Z
2 , . . . , c

Z
z , c∞(, cXx , c

X
x−1, . . . , c

X
1 );

• (4, 4)-forbidding path from 1-4-3 to 1-4-3 can be induced by the walk

c0, (c
X
1 , c

X
2 , . . . , c

X
x , )c∞, c

Y
y , c

Y
y−1, . . . , c

Y
1 , c0, c

Z
1 , c

Z
2 , . . . , c

Z
z , c∞(, cXx , c

X
x−1, . . . ,

cX1 ), c0,

where parenthesized parts are omitted if x = 0. Figure 3.11(b) shows an instantia-

tion of Gor for the case R is diamond.

We now explain this gadget works as an NCL or vertex. For each NCL or vertex

v, it suffices that at least one of the three NCL edges take the inward direction for v.

Thus, the or gadget must forbid only the case where all the connectors va, vb and

vc are colored with 2 at the same time. Indeed, our gadget in Figure 3.11 forbids

such the case, because otherwise all three vertices vab, vbc and vca must be colored

with 4 and such a case is forbidden by (4, 4)-forbidding paths between vab, vbc, vca.

Fig. 3.12 illustrates (an outline of) the RL-reconfiguration graph CRL
(Gor) on the

or gadget Gor, where we indicate only the colors assigned to the vertices vab, vbc,

vca, va, vb and vc. All list colorings of Gor in each shaded box assign the same three

colors to the three connectors va, vb and vc, and hence they correspond to the same

orientations of the three NCL one-third edges vva, vvb and vvc.

Reduction and its correctness.

As we have mentioned above, we first subdivide every NCL edge vw into a path

vv′w′w of length three by adding two connectors v′ and w′. (See Figure 3.6.) Then,

we replace each of link edges and NCL and/or vertices with its corresponding

gadget; let G be the resulting graph. In addition, we construct two list colorings

of G which correspond to two given configurations C0 and Cr of the NCL machine.
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Note that there are (in general, exponentially) many list colorings which correspond

to the same NCL configuration. However, by the construction of the three gadgets,

no two distinct NCL configurations correspond to the same list coloring of G. We

thus choose any two list colorings f0 and fr of G which correspond to C0 and Cr,

respectively. This completes the construction of the corresponding instance for the

list variant under list R-recolorability. Clearly, the construction can be done in

polynomial time.

We now prove that there exists a desired sequence of NCL configurations if and

only if there exists an (f0 → fr)-reconfiguration sequence on CRL
(G).

We first prove the only-if direction. Suppose that there exists a desired sequence

of NCL configurations, and consider any two adjacent NCL configurations Ci−1 and

Ci in the sequence. Then, only one NCL edge vw changes its orientation between

Ci−1 and Ci. Notice that, since both Ci−1 and Ci are feasible NCL configurations,

the NCL and/or vertices v and w have enough in-coming arcs even without vw.

Therefore, we can simulate this reversal by the reconfiguration sequence of list color-

ings in Figure 3.8(c) which passes through the neutral orientation of vw as illustrated

in Figure 3.8(a). Recall that both and and or gadgets are internally connected,

and preserve the external adjacency. Therefore, any reversal of an NCL edge can

be simulated by a reconfiguration sequence of list colorings of G, and hence there

exists an (f0 → fr)-reconfiguration sequence on CRL
(G).

We finally prove the if direction. Suppose that there exists an (f0 → fr)-

reconfiguration sequence on CRL
(G). Notice that, by the construction of gadgets,

any list coloring of G corresponds to a feasible NCL configuration such that some

NCL edges may take the neutral orientation. Pick the first index i in the (f0 → fr)-

reconfiguration sequence 〈f0, f1, . . . , f`〉 which corresponds to changing the direction
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of an NCL edge vw from the neutral orientation to another one. Then, we regard

that all list colorings f0, f1, . . . , fi−1 correspond to the initial NCL configuration C0,

and that fi corresponds to the NCL configuration C1 such that only the NCL edge vw

changes its orientation from C0; note that no NCL edge takes the neutral orientation

in C1. We repeat this process, and obtain a sequence of feasible NCL configurations

C0, C1, . . . , C`′ such that C`′ = Cr and no NCL edge takes the neutral orientation.

Then, 〈C0, C1, . . . , C`′〉 forms the desired sequence of NCL configurations.

Lemma 1(c) is proved in similar way.

Lemma 4. Let R be a graph obtained by subdividing 2K3+e graph. Then, coloring

reconfiguration under list R-recolorability is PSPACE-complete.

Proof. As same as the proof of Lemma 3, we show the PSPACE-completeness by

the reduction from NCL. Since the proof is similar to the proof of Lemma 3, we only

show how to construct link edge,and,or gadgets.

A subdivision of 2K3 + e graph consists of two vertex disjoint cycles and a path

joining them. Similarly to the graph R in the proof of Lemma 3, we determine

the graph R by 3-tuple of integers (x, y, z), where x ≥ y ≥ 2, z ≥ 2. R has two

cycles which consist of x + 1 and y + 1 colors respectively, We let the colors on

the cycle consists of x+ 1 (respectively, y+ 1) colors cZ1 , c
X
1 , c

X
2 , . . . , c

X
x (respectively,

cZz , c
Y
1 , c

Y
2 , . . . , c

Y
y ) along the cycle. The two cycles are joined by a path cZ1 , c

Z
2 , . . . , c

Z
z .

Fig. 3.13 illustrates an overview of R.

By appropriate renaming of color labels, we assume cX1 = 1, cXx = 2, cZ2 = 3, cZ1 =

4. Then we can construct list recolorabilities 2-4 and 1-4-3 used in the construction

of link edge, and, or gadgets in the proof of Lemma 3. All we have to do is to

construct forbidding paths which constitute link edge, and, or gadgets. In the
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cZ1 cZ2 cZz

cX1

cX2

cXx

cY1

cY2

cYy

Figure 3.13: An overview of R.

proof of Lemma 3 we introduced five types of forbidding paths:

• (4, 4)-forbidding path from 2-4 to 4-2;

• (2, 2)-forbidding path from 4-2 to 2-4;

• (2, 1)-forbidding path from 2-4 to 1-4-3;

• (2, 3)-forbidding path from 2-4 to 1-4-3; and

• (4, 4)-forbidding path from 1-4-3 to 1-4-3

to construct three types of gadgets. All of them can be induced by walks on R as

follows:

• (4, 4)-forbidding path from 2-4 to 4-2 can be induced by the walk

cZ1 , c
Z
2 , . . . , c

Z
z , c

Y
1 , c

Y
2 , . . . , c

Y
y , c

Z
z , c

Z
z−1, . . . , c

Z
1 .

• (2, 2)-forbidding path from 4-2 to 2-4 can be induced by the walk

cXx , c
X
x−1, . . . , c

X
1 , c

Z
1 , c

Z
2 , . . . , c

Z
z , c

Y
1 , c

Y
2 , . . . , c

Y
y , c

Z
z , c

Z
z−1, . . . ,

cZ1 , c
X
1 , c

X
2 , . . . , c

X
x .

• (2, 1)-forbidding path from 2-4 to 1-4-3 can be induced by the walk

cXx , c
X
x−1, . . . , c

X
1 , c

Z
1 , c

Z
2 , . . . , c

Z
z , c

Y
1 , c

Y
2 , . . . , c

Y
y , c

Z
z , c

Z
z−1, . . . ,

cZ1 , c
X
x , c

X
x−1, . . . , c

X
1 .
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• (2, 3)-forbidding path from 2-4 to 1-4-3 can be induced by the walk

cXx , c
X
x−1, . . . , c

X
1 , c

Z
1 , c

Z
2 , . . . , c

Z
z , c

Y
1 , c

Y
2 , . . . , c

Y
y , c

Z
z , c

Z
z−1, . . . , c

Z
2 .

• (4, 4)-forbidding path from 1-4-3 to 1-4-3 can be induced by the walk

cZ1 , c
X
x , c

X
x−1, . . . , c

X
1 , c

Z
1 , c

Z
2 , . . . , c

Z
z , c

Y
1 , c

Y
2 , . . . , c

Y
y , c

Z
z , c

Z
z−1, . . . , c

Z
1 ,

cX1 , c
X
2 , . . . , c

X
x , c

Z
1 .

Now we can complete the proof of Theorem 3.

Theorem 3. R satisfies at least one of three conditions of Lemma 1. If the condition

(a) holds, then the problem is PSPACE-complete by Theorem 4.4. Otherwise, if the

condition (b) holds, then the problem is PSPACE-complete for some recolorability

graph R′ ⊆ R by Lemma 3. Finally, if the condition (c) holds, then the problem is

PSPACE-complete for some recolorability graph R′ ⊆ R by Lemma 4. For each case,

by Corollary 1 the problem for the recolorability graph R is PSPACE-complete.

3.4 Recolorability graph which is a binary tree

In this section we show that coloring reconfiguration under R-

recolorability is NP-hard even if the recolorability graph R is a binary tree.

Our claim is stated as follows:

Theorem 4. There is a binary tree R such that coloring reconfiguration

under R-recolorability is NP-hard.

Proof. We prove by reduction from a known NP-complete problem a 3-coloring

of planar graphs [13]. It is well-known that every planar graph is 4-colorable [1],

furthermore a 4-coloring of a planar graph can be computed in polynomial time [23].
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1

2 3

4 5 6 7 8 9 10

(a)

V1 V2 V3 V4

w v

G

(b)

Figure 3.14: (a) R which is a binary tree, and (b) a graph G′.

Let G be a given planar graph and we first give a 4-coloring fF : V (G)→ {1, 2, 3, 4}

of G in polynomial-time. Then we separate the vertex set V (G) into four subsets

V1, V2, V3, V4, where Vi = {v ∈ V (G) | fF (v) = i}.

We give an recolorability graph R defined as follows (see also Figure 3.14(a)):

V (R) = {1, 2, . . . , 10}

E(R) = {{1, 4}, {2, 4}, {3, 5}, {4, 5}, {5, 6}, {6, 7}, {7, 8}, {8, 9}, {9, 10}}

Then we construct an instance of coloring reconfiguration under list

R-recolorability. To prove the claim it suffices to prove coloring reconfig-

uration under list R-recolorability is NP-hard by Theorem 1. We make a

graph G′ as follows: we add a vertex v to G as an isolated vertex, and then add

w and join it with all other vertices, as depicted in Figure 3.14. We define a list

R-recolorability RL:

RL(u) =


R[1, 2, 3, 4, 5, 6, 7, 8] if u ∈ V (G)

R[4, 5, 6, 7, 8, 9] if u = w

R[3, 5, 6, 7, 8, 9, 10] if u = v

Then we define initial and target colorings f0, fr:

f0(u) =


i+ 4 if u ∈ Vi
9 if u = w

10 if u = v

and fr(u) =


i+ 4 if u ∈ Vi
9 if u = w

3 if u = v

We show there is (f0 → fr)-reconfiguration sequence on CRL
(G′) if and only if

there is a 3-coloring of G. We first prove the if part. Let fT be a 3-coloring of G.
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First we recolor all vertices u ∈ V1 from 5 to fT (u) ∈ {1, 2, 3}. This recoloring can

be done since there is no vertex colored 1, 2, 3, 4, and since all vertices in V1 are not

adjacent. Next, we recolor all vertices u ∈ V2 from 6 to fT (u) ∈ {1, 2, 3}. This can

be done since there is no vertex colored 4, 5, and the vertices colored fT (u) are in

V1 and are not adjacent to u since fT is a coloring. We recolor the vertices u in

V3, V4 to fT (u) in similar way. Then there is no vertex colored 4, 5, 6, 7, 8, therefore

we can recolor the vertex w from 9 to 4, and then recolor the vertex v from 10 to 3.

Now all vertices except for v (already has its target color) can be reach their target

colors, equivalently, initial colors, by backtracking their recoloring process.

We then prove the only-if part. Let S be an (f0 → fr)-reconfiguration sequence.

By the structure of list R-recolorability, we can see that the vertex w must be

recolored to 4 in order to recolor the vertex v to 3 for the first time. Similarly, the

vertex u ∈ V (G) must be recolored to 1, 2 or 3 in order to recolor the vertex w to 4

for the first time. Therefore, in the (f0 → fr)-reconfiguration sequence S, there is a

coloring f before the first recoloring of v from 5 to 3 such that f |V (G) is a 3-coloring

of G.

3.5 Recolorability graphs which are unicyclic

graphs

In this section we show the computational hardness of coloring reconfigu-

ration under R-recolorability where R is a unicyclic graph of maximum

degree three. In Section 5, we show that coloring reconfiguration under

R-recolorability is PSPACE-complete even if the recolorability graph R is an

unicyclic graph of maximum degree three. Actually, in the proof of PSPACE-

completeness the recolorability graph has four vertices of degree three, therefore
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34

5 6

78

Figure 3.15: The recolorability graph R which is unicyclic.

one may think the problem may be easy for the case where the recolorability graph

has less than four degree three vertices. In Section 3.5.2 we contradict it by proving

that coloring reconfiguration under R-recolorability is NP-hard even

if R is a unicyclic graph having exactly degree one vertex.

3.5.1 PSPACE-completeness

In this section we show that coloring reconfiguration under R-

recolorability is PSPACE-complete even if R is an unicyclic graph. Our state-

ment is as follows:

Theorem 5. There is a unicyclic graph R such that coloring reconfiguration

under R-recolorability is PSPACE-complete.

Proof. We prove by the reduction from 4-coloring reconfiguration, which

is a PSPACE-complete problem [8]. Let G be a graph, and f0, fr be initial and

target colorings of a given instance of 4-coloring reconfiguration. Let R be

a recolorability graph defined as follows (See also Figure3.15):

V (R) = {1, 2, 3, 4, 5, 6, 7, 8}

E(R) = {{1, 5}, {2, 6}, {3, 7}, {4, 8}, {5, 6}, {6, 7}, {7, 8}, {8, 5}}

To prove the claim it suffices to prove that coloring reconfiguration under

list R-recolorability is PSPACE-complete by Theorem 1. We construct an

instance of coloring reconfiguration under list R-recolorability. For
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each edge uw ∈ E(G), we add two vertices x, y and join then with all other vertices.

We also join x and y themselves. Let G′ be the resulting graph:

V (G′) = V (G) ∪ {x, y}

E(G′) = E(G) ∪ {xy} ∪ {xv | v ∈ V (G)} ∪ {yv | v ∈ V (G)}

We define list R-recolorability LR of G′ as follows:

LR(v) =

{
R if v ∈ V (G);

R[5, 6, 7, 8] otherwise.

We also define initial and target colorings f ′0, f
′
r of G′:

f ′0(v) =


f0(v) if v ∈ V (G)

5 if v = x

6 if v = y

f ′r(v) =


fr(v) if v ∈ V (G)

5 if v = x

6 if v = y

Then we show there is an (f ′0 → f ′r)-reconfiguration sequence on CRL
(G′) if and only

if (f0 → fr)-reconfiguration sequence on C4(G). We first prove the if part. We show

that we can simulate any one step recoloring in 4-coloring reconfiguration

by the constructed instance. For a 4-coloring f of G, we define f ′ as well as f ′0, f
′
r:

f ′(u) =


f(u) if u ∈ v(g)

5 if u = ve for some e ∈ e(g)

6 if u = v′e for some e ∈ e(g)

Let f1 be a coloring which is adjacent to f0 in C4(G), and let v the unique vertex

such that f0(v) 6= f1(v). We construct a reconfiguration sequence from f ′0 to f ′1.

First, we try to recolor the vertex v on G′ from f ′0(v) to f ′0(v) + 4. Though there

may be an adjacent vertex x or y which is colored f ′0(v) + 4, it can be recolored

to other color. Then we can recolor the vertex v to f ′1(v) + 4 by an appropriate
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recoloring process in which vertices x, y may also be recolored. As an example

of such a recoloring process, consider a situation where g is current coloring and

g(v) = 4, g(x) = 5, g(y) = 6, and we want to recolor v to 5. In order to recolor v,

we need to recolor the vertex x to 7, and then recolor y to 6. Then v is recolored to

f ′1(v). After that vertices x, y can be recolored to f1(x) = 5, f ′1(y) = 6 and we reach

the coloring f ′1.

Next, we prove the only-if part. Let 〈g0, g1, . . . , gt〉 be an (f ′0 → f ′r)-

reconfiguration sequence where g0 = f ′0, gt = f ′r. We construct a sequence

〈h0, h1, . . . , ht〉 of 4-colorings of G as follows:

h0 = g0|V (G)

hi+1(v) =

{
gi+1(v)− 4 if condition (A) holds;

hi(v) otherwise;

where condition (A) is as follows: gi(v), gi+1(v) ∈ {5, 6, 7, 8} and gi+1(v) 6= gi(v) and

there is no adjacent vertex w ∈ V (G) of v colored gi+1(v)−4. We first notice that if

gi(v) ∈ {1, 2, 3, 4} then gi(v) = hi(v) since such a vertex must have been recolored

only between gi(v) and gi(v) + 4, or have been recolored from a color c ∈ {5, 6, 7, 8}

other from gi(v) + 4, when v has no adjacent vertex colored gi(v). Since hi and hi+1

may differ on exactly one vertex, all we have to do is to show that all hi are proper

4-colorings of G. We prove it by induction on the index i. If i = 0, h0 is trivially a

4-coloring of G. Otherwise i > 0, there are four cases of recoloring:

(a) x or y is recolored

(b) v ∈ V (G) is recolored from gi−1(v) ∈ {1, 2, 3, 4} to gi(v) = gi−1 + 4

(c) v ∈ V (G) is recolored from gi−1(v) ∈ {5, 6, 7, 8} to gi(v) = gi−1 − 4

(d) v ∈ V (G) is recolored from gi−1(v) ∈ {5, 6, 7, 8} to gi(v) ∈ {5, 6, 7, 8}
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Notice that for the cases(a)(b)(c) hi = hi−1 therefore hi is a 4-coloring of G by

induction hypothesis. Therefore we consider the remaining case (d). If there is an

adjacent vertex w colored gi(v), then hi = hi−1 also holds. Otherwise, hi(v) = hi(w)

may be holds for an adjacent vertex w of v. Such a vertex must have a color

in {5, 6, 7, 8} since if gi(w) ∈ {1, 2, 3, 4} then gi(w) = hi(w) = hi(v) must holds.

However, if two adjacent vertices v, w have color in {5, 6, 7, 8}, v can not be recolored

between {5, 6, 7, 8} since G′[v, w, x, y] is a clique in which each vertex has each color

in {5, 6, 7, 8}, which contradicts the assumption v has been recolored. Therefore no

adjacent vertex w satisfies hi(w) = hi(v) and hi is a proper 4-coloring.

3.5.2 NP-hardness for the case where R has exactly one
degree three vertex

In this section we prove that coloring reconfiguration under R-

recolorability is still NP-hard even if the recolorability graph R is an unicyclic

graph having exactly one vertex of degree three.

Theorem 6. There is a unicyclic graph R having exactly one vertex of degree three

such that coloring reconfiguration under R-recolorability is NP-hard.

Proof. Similar to the proof of Theorem 4, we prove by a reduction from a known

NP-complete problem 4-coloring of planar graphs [13]. Let G be a given planar

graph. We first give a 4-coloring fF : V (G) → {1, 2, 3, 4} of G in polynomial-time

by a known algorithm [23]. Then we separate V (G) into four subsets Vi = {v ∈

V (G) | fF (v) = i}. Let R be a recolorability graph defined as follows (See also
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Figure 3.16: (a) The recolorability graph R which is unicyclic graph having exactly
one vertex of degree three, and (b) The graph G′ which is the constructed instance.

Figure 3.16(a)).

V (R) ={1, 2, . . . , 11}

E(R) ={{1, 2}, {2, 3}, {3, 4}, {4, 5}, {5, 6}, {6, 7},

{7, 8}, {8, 9}, {9, 10}, {10, 11}, {11, 4}}

By Theorem 1, to prove the claim it suffice to prove that coloring reconfigu-

ration under list R-recolorability is NP-hard. We construct a graph G′ by

adding some vertices as follows (See also Figure 3.16(b)):

V (G′) =V (G) ∪ {w1, w2, w3, w4, w5, w6, x1, x2, x3, x4, x5, x6, y, z}

E(G′) =E(G) ∪ {w6v | v ∈ V (G)} ∪ {x6v | v ∈ V (G)}∪

{w1w2, w2w3, w3w4, w4w5, w5w6, x1x2, x2x3, x3x4, x4x5, x5x6, zw1, yx1}

Then we define list R-recolorability RL of G′ as in Figure 3.17. And we define initial

and target colorings f0, fr as in Figure 3.18

f0, fr are differ only on the colors of two vertices y, z.

We show that there is an (f0 → fr)-reconfiguration sequence on CRL
(G′) if and

only if there is a 3-coloring of G. We first prove the if part. Let fT be a 3-coloring

of G. Then an (f0 → fr)-reconfiguration sequence can be obtained as follows:

1. Recolor all vertices v in V1 satisfying fT (v) = 1 from 4→ 3→ 2.
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RL(v) =



R[2, 3, 4, 5, 6, 7, 9, 10, 11] if v ∈ V (G)

R[3, 4, 5, 6] if v = w1

R[4, 5, 6, 7] if v = w2

R[5, 6, 7, 8] if v = w3

R[6, 7, 8, 9] if v = w4

R[7, 8, 9, 10] if v = w5

R[8, 9, 10, 11] if v = w6

R[3, 4, 11, 10] if v = x1

R[4, 11, 10, 9] if v = x2

R[11, 10, 9, 8] if v = x3

R[10, 9, 8, 7] if v = x4

R[9, 8, 7, 6] if v = x5

R[8, 7, 6, 5] if v = x6

R[1, 2, 3, 4, 11] if v = y

R[1, 2, 3, 4, 5] if v = z

Figure 3.17: The list recolorability RL.

2. Recolor all vertices v in V1 satisfying fT (v) = 2 or fT (v) = 3 from 4 → 11 →

10→ 9.

3. Recolor all vertices v in V2 satisfying fT (v) = 1 from 5→ 4→ 3→ 2.

4. Recolor all vertices v in V2 satisfying fT (v) = 2 or fT (v) = 3 from 5 → 4 →

11→ 10.

5. Recolor all vertices v in V3 satisfying fT (v) = 1 from 6→ 5→ 4→ 3→ 2.

6. Recolor all vertices v in V3 satisfying fT (v) = 2 or fT (v) = 3 from 6 → 5 →

4→ 11.

7. Recolor all vertices v in V4 satisfying fT (v) = 1 from 7→ 6→ 5→ 4→ 3→ 2.
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f0(v) =



1 if v = y

2 if v = z

3 if v = w1

4 if v = w2

5 if v = w3

6 if v = w4

7 if v = w5

8 if v = w6

3 if v = x1

4 if v = x2

11 if v = x3

10 if v = x4

9 if v = x5

8 if v = x6

4 if v ∈ V1
5 if v ∈ V2
6 if v ∈ V3
7 if v ∈ V4

and fr(v) =



2 if v = y

1 if v = z

3 if v = w1

4 if v = w2

5 if v = w3

6 if v = w4

7 if v = w5

8 if v = w6

3 if v = x1

4 if v = x2

11 if v = x3

10 if v = x4

9 if v = x5

8 if v = x6

4 if v ∈ V1
5 if v ∈ V2
6 if v ∈ V3
7 if v ∈ V4

.

Figure 3.18: The initial and target colorings.

8. Recolor all vertices v in V3 satisfying fT (v) = 2 or fT (v) = 3 from 11 → 4 →

5→ 6.

9. Recolor all vertices v in V2 satisfying fT (v) = 2 or fT (v) = 3 from 10→ 11→

4→ 5.

10. Recolor all vertices v in V1 satisfying fT (v) = 2 or fT (v) = 3 from 9 → 10 →

11→ 4.

11. Recolor all vertices v in V1 satisfying fT (v) = 2 from 4→ 3.

12. Recolor all vertices v in V1 satisfying fT (v) = 3 from 4→ 11→ 10→ 9.
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13. Recolor all vertices v in V2 satisfying fT (v) = 2 from 5→ 4→ 3.

14. Recolor all vertices v in V2 satisfying fT (v) = 3 from 5→ 4→ 11→ 10.

15. Recolor all vertices v in V3 satisfying fT (v) = 2 from 6→ 5→ 4→ 3.

16. Recolor all vertices v in V3 satisfying fT (v) = 3 from 6→ 5→ 4→ 11.

17. Recolor all vertices v in V4 satisfying fT (v) = 2 from 7→ 6→ 5→ 4→ 3.

18. Recolor all vertices v in V3 satisfying fT (v) = 3 from 11→ 4→ 5→ 6.

19. Recolor all vertices v in V2 satisfying fT (v) = 3 from 10→ 11→ 4→ 5.

20. Recolor all vertices v in V1 satisfying fT (v) = 3 from 9→ 10→ 11→ 4.

21. Recolor all vertices v in V2 satisfying fT (v) = 3 from 5→ 4.

22. Recolor all vertices v in V3 satisfying fT (v) = 3 from 6→ 5→ 4.

23. Recolor all vertices v in V4 satisfying fT (v) = 3 from 7→ 6→ 5→ 4.

24. Recolor w6 from 8→ 9→ 10→ 11.

25. Recolor w5 from 7→ 8→ 9→ 10.

26. Recolor w4 from 6→ 7→ 8→ 9.

27. Recolor w3 from 5→ 6→ 7→ 8.

28. Recolor w2 from 4→ 5→ 6→ 7.

29. Recolor w1 from 3→ 4→ 5→ 6.

30. Recolor x6 from 8→ 7→ 6→ 5.
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31. Recolor x5 from 9→ 8→ 7→ 6.

32. Recolor x4 from 10→ 9→ 8→ 7.

33. Recolor x3 from 11→ 10→ 9→ 8.

34. Recolor x2 from 4→ 11→ 10→ 9.

35. Recolor x1 from 3→ 4→ 11→ 10.

36. Recolor z from 2→ 3→ 4→ 5.

37. Recolor y from 1→ 2→ 3→ 4→ 11.

38. Recolor z from 5→ 4→ 3→ 2→ 1.

39. Recolor z from 11→ 4→ 3→ 2.

40. Execute Step 1-35 backwardly.

Through the Steps from 1 to 23, we recolor the vertices in V (G) to have a 3-coloring

f ′T : V (G)→ {2, 3, 4} such that fT (v) + 1 = f ′T (v). Then we exchange the colors of

the vertices y, z and recolor all other vertices to their initial colors, and then we can

reach the target coloring.

We then prove the only-if part. To reach the target coloring we must exchange

the colors of the vertices y and z. To do this, we have to have a coloring fM in

(f0 → fr)-reconfiguration sequence such that fM(y) = 11 and fM(z) = 5. Such a
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coloring must be the following pattern:

fM(v) =



11 if v = y

5 if v = z

6 if v = w1

7 if v = w2

8 if v = w3

9 if v = w4

10 if v = w5

11 if v = w6

10 if v = x1

9 if v = x2

8 if v = x3

7 if v = x4

6 if v = x5

5 if v = x6

2 or 3 or 4 if v ∈ V (G)

Therefore if an (f0 → fr)-reconfiguration sequence exists then a 3-coloring of G

exists.
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Chapter 4

Polynomial-Time Algorithms

In this chapter, we study the polynomial-time solvability of our problem, and gen-

eralize the known algorithmic results from the viewpoint of the graph structure of

recolorability graphs. Specifically, our main result can be stated as the following

theorem:

Theorem 7. Suppose that a recolorability graph R is of maximum degree at most

two, and let k = |V (R)|. For any graph G with n vertices and m edges, coloring

reconfiguration under R-recolorability can be solved in O(k+n+m) time.

Furthermore, if an (f0 → fr)-reconfiguration sequence exists for two k-colorings f0

and fr of G, then

• its shortest length can be computed in O(k + n+m) time; and

• a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n + m))

time.

We emphasize that Theorem 7 holds for any graph G, and only the structure

of R is restricted. Since K3 is of maximum degree two, Theorem 7 generalizes the

known positive results for coloring reconfiguration [12, 19]. Note that k is

not always a constant (indeed, can be larger than n).
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We finally note that our results give a new insight for deeper understandings

of tractable/intractable cases of coloring reconfiguration. Notice that the

maximum degree of a recolorability graph R gives an upper bound on the number of

“choices for the next step” (i.e., the number of recolorable colors from the currently

assigned color) for every vertex in G. Then, together with the hardness results in

Chapter 3, we know that the problem is PSPACE-complete if every vertex in G has

more than two choices, but is solvable for any graph in polynomial time if the number

of choices is bounded by at most two. This insight generalizes the known results:

coloring reconfiguration is PSPACE-complete if k ≥ 4 (and hence each vertex

has more than two choices), and is solvable for any graph in polynomial time if k ≤ 3

(and hence each vertex has at most two choices). Therefore, we can conclude that

the essential for tractable/intractable cases of coloring reconfiguration is not

the number k of colors but the number of such choices (i.e., the maximum degree of

R).

In this chapter, we prove Theorem 7 as follows. Since the maximum degree of R is

two and we can assume that the recolorability graph is connected, R is either a path

or a cycle. In Section 4.1, we will prove Theorem 7 for the case where R is a path.

Sections 4.2 and 4.3 are devoted to the case where R is a cycle. In Section 4.2, we will

give an algorithm to solve coloring reconfiguration under recolorability

for such a case; here, we do not care the shortest length of (f0 → fr)-reconfiguration

sequences, but only check its existence. In Section 4.3, we will give an algorithm to

compute the shortest length for a yes-instance.

We also an polynomial-time algorithm of coloring reconfiguration under

R-recolorability where R is a claw graph in Section 4.4.
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4.1 Algorithms for Path Recolorability

In this section, we consider the case where R is a path. We first prove that the

existence of an (f0 → fr)-reconfiguration sequence can be checked in linear time, as

follows.

Theorem 8. Coloring reconfiguration under R-recolorability for any

graph G can be solved in O(k + n+m) time if a recolorability graph R is a path.

We prove Theorem 8 by giving such an algorithm. We first rename the colors

in R so that the colors 1, 2, . . . , k appear in a numerical order along the path R,

and modify two k-colorings f0 and fr accordingly; this can be done in O(k + n)

time. Then, the most important property for the path recolorability is that any

recoloring step preserves the “order” of colors assigned to two adjacent vertices in

G: If a k-coloring f of G assigns colors to two adjacent vertices v, w ∈ V (G) such

that f(v) < f(w), then f ′(v) < f ′(w) holds for any k-coloring f ′ such that an

(f → f ′)-reconfiguration sequence exists. Indeed, this property yields the following

necessary and sufficient condition, which can be checked in O(m) time; and hence

Theorem 8 holds.

Lemma 5. An (f0 → fr)-reconfiguration sequence exists on CR(G) if and only if

fr(v) < fr(w) holds for any vw ∈ E(G) such that f0(v) < f0(w).

Proof. Since the ordering cannot be changed by any recoloring process, the only-if

direction is trivial. Therefore, we only prove the if direction here.

We show that for any k-coloring f (6= fr) of G, satisfying f(v) < f(w)⇔ fr(v) <

fr(w) for each edge vw ∈ E(G), there exists a k-coloring f ′ satisfying the following

two conditions:
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(a) f and f ′ are adjacent under R; and

(b)
(∑

v∈V (G) |fr(v)− f ′(v)|
)

=
(∑

v∈V (G) |fr(v)− f(v)|
)
− 1.

Note that by condition (a), we have f ′(v) < f ′(w) ⇔ fr(v) < fr(w) for each edge

vw ∈ E(G). Since we assume that f0(v) < f0(w) ⇔ fr(v) < fr(w) holds for any

vw ∈ E(G), we can obtain an (f0 → fr)-reconfiguration sequence by applying this

fact to f0 recursively.

Now we show that the existence of such an f ′. Let
−→
Hf be a digraph with vertex

set V (G) and arc set A(
−→
Hf ) = {(v, w) : vw ∈ E(G), f(v)+1 = f(w)}. Since f 6= fr,

there exists at least one vertex v such that f(v) 6= fr(v). We consider only the case

where f(v) < fr(v), because the other case is symmetric. There are following two

cases:

Case 1: v is a sink vertex on
−→
Hf

Since v is a sink vertex, any neighbor of v is not colored with f(v) + 1. There-

fore, v can be recolored to f(v) + 1 and we obtain a desired f ′.

Case 2: v is not a sink vertex on
−→
Hf

Since v is not a sink vertex, there exists a forward walk from v. Let v∗ be

a end of the forward walk. Since the forward walk is ended at v∗, it is sink

vertex. Therefore, v∗ can be recolored to f(v∗) + 1 and we obtain a desired f ′,

if f(v∗) < fr(v
∗) (and hence f(v∗) < k).

Finally, we show that v∗ in above Case 2 fulfills f(v∗) < fr(v
∗). Since there is a

forward walk from v to v∗, it is enough to show that if f(v) < fr(v) and there

is an arc (v, w) ∈ A(
−→
Hf ), then f(w) < fr(w). Since there is an arc (v, w), we

have f(v) + 1 = f(w), and hence by assumption, we have fr(v) < fr(w). Then
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fr(w) > fr(v) > f(v) = f(w) − 1 and we have f(w) < fr(w). This complete the

proof.

We next give a linear-time algorithm to compute dist(f0, fr) if an (f0 → fr)-

reconfiguration sequence exists on CR(G).

Theorem 9. Suppose that a recolorability graph R is a path, and let f0 and fr be

two k-colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists

on CR(G). Then,

(a) dist(f0, fr) =
∑

v∈V (G) |fr(v)− f0(v)| holds;

(b) dist(f0, fr) can be computed in O(k + n+m) time; and

(c) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n + m))

time.

We check if an (f0 → fr)-reconfiguration sequence exists on CR(G) by Theorem 8;

this can be done in O(k + n + m) time. Then, Theorem 9(b) immediately follows

from Theorem 9(a). Therefore, we will prove Theorem 9(a) and (c), as follows:

Observe that dist(f0, fr) ≥
∑

v∈V (G) |fr(v) − f0(v)| holds, because each recoloring

step can change the current color of a vertex v ∈ V (G) to its adjacent color in R,

and hence each vertex v ∈ V (G) requires at least |fr(v) − f0(v)| recoloring steps.

Therefore, the following lemma completes the proof of Theorem 9.

Lemma 6. There exists an (f0 → fr)-reconfiguration sequence on CR(G) of length∑
v∈V (G) |fr(v)− f0(v)|. Furthermore, it can be output in O(kn(n+m)) time.

Proof. We can obtain an (f0 → fr)-reconfiguration sequence with length∑
v∈V (G) |fr(v) − f0(v)| by the procedure given in the proof of Lemma 5. Note

that since this length achieves the claimed lower bound, it is the shortest one.
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Now we estimate the running time of this procedure. The construction of
−→
Hf

takes O(m) time, and then we can find its sink (resp. source) vertex v satisfying

f(v) < fr(v) (resp. f(v) > fr(v)) in O(n) time. Therefore each recursive step takes

O(n + m) time. Since the upper bound of the length of the shortest (f0 → fr)-

reconfiguration sequence is kn, it can be output in O(n + m) · kn = O(kn(n + m))

time.

4.2 Algorithm for Reachability on Cycle Recol-

orability

In this section, we consider the case where R is a cycle, and show that the existence

of an (f0 → fr)-reconfiguration sequence can be checked in linear time; the shortest

length will be discussed in the next section. We prove the following theorem in this

section.

Theorem 10. Coloring reconfiguration under recolorability for any

graph G can be solved in O(k + n+m) time if a recolorability graph R is a cycle.

Since K3 is a cycle, Theorem 10 immediately implies the following corollary,

which is restatement of the result by Johnson et al. [19].

Corollary 2. 3-Coloring reconfiguration can be solved in linear time.

We will prove Theorem 10 by giving such an algorithm, as follows. In Sec-

tion 4.2.1, we give a simple necessary condition for a yes-instance based on the

concept of frozen vertices; the idea is simple, but we need a nice characterization of

frozen vertices for checking the condition in linear time. In Section 4.2.2, we then

give a necessary and sufficient condition for a yes-instance by defining a potential
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function which appropriately characterizes the reconfigurability of k-colorings; how-

ever, this condition cannot be checked in linear time by a naive way. In Section 4.2.3,

we thus explain how to check the condition in linear time.

We rename the colors in R so that the colors 1, 2, . . . , k appear in a numerical

order along the cycle R, and modify two k-colorings f0 and fr accordingly; this can

be done in O(k+n) time. For notational convenience, we define the successor color

c+ and the predecessor color c− for a color c ∈ V (R), as follows:

c+ =

{
c+ 1 if c < k;

1 if c = k,
and c− =

{
c− 1 if c > 1;

k if c = 1.

We use this notation also for a color assigned by a k-coloring: For a k-coloring f

of a graph G and a vertex v in G, we denote by f(v)+ and f(v)− the successor

and predecessor colors for f(v), respectively. In this and next sections, we call a

k-coloring of G simply a coloring.

4.2.1 Characterization of frozen vertices

We now generalize the characterization of frozen vertices [12] from the viewpoint

of cycle recolorability, which plays an important role in our algorithm. The follow-

ing lemma gives a simple necessary condition, which immediately follows from the

definition of frozen vertices.

Lemma 7. Suppose that there exists an (f → f ′)-reconfiguration sequence for two

colorings f and f ′ of a graph G. Then, Frozen(f) = Frozen(f ′), and f(v) = f ′(v)

holds for every vertex v in Frozen(f).

Note that it is not trivial to compute Frozen(f) for a coloring f in linear time.

However, we will give a characterization of frozen vertices (in Lemma 8), which

enables us to compute all of them in linear time (as proved in Lemma 9). We
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Figure 4.1: Characterization of frozen vertices.

note that Lemma 8 generalizes the characterization of frozen vertices on coloring

reconfiguration with k = 3 given by Cereceda et al. [12].

To characterize the frozen vertices, we introduce some notation and terms. For

a graph G and its coloring f , let
−→
H f be the digraph with vertex set V (

−→
H f ) = V (G)

and arc set

A(
−→
H f ) = {(v, w) : vw ∈ E(G) and f(v)+ = f(w)}.

Notice that an arc (v, w) ∈ A(
−→
H f ) implies that f(v) = f(w)−, and represents that,

if we wish to recolor v from f(v) to f(v)+, we need to recolor w from f(w) (= f(v)+)

to f(w)+ in advance. The forward blocking graph from v on a coloring f , denoted

by
−→
B+(v, f), is the subgraph of

−→
H f consisting of all forward walks from v on

−→
H f .

Similarly, the backward blocking graph to v on a coloring f , denoted by
−→
B−(v, f),

is the subgraph of
−→
H f consisting of all backward walks to v on

−→
H f . Then, we have

the following lemma. (See also Figure 4.1.)

Lemma 8. A vertex v ∈ V (G) is frozen on f if and only if it satisfies at least one

of the following two conditions (a) and (b):

(a) v is contained in a directed cycle in
−→
H f ; and

(b)
−→
H f has both a forward walk from v and a backward walk to v, each of which

contains a vertex in a directed cycle.
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Proof. Let S be the set of all vertices in G that satisfy at least one of the two

conditions (a) and (b) above. Then, we will prove that S = Frozen(f).

We first prove that S ⊆ Frozen(f) holds. Let v be an arbitrary vertex in S,

then we show that v ∈ Frozen(f). Since v ∈ S, it satisfies at least one of the two

conditions (a) and (b). By the definition of
−→
H f , any vertex on a directed cycle

in
−→
H f cannot change its color. Therefore, if v satisfies the condition (a), we have

v ∈ Frozen(f).

Next we consider the case where v satisfies only the condition (b). Then,
−→
H f has

a forward walk from v which ends in a vertex w contained in a directed cycle. Note

that w is frozen on f , because it satisfies the condition (a). This implies that any

vertex z (including v) cannot be recolored to its successor color f(z)+. At the same

time,
−→
H f has a backward walk to v which ends in a vertex contained in a directed

cycle, and hence v cannot be recolored to its predecessor color f(v)−, too. Thus, v

is frozen on f , as claimed.

We then prove that Frozen(f) ⊆ S holds by taking its contraposition. Let v be

any vertex which is not in S, then we show that v 6∈ Frozen(f). Since v 6∈ S, at

least one of
−→
B+(v, f) and

−→
B−(v, f) is an acyclic digraph. Assume that

−→
B+(v, f) is

acyclic; it is symmetric to prove the case where
−→
B−(v, f) is acyclic. Then, we show

that v can be recolored to the successor color f(v)+ by the induction on the number

of arcs in
−→
B+(v, f). If |A(

−→
B+(v, f))| = 0, then v can be recolored immediately to

f(v)+ because any neighbor of v is not colored with f(v)+. Therefore, consider the

case where |A(
−→
B+(v, f))| > 0. Then, we obtain a new coloring f ′ of G by recoloring

an arbitrary sink vertex w in
−→
B+(v, f) to f(w)+. Note that we can recolor w directly

to f(w)+, since it has no out-going arc in
−→
B+(v, f). Furthermore, since

−→
B+(v, f)

is connected, w has at least one in-coming arc in
−→
B+(v, f); observe that

−→
B+(v, f ′)
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does not have such an in-coming arc of w, because w is colored with f+(w) in f ′. We

thus have |A(
−→
B+(v, f ′))| ≤ |A(

−→
B+(v, f))| − 1, and hence by applying the induction

hypothesis the claim holds.

Based on Lemma 8, we now prove that Frozen(f) can be computed in linear time.

Lemma 9. For any coloring f of a graph G, Frozen(f) can be computed in O(m)

time.

Proof. One can construct the digraph
−→
H f in O(m) time, by checking each edge vw

in G. For convenience, we denote
−→
H ′f be a digraph obtained from

−→
H f by deleting

vertices which are not incident to any arc of
−→
H f . Notice that no vertex in

−→
H f \

−→
H ′f

is frozen on f by Lemma 8. To achive linear-time calculation, we compute outdegree

d+(v) and indegree d−(v) of each vertex v ∈ V (
−→
H ′f ) and keep them as variables.

Then, we can compute Frozen(f) in O(n + m) time as follows. First, we construct

a queue consisting of all vertex v such that d+(v) = 0 or d−(v) = 0 in O(n) time.

Then we repeat the following:

1. Take a vertex v from the head of the queue.

2. If d+(v) = 0, for each vertex w ∈ V (
−→
H ′f ) such that (w, v) ∈ A(

−→
H ′f ), decrement

d+(w), and if it reaches 0, add w to the queue.

3. Otherwise (d−(v) = 0), for each vertex w ∈ V (
−→
H ′f ) such that (v, w) ∈ A(

−→
H ′f ),

decrement d−(w), and if it reaches 0, add w to the queue.

4. Remove v from the queue.

Each iteration step remove one vertex whose outdegree or indegree is 0, and

refresh the indegree/outdegree of its neighbor. Step 1 and 4 takes O(1) time for



66 Chapter4 Polynomial-Time Algorithms

each step. The computation time of Step 2 and 3 is bounded by degree of the vertex

v, hence the summation of this computation time through the algorithm is O(m).

Therefore this algorithm takes O(n+m) time.

The remaining digraph has no source/sink vertex therefore any of whose vertex

is frozen on f . Therefore, all frozen vertices on f can be found in O((n+m) + n+

(n+m)) = O(n+m) time. Since G is connected in this paper, m ≥ n−1 and hence

O(n+m) = O(m).

4.2.2 Necessary and sufficient condition

In the remainder of this section, by Lemma 7 we assume that Frozen(f0) = Frozen(fr)

and f0(v) = fr(v) for each vertex v ∈ Frozen(f0); otherwise it is a no-instance. In

this subsection, we will give a necessary and sufficient condition for a yes-instance.

We define notation to describe the condition. Let G be an undirected graph, and

let
−→
H be any digraph whose underlying graph is a subgraph of G. For a coloring f

of G and each arc (u, v) ∈ A(
−→
H ), we define the potential pf ((u, v)) of (u, v) on f , as

follows:

pf ((u, v)) =

{
f(v)− f(u) if f(v) > f(u);

f(v)− f(u) + k if f(v) < f(u).
(4.1)

Note that f(u) 6= f(v) holds since uv ∈ E(G). In addition, observe that

pf ((u, v)) + pf ((v, u)) = k (4.2)

holds for any pair of parallel arcs (u, v) and (v, u) if such a pair exists. Then, the

potential pf (
−→
H ) of

−→
H on f is defined to be the sum of potentials of all arcs of

−→
H on

f , that is, pf (
−→
H ) =

∑
(u,v)∈A(

−→
H )

pf ((u, v)).

Let C be a cycle in an undirected graph G. Then, there are only two possible

orientations of C such that they form directed cycles, that is, either the clockwise
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direction or the anticlockwise direction; we always denote by
−→
C and

←−
C such the two

possible orientations of C. The following lemma immediately follows from Eq. (4.2).

Lemma 10. Let f be a coloring of an undirected graph G. Then, pf (
−→
C ) +pf (

←−
C ) =

k|E(C)| for every cycle C in G.

For a coloring f of an undirected graph G, we define a new (undirected) graph

Gf as follows1: let V (Gf ) = V (G), and we arbitrarily add new edges between frozen

vertices on G so that Frozen(f) induces a connected subgraph in the resulting graph.

Then, since there are at most |V (G)| frozen vertices, Gf has |V (G)| vertices and at

most |E(G)| + |V (G)| − 1 edges. Note that Gf = G if Frozen(f) = ∅. Recall that

two given colorings f0 and fr of G are assumed to satisfy Frozen(f0) = Frozen(fr)

and f0(v) = fr(v) for every vertex v in Frozen(f0). We can thus suppose Gf0 = Gfr ,

and hence simply denote it by Gf . Furthermore, since newly added edges join only

frozen vertices, we have the following lemma.

Lemma 11. There exists an (f0 → fr)-reconfiguration sequence on CR(G) if and

only if there exists an (f0 → fr)-reconfiguration sequence on CR(Gf).

We are now ready to claim our necessary and sufficient condition, as follows.

Theorem 11. Let f0 and fr be two colorings of a graph G such that Frozen(f0) =

Frozen(fr), and f0(v) = fr(v) for all vertices v ∈ Frozen(f0). Then, an (f0 → fr)-

reconfiguration sequence exists on CR(G) if and only if pf0(
−→
C ) = pfr(

−→
C ) holds for

every cycle C in Gf .

Before proving the theorem, we note that Theorem 11 is independent from the

choice of the orientations of a cycle C, because Lemma 10 implies that pf0(
−→
C ) =

1We note that our construction of Gf is different from that by Cereceda et al. [12] so that the
running time of our algorithm does not depend on k.
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pfr(
−→
C ) holds if and only if pf0(

←−
C ) = pfr(

←−
C ) holds. We also note that Theorem 11

does not directly yield a linear-time algorithm.

We first prove the only-if direction of Theorem 11. Suppose that there exists an

(f0 → fr)-reconfiguration sequence on CR(G). Then, Lemma 11 implies that CR(Gf)

contains an (f0 → fr)-reconfiguration sequence 〈f0, f1, . . . , f`〉, where f` = fr, and

hence the only-if direction of Theorem 11 can be obtained from the following lemma.

Lemma 12. Suppose that two colorings f and f ′ are adjacent on CR(Gf). Then,

pf (
−→
C ) = pf ′(

−→
C ) holds for every cycle C in Gf .

Proof. Let C be any cycle in Gf . Since f and f ′ are adjacent on CR(Gf), there exists

exactly one vertex v ∈ V (Gf) such that f(v) 6= f ′(v). If v is not contained in C, then

pf (
−→
C ) = pf ′(

−→
C ) trivially holds. We thus consider the case where v is contained in

C. Let (u, v) and (v, w) be the in-coming and out-going arcs of v in
−→
C , respectively.

Then, for any other arc −→a ∈ A(
−→
C ) \ {(u, v), (v, w)}, we have

pf (−→a ) = pf ′(−→a ). (4.3)

Note that the color f ′(v) is either the successor or predecessor color for f(v). We

may assume that f ′(v) is the successor color for f(v), that is, f ′(v) = f(v)+; the

proof for the other case is symmetric. Then, in order to show pf (
−→
C ) = pf ′(

−→
C ), it

suffices to prove that both

pf ((u, v)) = pf ′((u, v))− 1 (4.4)

and

pf ((v, w)) = pf ′((v, w)) + 1 (4.5)
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hold, because Eqs. (4.3), (4.4) and (4.5) yield that

pf (
−→
C ) =pf ((u, v)) + pf ((v, w)) +

∑{
pf (−→a ) : −→a ∈ A(

−→
C ) \ {(u, v), (v, w)}

}
=
(
pf ′((u, v))− 1

)
+
(
pf ′((v, w)) + 1

)
+
∑{

pf ′(−→a ) : −→a ∈ A(
−→
C ) \ {(u, v), (v, w)}

}
=pf ′((u, v)) + pf ′((v, w)) +

∑{
pf ′(−→a ) : −→a ∈ A(

−→
C ) \ {(u, v), (v, w)}

}
=pf ′(

−→
C )

as claimed. We consider the following two cases:

Case 1: f(v) = k.

In this case, f ′(v) = f(v)+ = 1. Since u is adjacent with v in Gf , both f ′(u) 6=

f ′(v) and f(u) 6= f(v) hold. Therefore, we have 1 = f ′(v) < f ′(u) = f(u) < f(v) =

k. Then, Eq. (4.4) follows from Eq. (4.1) as follows:

pf ((u, v)) = f(v)− f(u)

= k − f(u) + 1− 1

= f ′(v)− f ′(u) + k − 1

= pf ′((u, v))− 1.

Similarly, 1 = f ′(v) < f ′(w) = f(w) < f(v) = k holds, and hence Eq. (4.5)

follows from Eq. (4.1) as follows:

pf ((v, w)) = f(w)− f(v) + k

= f(w)− k + k − 1 + 1

= f ′(w)− f ′(v) + 1

= pf ′((v, w)) + 1.
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Case 2: f(v) < k.

In this case, f ′(v) = f(v)+ = f(v)+1. We verify only Eq. (4.4); one can similarly

verify Eq. (4.5). Furthermore, we consider only the case where f ′(u) = f(u) < f(v)

holds; the proof is similar for the case where f ′(v) < f ′(u) = f(u) holds. Then,

Eq. (4.4) follows from Eq. (4.1) as follows:

pf ((u, v)) = f(v)− f(u) = f ′(v)− 1− f ′(u) = pf ′((u, v))− 1.

This completes the proof of the lemma.

We then prove the if direction of Theorem 11: If pf0(
−→
C ) = pfr(

−→
C ) holds for

every cycle C in Gf , then an (f0 → fr)-reconfiguration sequence exists on CR(Gf);

Lemma 11 then implies that CR(G) contains an (f0 → fr)-reconfiguration sequence.

Our proof is constructive, that is, we give an algorithm which indeed finds an

(f0 → fr)-reconfiguration sequence on CR(Gf). We say that a vertex v is fixed if it

is colored with fr(v) and our algorithm decides not to recolor v anymore. Thus, all

frozen vertices are fixed. Our algorithm maintains the set of fixed vertices, denoted

by F . The following Algorithm 1 transforms f0 into a coloring f ′0 of Gf so that

F 6= ∅, as the initialization.

Algorithm 1 (Initialization for Algorithm 2)

1. If Frozen(f0) 6= ∅, then let F = Frozen(f0) and f ′0 = f0.

2. Otherwise let F = {v} for an arbitrarily chosen vertex v ∈ V (G). Let f = f0,

and obtain f ′0 such that f ′0(v) = fr(v), as follows:

2-1. If f(v) = fr(v), then let f ′0 = f and stop the algorithm.

2-2. Otherwise recolor a sink vertex w (possibly v itself) of
−→
B+(v, f) to f(w)+.

Let f be the resulting coloring, and go to Step 2-1.
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Note that we can always find a sink vertex w in Step 2-2 of Algorithm 1, because

otherwise
−→
B+(v, f) contains a directed cycle; by Lemma 8 the vertices in the directed

cycle are frozen, and hence this contradicts the assumption that Frozen(f0) = ∅

holds in Step 2. Furthermore, since an (f0 → f ′0)-reconfiguration sequence exists on

CR(Gf), by Lemma 12 we have pf ′
0
(
−→
C ) = pf0(

−→
C ) = pfr(

−→
C ) for any cycle C in Gf .

We now give the following lemma.

Lemma 13. Let F be the vertex subset obtained by Algorithm 1. Then, the induced

subgraph Gf [F ] is connected.

Proof. If Frozen(f0) = ∅, then F consists of a single vertex v and hence the lemma

clearly holds. Therefore, consider the case where Frozen(f0) 6= ∅. In this case,

Gf [F ] = Gf [Frozen(f0)]. Recall that Gf was obtained by adding new edges to G so

that Gf [Frozen(f0)] is connected. Thus, Gf [F ] is connected also in this case.

We give our main procedure, called Algorithm 2, which finds an (f ′0 → fr)-

reconfiguration sequence on CR(Gf). The algorithm attempts to extend the vertex

set F to V (Gf) so that each vertex v in F is fixed (and hence is colored with fr(v));

we eventually obtain the target coloring fr when F = V (Gf). Recall that our

algorithm never recolors any vertex v in F , and all frozen vertices are contained in

F . Let f = f ′0, and apply the following procedure.

Algorithm 2 (Finding an (f ′0 → fr)-reconfiguration sequence on CR(Gf).)

1. If F = V (Gf) holds, then stop the algorithm.

2. Otherwise pick an arbitrary vertex v ∈ V (Gf)\F which is adjacent with at least

one vertex u ∈ F .

2-1. If f(v) = fr(v), then add v to F and go to Step 1.

2-2. Otherwise
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• if pf ((u, v)) < pfr((u, v)), then recolor a sink vertex w (possibly v

itself) of
−→
B+(v, f) to f(w)+; and

• if pf ((u, v)) > pfr((u, v)), then recolor a source vertex w (possibly v

itself) of
−→
B−(v, f) to f(w)−.

Let f be the resulting coloring, and go to Step 2-1.

To prove that Algorithm 2 correctly finds an (f ′0 → fr)-reconfiguration sequence

on CR(Gf), it suffices to show that there always exists a non-fixed sink/source vertex

in Step 2-2 under the condition that pf ′
0
(
−→
C ) = pf0(

−→
C ) = pfr(

−→
C ) holds for any cycle

C in Gf . Therefore, the following lemma completes the proof of the if direction of

Theorem 11.

Lemma 14. Every application of Step 2 of Algorithm 2 produces a set F of fixed

vertices and a coloring f of Gf satisfying the following (a) and (b): For each edge

uv ∈ Gf such that u ∈ F and v /∈ F ,

(a) if pf ((u, v)) < pfr((u, v)), then
−→
B+(v, f) is a directed acyclic graph such that

no vertex in
−→
B+(v, f) is contained in F ; and

(b) if pf ((u, v)) > pfr((u, v)), then
−→
B−(v, f) is a directed acyclic graph such that

no vertex in
−→
B−(v, f) is contained in F .

Proof. By Lemma 12 we first note that

pf (
−→
C ) = pf0(

−→
C ) = pfr(

−→
C ) (4.6)

holds for any cycle C in Gf . We prove only the claim (a); the proof for the claim (b)

is similar.

We first prove that no vertex in
−→
B+(v, f) is contained in F if pf ((u, v)) <

pfr((u, v)). Suppose for a contradiction that
−→
B+(v, f) contains a vertex in F , and
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let w be a fixed vertex in
−→
B+(v, f) which is closest to v, that is,

−→
B+(v, f) contains

a directed path from v to w which passes through only non-fixed vertices except

for w. Then, consider a directed cycle
−→
C consisting of the following three directed

paths (i)–(iii):

(i)
−→
P u,v is a directed path consisting of the single arc (u, v)

By the assumption, we have pf (
−→
P u,v) < pfr(

−→
P u,v).

(ii)
−→
P v,w is the directed path in

−→
B+(v, f) from v to w

By the definition of a forward blocking graph, notice that pf (−→a ) = 1 holds

for any arc −→a in
−→
P v,w. Equation (4.1) implies that pf ′(

−→
a′ ) ≥ 1 holds for any

coloring f ′ of Gf and any arc
−→
a′ . Therefore, we have pf (

−→
P v,w) ≤ pfr(

−→
P v,w).

(iii)
−→
P w,u is a directed path from w to u such that V (

−→
P w,u) ⊆ F

Lemma 13 ensures that such a path
−→
P w,u exists. Since V (

−→
P w,u) ⊆ F , we have

f(z) = fr(z) for any vertex z in
−→
P w,u. Thus, pf (

−→
P w,u) = pfr(

−→
P w,u) holds.

Then, we have the following inequality:

pf (
−→
C ) = pf (

−→
P u,v) + pf (

−→
P v,w) + pf (

−→
P w,u)

< pfr(
−→
P u,v) + pfr(

−→
P v,w) + pfr(

−→
P w,u) = pfr(

−→
C ).

This inequality contradicts Eq. (4.6), and hence we can conclude that no vertex in

−→
B+(v, f) is contained in F if pf ((u, v)) < pfr((u, v)).

Finally, we prove that
−→
B+(v, f) is a directed acyclic graph. Suppose for a con-

tradiction that
−→
B+(v, f) contains a directed cycle

−→
C . Then, by Lemma 8 any vertex

v in
−→
C is frozen on f . By Lemma 7 such a vertex v is frozen also on f0. Therefore, v

must be included in F initially. This contradicts the fact that no vertex in
−→
B+(v, f)

is contained in F if pf ((u, v)) < pfr((u, v)).
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4.2.3 Proof of Theorem 10

We finally prove Theorem 10 by giving such an algorithm. Our algorithm first checks

the simple necessary condition described in Lemma 7. By Lemma 9 this step can

be done in O(m) time. Note that we can obtain the vertex subsets Frozen(f0) and

Frozen(fr) in this running time. Then, we determine whether a given instance is

a yes-instance or not, based on the necessary and sufficient condition described in

Theorem 11. However, recall that the condition in Theorem 11 cannot be checked

in linear time by a naive way. Below, we give a linear-time algorithm to check the

condition.

Let T be an arbitrary spanning tree of the graph Gf . For an edge e ∈ E(Gf) \

E(T ), we denote by CT,e the unique cycle obtained by adding the edge e to T . The

following lemma shows that it suffices to check the necessary and sufficient condition

only for the number |E(Gf) \ E(T )| of cycles.

Lemma 15. Let T be any spanning tree of Gf . Then, pf0(
−→
C ) = pfr(

−→
C ) holds

for every cycle C of Gf if and only if pf0(
−−→
CT,e) = pfr(

−−→
CT,e) holds for every edge

e ∈ E(Gf) \ E(T ).

Proof. The only-if direction clearly holds, and hence we prove the if direction by the

induction on the number of edges in E(C) \ E(T ) for a cycle C of Gf .

We first consider any cycle C ofGf such that |E(C)\E(T )| = 1. Let e′ be the edge

in E(C) \E(T ), then CT,e′ = C. By the assumption, we have pf0(
−−→
CT,e′) = pfr(

−−→
CT,e′)

and hence pf0(
−→
C ) = pf0(

−−→
CT,e′) = pfr(

−−→
CT,e′) = pfr(

−→
C ), as claimed.

We then consider any cycle C of Gf such that |E(C) \ E(T )| > 1. Then, C

contains at least two edges in E(C)\E(T ). Pick an arbitrary edge uv in E(C)\E(T ),

and let wx be the edge in E(C)\E(T ) that first appears after uv when we traverse C
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along the direction
−→
C ; note that v = w may hold, and that all edges between v and

w are contained in E(T ) if exist. (See Figure 4.2.) For two vertices a, b ∈ V (C), we

denote by
−→
P a,b the directed path in

−→
C from a to b. We divide

−→
C into four directed

paths
−→
P u,v,

−→
P v,w,

−→
P w,x and

−→
P x,u. Then, since both uv and wx are contained in

E(C) \ E(T ), there exist two vertices y ∈ V (
−→
P v,w) and z ∈ V (

−→
P x,u) such that

the unique path on T between y and z does not pass through any edge in C. (See

Figure 4.2.) Let
−→
P y,z be the orientation from y to z for such a path, while let

−→
P z,y

be the other orientation of the path. Then, we define two directed cycles
−→
C1 and

−→
C2, as follows:

•
−→
C1 =

−→
P u,v ∪

−→
P v,y ∪

−→
P y,z ∪

−→
P z,u; and

•
−→
C2 =

−→
P w,x ∪

−→
P x,z ∪

−→
P z,y ∪

−→
P y,w.

Since
−→
C1 and

−→
C2 pass through the unique path in T between y and z in the opposite

directions, the arcs in
−→
C1 and

−→
C2 are all mutually disjoint. Now both |E(C1)\E(T )|

and |E(C2) \ E(T )| are strictly smaller than |E(C) \ E(T )|. We thus apply the

induction hypothesis to
−→
C1 and

−→
C2, and have pf0(

−→
C1) = pfr(

−→
C1) and pf0(

−→
C2) =

pfr(
−→
C2). Therefore, by Eq. (4.2) we have

pf0(
−→
C1) + pf0(

−→
C2) = pf0(

−→
C1 ∪

−→
C2)

= pf0(
−→
C ) + pf0(

−→
P y,z) + pf0(

−→
P z,y)

= pf0(
−→
C ) + k|A(

−→
P y,z)|

and

pfr(
−→
C1) + pfr(

−→
C2) = pfr(

−→
C1 ∪

−→
C2)

= pfr(
−→
C ) + pfr(

−→
P y,z) + pfr(

−→
P z,y)

= pfr(
−→
C ) + k|A(

−→
P y,z)|.
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u

v w

x

y

z

C~ 1
C~ 2

Figure 4.2: Illustration for Lemma 15, where the edges in a spanning tree T are
depicted by (green) dotted thick lines and the edges in E(C) \ E(T ) by thin lines.

By the induction hypothesis, we thus have pf0(
−→
C ) = pfr(

−→
C ), as claimed.

Lemma 15 and the following lemma imply that there is a linear-time algorithm

to check the necessary and sufficient condition described in Theorem 11. Therefore,

the following lemma completes the proof of Theorem 10.

Lemma 16. Let T be any spanning tree of Gf . Then, we can check whether

pf0(
−−→
CT,e) = pfr(

−−→
CT,e) for all e ∈ E(Gf) \ E(T ) can be computed in O(n + m) time

in total.

Proof. We show that equivalence between pf0(
−→
CTe) and pfr(

−→
CTe) can be computed

in O(1) time for any e ∈ E(Gf) \E(T ) by O(|V (Gf)|+ |E(Gf)|) time preprocessing,

then we can compute the equivalence between pf0(
−→
CTe) and pfr(

−→
CTe) in O(|V (Gf)|+

|E(Gf)|) +O(1) · |E(Gf) \E(T )| = O(n+ (m+ n)) +O(1) · (O(m+ n)− (n− 1)) =

O(n+m) time in total for all e ∈ E(Gf) \ E(T ).

First, we construct a spanning tree T of Gf by O(|V (Gf)|+ |E(Gf |) time travers-

ing. We regard T as a rooted tree and take arbitrary vertex r as its root. For conve-

nience we give some notation. We call a vertex of degree one and degree at least three

on T as leaf and branch vertex respectively. Notice that any edge e ∈ E(Gf) \E(T )
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incidents to two leaf vertices of T . For any two vertices v, w ∈ V (Gf), there is an

unique path Pv,w between v and w on T . We denote a partially orientation
−→
P v,w as

a directed path from v to w. We also denote unique lowest common ancestor of v

and w on the rooted tree T by lca(v, w).

For each leaf and branch vertex v, we compute pf0(
−→
P r,v) and pf0(

−→
P v,r). Since

pf0(
−→
P r,v) (resp. pf0(

−→
P v,r)) is the sum of potentials of arcs in directed path from r to

v (resp. from v to r), we can compute these potentials for all leaf and branch vertex

v in O(|E(Gf)|) time by depth-first search with successive addition of potentials of

arcs. Together with this computation, we construct an array which is indexed by

leaf and branch vertices and returns pf0(
−→
P v,r) and pf0(

−→
P r,v), in order to compute

pf0(
−→
P v,r) and pf0(

−→
P r,v) for any leaf and branch vertex in O(1) time. Construction

of this array can be done O(|E(Gf)|) time.

Let C be unique cycle obtained by adding an edge vw ∈ E(Gf) \E(T ) to T and

−→
C be an orientation which forms directed cycle, in which the edge vw is oriented as

an arc (v, w). Then the following holds:

pf0(
−→
P r,v) + pf0((v, w)) + pf0(

−→
P w,r)

=pf0(
−→
P r,lca(v,w)) + pf0(

−→
P lca(v,w),v) + pf0((v, w)) + pf0(

−→
P w,lca(v,w)) + pf0(

−→
P lca(v,w),r)

=(pf0(
−→
P lca(v,w),v) + pf0((v, w)) + pf0(

−→
P w,lca(v,w))) + (pf0(

−→
P r,lca(v,w)) + pf0(

−→
P lca(v,w),r))

=pf0(
−→
C ) + k|A(

−→
P r,lca(v,w))|

This value can be computed in O(1) time, and we can also compute the value

pfr(
−→
C ) + k|A(

−→
P r,lca(v,w))| in O(1) time in similar way.

These two values pf0(
−→
C ) + k|A(

−→
P r,lca(v,w))|, pfr(

−→
C ) + k|A(

−→
P r,lca(v,w))| are equal

if and only if pf0(
−→
C ) = pfr(

−→
C ), therefore we can check whether pf0(

−→
C ) = pfr(

−→
C )

in O(1) time. To check equivalence between pf0(
−−→
CT,e) and pfr(

−−→
CT,e) for all edges
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e ∈ E(Gf)\E(T ) we need O(1)·(|E(Gf)|−|V (Gf)|+1) = O(1)·O(m−n+1) = O(m)

time. The entire computing time takes O(n+m) +O(m) = O(n+m) time.

4.3 Algorithm for Shortest Sequence on Cycle

Recolorability

In this section, we consider the case where R is a cycle, and explain how to compute

the length of (or how to output) a shortest reconfiguration sequence.

Let Pu,v be a path in an undirected graph G connecting vertices u and v. We

denote by
−→
P u,v the directed path from u to v. The following theorem characterizes

the shortest length of an (f0 → fr)-reconfiguration sequence, which generalizes the

characterization for coloring reconfiguration with k = 3 [12, 19].

Theorem 12. Suppose that a recolorability graph R is a cycle, and let f0 and fr be

two colorings of a graph G such that an (f0 → fr)-reconfiguration sequence exists

on CR(G). Then, the following (a) and (b) hold:

(a) If Frozen(f0) 6= ∅, then it holds for an arbitrary chosen vertex u ∈ Frozen(f0)

that

dist(f0, fr) =
∑

v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v)

∣∣,
where Pu,v is an arbitrary chosen path in G connecting u and v.

(b) If Frozen(f0) = ∅, then there exist two integers ρu,1 and ρu,2 for an arbitrary

chosen vertex u ∈ V (G) such that

dist(f0, fr) = min

{ ∑
v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v) + ρu,1

∣∣,
∑

v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v) + ρu,2

∣∣},
where Pu,v is an arbitrary chosen path in G connecting u and v.
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To prove Theorem 12 we show the following two cases. If Frozen(f0) 6= ∅ then

the length of the shortest (f0 → fr)-reconfiguration sequence is

∑
v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v)

∣∣ (4.7)

where u is arbitrary frozen vertex and
−→
P u,v is arbitrary directed path. Otherwise if

Frozen(f0) = ∅ then the length of the shortest (f0 → fr)-reconfiguration sequence is

min

{ ∑
v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v) + ρ

∣∣ : ρ ≡ fr(u)− f0(u) (mod k)

}
(4.8)

where u is arbitrary vertex and
−→
P u,v is arbitrary directed path.

In Section 4.3 we show that Theorem 12 holds for the case Frozen(f0) 6= ∅, i.e.,

Eq. 4.7 holds. In Section 4.3 we show that Theorem 12 holds for the other case

Frozen(f0) 6= ∅, i.e., the choice of the value of ρ ≡ fr(u)− f0(u) (mod k) of Eq. 4.7

can be reduced into only two choices ρu,1 and ρu,2.

For remaining proofs we need some more notations and lemmas. For any two

reachable colorings f and f ′, we denote an (f → f ′)-reconfiguration sequence

by
−→
S f,f ′ . Sometimes we append some coloring f to the head of (f ′ → f ′′)-

reconfiguration sequence
−→
S f ′,f ′′ , we denote such a sequence by f

−→
S f ′,f ′′ The length

of
−→
S f0,f` = 〈f0, f1, . . . , f`〉 is denoted by len(

−→
S f0,f`) = `. For a (f0 → f`)-

reconfiguration sequence
−→
S f0,f` = 〈f0, f1, . . . , f`〉 and a vertex v ∈ V (G), Rotation

rv(
−→
S f0,f`) of v is defined as follows:

• If ` = 0 (sequence contains exactly one coloring) then rv(
−→
S f0,f`) = 0

• Otherwise
−→
S f0,f` = f0

−→
S f1,f` for some f1. There are three cases:

– If f0(v) = f1(v) then rv(
−→
S f0,f`) = rv(

−→
S f1,f`).

– If f0(v)+ = f1(v) then rv(
−→
S f0,f`) = rv(

−→
S f1,f`) + 1.
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– If f0(v)− = f1(v) then rv(
−→
S f0,f`) = rv(

−→
S f1,f`)− 1.

Intuitively the rotation of a vertex v corresponds to the total movement of the color

of v on the recolorability cycle through the reconfiguration sequence
−→
S f0,f` . For

example, if the rotation rv(
−→
S f0,fr) is 3, fr(v) is at a distance 3 from f0(v), in the

direction of increasing order of the labels of the recolorability cycle.

For the case Frozen(f0) 6= ∅ the rotation of each vertex is uniquely determined.

Actually in this case the length of the shortest reconfiguration sequence equals the

sum of absolute values of rotations of each vertices. On the other hand, for the

case Frozen(f0) = ∅ the vertices may have infinitely possibility of the values of their

rotations. For this case we choose arbitrary vertex u and determine its rotation, then

the rotations of all other vertices are uniquely determined. Actually, the variable ρ

occuring Eq. 4.8 is the rotation of u.

The following lemma shows an inequality between the length of reconfiguration

sequence and rotation. This is the basis for lower bound of the length of (f0 → fr)-

reconfiguration sequence.

Lemma 17. len(
−→
S f,f ′) ≥

∑
v∈V (G) |rv(

−→
S f,f ′)| holds for any reconfiguration sequence

−→
S f,f ′ on CR(G).

Proof. We prove by the induction on the length len(
−→
S f,f ′). By definition of rotation,

if len(
−→
S f,f ′) = 0, i.e., f = f ′, then rv(

−→
S f,f ′) = 0 holds for any vertex v ∈ V (G),

therefore the inequation holds.

Otherwise, we consider the case len(
−→
S f,f ′) > 0 holds. Let

−→
S f,f ′ = 〈f0, f1, . . . , f`〉,

where f0 = f and f` = f ′. Then
−→
S f0,f` = f0

−→
S f1,f` holds for some coloring f1. Let

w ∈ V (G) be an unique vertex such that f0(w) 6= f1(w). There are two cases of the
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value of rw(
−→
S f0,f`):

rw(
−→
S f0,f`) =

{
rw(
−→
S f1,f`) + 1 if f0(w)+ = f1(w)

rw(
−→
S f1,f`)− 1 if f0(w)− = f1(w)

Notice that in both of cases |rw(
−→
S f0,f`)| ≤ |rw(

−→
S f1,f`)| + 1 holds. By definition of

rotation, we have rv(
−→
S f0,f`) = rv(

−→
S f1,f`) for any other vertex v ∈ V (G) \ {w} since

f0(v) = f1(v). By induction hypothesis we have the following inequation:

len(
−→
S f1,f`) ≥

∑
v∈V (G)

|rv(
−→
S f1,f`)|

Therefore we obtain the desired inequation as follows:

len(
−→
S f0,f`) = len(

−→
S f1,f`) + 1

≥
∑

v∈V (G)

|rv(
−→
S f1,f`)|+ 1

= |rw(
−→
S f1,f`)|+ 1 +

∑
v∈V (G)\{w}

|rv(
−→
S f1,f`)|

≥ |rw(
−→
S f0,f`)|+

∑
v∈V (G)\{w}

|rv(
−→
S f0,f`)|

=
∑

v∈V (G)

|rv(
−→
S f0,f`)|

Our purpose is to describe rotations of each vertex by a function of two colorings

f0 and fr. The following lemma shows the correspondence between rotation and

coloring.

Lemma 18. Let
−→
S f,f ′ be any reconfiguration sequence on CR(G) and

−→
P u,v be any

directed path from a vertex u ∈ V (G) to a vertex v ∈ V (G). Then the following

formula holds:

pf (
−→
P u,v) + rv(

−→
S f,f ′)− pf ′(

−→
P u,v)− ru(

−→
S f,f ′) = 0.
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Proof. We prove by the induction of the length len(
−→
S f,f ′). If len(

−→
S f,f ′) = 0, i.e.,

f = f ′, then pf (
−→
P u,v) = pf ′(

−→
P u,v) and rv(

−→
S f,f ′) = ru(

−→
S f,f ′) = 0 and the claimed

formula holds.

Otherwise, we consider the case len(
−→
S f,f ′) > 0 holds. Let

−→
S f,f ′ = 〈f0, f1, . . . , f`〉

where f0 = f and f` = f ′. Then
−→
S f0,f` = f0

−→
S f1,f` holds for some coloring f1. By

induction hypothesis we have the following formula:

pf1(
−→
P u,v) + rv(

−→
S f1,f`)− pf`(

−→
P u,v)− ru(

−→
S f1,f`) = 0

There are three cases of the choice of vertex recoloring from f0 to f1:

• If f0(u)± = f1(u),

pf0(
−→
P u,v) + rv(

−→
S f0,f`)− pf`(

−→
P u,v)− ru(

−→
S f0,f`)

=(pf1(
−→
P u,v)± 1) + rv(

−→
S f1,f`)− pf`(

−→
P u,v)− (ru(

−→
S f1,f`)± 1)

=pf1(
−→
P u,v) + rv(

−→
S f1,f`)− pf`(

−→
P u,v)− ru(

−→
S f1,f`) = 0

• If f0(v)± = f1(v),

pf0(
−→
P u,v) + rv(

−→
S f0,f`)− pf`(

−→
P u,v)− ru(

−→
S f0,f`)

=(pf1(
−→
P u,v)∓ 1) + (rv(

−→
S f1,f`)± 1)− pf`(

−→
P u,v)− ru(

−→
S f1,f`)

=pf1(
−→
P u,v) + rv(

−→
S f1,f`)− pf`(

−→
P u,v)− ru(

−→
S f1,f`) = 0

• If f0(w)± = f1(w) where w is neither u nor v,

pf0(
−→
P u,v) + rv(

−→
S f0,f`)− pf`(

−→
P u,v)− ru(

−→
S f0,f`)

=pf1(
−→
P u,v) + rv(

−→
S f1,f`)− pf`(

−→
P u,v)− ru(

−→
S f1,f`) = 0

In the rest of this section, we consider two case whether Frozen(f0) is empty or

not.
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The case Frozen(f0) 6= ∅

In this subsection we show that Algorithm 2 always finds the shortest reconfiguration

sequence for the case where Frozen(f0) = Frozen(fr) 6= ∅. Let u be a frozen vertex.

Then u is never recolored through (f0 → fr)-reconfiguration sequence
−→
S f0,fr . There-

fore we have ru(
−→
S f0,fr) = 0. Then by Lemma 18 we have the following statement:

Corollary 3. Let
−→
S f,f ′ be an arbitrary reconfiguration sequence on CR(G) and

−→
P u,v

be a directed path from u ∈ V (G) to v ∈ V (G). If u ∈ Frozen(f) then the following

formula holds:

pf ′(
−→
P u,v)− pf (

−→
P u,v) = rv(

−→
S f,f ′)

The following lemma shows that we can always finds the shortest reconfiguration

sequence in the case Frozen(f0) 6= ∅.

Lemma 19. If Frozen(f0) 6= ∅, then the length of the shortest (f0 → fr)-

reconfiguration sequence
−→
S f0,fr is len(

−→
S f0,fr) =

∑
v∈V (G) |rv(

−→
S f0,fr)|.

Proof. We show that Algorithm 2 always find an (f0 → fr)-reconfiguration sequence

of the claimed length. By assumption there exist an (f0 → fr)-reconfiguration

sequence
−→
S f0,fr which is found by Algorithm 2. We prove that len(

−→
S f0,fr) =∑

v∈V (G) |rv(
−→
S f0,fr)| holds by the induction on len(

−→
S f0,fr).

If len(
−→
S f0,fr) = 0, then f0 = fr and

∑
v∈V (G) |rv(

−→
S f0,fr)| = 0 trivially holds.

Otherwise, we consider the case len(
−→
S f0,fr) > 0. In this case we have some coloring

f1 such that
−→
S f0,fr = f0

−→
S f1,fr . Then we have some unique vertex z such that

f0(z) 6= f1(z). f0 is recolored by the step 2-2 of Algorithm 2 and then new coloring

f1 is obtained. Then there are two vertices x ∈ F and y /∈ F they are adjacent and

the step 2-2 is separated into two cases:
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• pf0((x, y)) < pfr((x, y)) and the sink vertex z of
−→
B+(x, f0) is recolored to

f(z)+.

• pf0((x, y)) > pfr((x, y)) and the source vertex z of
−→
B−(x, f0) is recolored to

f(z)−.

We discuss only the former case because the latter case is symmetric. In the remain-

ing process Algorithm 2 finds an (f1 → fr)-reconfiguration sequence
−→
S f1,fr whose

length len(
−→
S f1,fr) is exactly len(

−→
S f0,fr) − 1. So by the induction hypothesis the

following formula holds:

len(
−→
S f1,fr) =

∑
v∈V (G)

|rv(
−→
S f1,fr)|

In the former case, we have rz(
−→
S f0,fr) = rz(

−→
S f1,fr) + 1 while rv(

−→
S f0,fr) = rv(

−→
S f1,fr)

for any other vertex v ∈ V (G) \ {z}. Therefore we have the following formula:

len(
−→
S f0,fr)− 1 = len(

−→
S f1,fr)

=
∑

v∈V (G)

|rv(
−→
S f1,fr)|

=
∑

v∈V (G)\{z}

|rv(
−→
S f1,fr)|+ |rz(

−→
S f1,fr)|

=
∑

v∈V (G)\{z}

|rv(
−→
S f0,fr)|+ |rz(

−→
S f0,fr)− 1|

Here if a property rz(
−→
S f0,fr) > 0 holds, then we have the following succeeding

formula: ∑
v∈V (G)\{z}

|rv(
−→
S f0,fr)|+ |rz(

−→
S f0,fr)− 1|

=
∑

v∈V (G)\{z}

|rv(
−→
S f0,fr)|+ |rz(

−→
S f0,fr)| − 1

=
∑

v∈V (G)

|rv(
−→
S f0,fr)| − 1
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Then we have len(
−→
S f0,fr) =

∑
v∈V (G) |rv(

−→
S f0,fr)|. So we prove that the inequation

rz(
−→
S f0,fr) > 0 holds.

Let u ∈ Frozen(f0) be some frozen vertex. By Corollary 3 we have

pfr(
−→
P u,z)− pf0(

−→
P u,z) = rz(

−→
S f0,fr)

for any directed path
−→
P u,z from u to z.

−→
P u,z consists of the following three parts:

•
−→
P u,x is a directed path whose vertices are all fixed (possible u = x). We have

pfr(
−→
P u,x) = pf0(

−→
P u,x) since f0(v) = fr(v) holds for any fixed vertex v.

•
−→
P x,y is just an arc (x, y). We have pfr(

−→
P x,y) > pf0(

−→
P x,y) by the assumption

of recoloring of step 2-2 of Algorithm 2.

•
−→
P y,z is contained in

−→
B+(x, f0) (possibly y = z). By the definition of forward

blocking graph, pf0(
−→e ) = 1 holds for any arc −→e ∈ A

−→
P y,z, which is minimum

potential value for an arc. Therefore pfr(
−→
P y,z) ≥ pf0(

−→
P y,z) holds.

By the above three inequations, we have rz(
−→
S f0,fr) = pfr(

−→
P u,z) − pf0(

−→
P u,z) > 0.

Therefore Algorithm 2 finds an (f0 → fr)-reconfiguration sequence whose length is

len(()
−→
S f0,fr =

∑
v∈V (G) |rv(

−→
S f0,fr)|.

Indeed, we can compute the value
∑

v∈V (G) |rv(
−→
S f0,fr)| =

∑
v∈V (G) |pfr(

−→
P u,v) −

pf0(
−→
P u,v)| in O(m) time.

The case Frozen(f0) = ∅

In this subsection we show how to find the shortest reconfiguration sequence in the

case where Frozen(f0) = Frozen(fr) = ∅. By Lemma 17 and 18 we have the following
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inequation for any (f0 → fr)-reconfiguration sequence
−→
S f0,fr on a graph G:

len(
−→
S f0,fr) ≥

∑
v∈V (G)

|rv(
−→
S f0,fr)|

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ru(

−→
S f0,fr)| (4.9)

where u is arbitrary vertex and
−→
P u,v is some arbitrary path from u to v. Notice

that the lower bound of length len(
−→
S f0,fr) depends on only colorings f0, fr and the

rotation ru(
−→
S f0,fr) of the vertex u. In the rest of this subsection we first show an

algorithm which takes an integer parameter ρ as an aimed value of the rotation

of the vertex u, and finds an (f0 → fr)-reconfiguration sequence
−→
S f0,fr , satisfying

ρ = ru(
−→
S f0,fr), whose length equals the lower bound shown in Eq. 4.9. Then we also

show how to find the value of the parameter ρ = ru(
−→
S f0,fr) that minimizes right

hand side of Eq. 4.9.

We first characterize the possible value of the parameter ρ = ru(
−→
S f0,fr) by the

following lemma:

Lemma 20. For any (f0 → fr)-reconfiguration sequence
−→
S f0,fr and any vertex v,

rv(
−→
S f0,fr) is congruent to fr(v)− f0(v) modulo k.

Proof. We prove by the induction on the length len(
−→
S f0,fr). If len(

−→
S f0,fr) = 0

then f0 = fr therefore rv(
−→
S f0,fr) = fr(v) − f0(v) = 0 holds for any vertex v and

congruence holds.

Otherwise, we consider the case len(
−→
S f0,fr) > 0. Then we have a coloring f1 such

that
−→
S f0,fr = f0

−→
S f1,fr . By induction hypothesis rv(

−→
S f1,fr) ≡ fr(v)− f1(v) (mod k)

i.e., there exists some integer q such that rv(
−→
S f1,fr) + qk = fr(v) − f1(v) holds for

any vertex v ∈ V (G). Notice that We consider the following three cases:
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• If f0(v)+ = f1(v) then rv(
−→
S f0,fr) = rv(

−→
S f1,fr) + 1. Then we consider the

following two subcases:

– If f0(v) = k and f1(v) = 1, then

fr(v)− f0(v) =fr(v)− f1(v) + 1− k

=rv(
−→
S f1,fr) + 1 + (q − 1)k = rv(

−→
S f0,fr) + (q − 1)k

– Otherwise f0(v) + 1 = f1(v), then

fr(v)− f0(v) =fr(v)− f1(v) + 1

=rv(
−→
S f1,fr) + 1 + qk = rv(

−→
S f0,fr) + qk

• If f0(v)− = f1(v) then rv(
−→
S f0,fr) = rv(

−→
S f1,fr) − 1. Then we consider the

following two subcases:

– If f0(v) = 1 and f1(v) = k, then

fr(v)− f0(v) =fr(v)− f1(v)− 1 + k

=rv(
−→
S f1,fr)− 1 + (q + 1)k = rv(

−→
S f0,fr) + (q + 1)k

– Otherwise f0(v)− 1 = f1(v), then

fr(v)− f0(v) =fr(v)− f1(v)− 1

=rv(
−→
S f1,fr)− 1 + qk = rv(

−→
S f0,fr) + qk

• If f0(v) = f1(v) then rv(
−→
S f0,fr) = rv(

−→
S f1,fr). Then,

fr(v)− f0(v) =fr(v)− f1(v)

=rv(
−→
S f1,fr) + qk = rv(

−→
S f0,fr) + qk
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Therefore in every cases fr(v)− f0(v) ≡ rv(
−→
S f0,fr) (mod k) holds.

Indeed, for any vertex u and integer ρ ≡ fr(u) − f0(u) (mod k), we can obtain

an (f0 → fr)-reconfiguration sequence
−→
S f0,fr such that

len(
−→
S f0,fr) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ru(

−→
S f0,fr)|

and ru(
−→
S f0,fr) = ρ.

Lemma 21. For any vertex u and integer ρ ≡ fr(u) − f0(u) (mod k), there is a

(f0 → fr)-reconfiguration sequence
−→
S f0,fr satisfying ru(

−→
S f0,fr) = ρ and

len(
−→
S f0,fr) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ru(

−→
S f0,fr)|.

We give an algorithm that gives initial fixed set F and coloring f ′0 for the

Algorithm 2 for the case Frozen(f0) = ∅. It takes the vertex u and an integer

ρ ≡ fr(u) − f0(u) (mod k) as parameter. Soundness of this algorithm is shown in

the same way as the Algorithm 1.

Algorithm 3 (Initialization for Algorithm 2, with parameters u and ρ)

1. Let f initially be the coloring f0.

2. If ρ = 0 then output f and F = {u}.

3. Otherwise,

• if ρ > 0 then recolor some sink vertex v of
−→
B+(u, f) from f(v) to f(v)+.

Let f be newly obtained coloring and if v = u then let ρ be ρ− 1; or

• if ρ < 0 then recolor some source vertex v of
−→
B−(u, f) from f(v) to

f(v)−. Let f be newly obtained coloring and if v = u then let ρ be

ρ+ 1.
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Then return to the step 2.

Note that Algorithm 3 always outputs {u} as fixed vertices for Algorithm 2.

Lemma 22. For parameters u ∈ V (G) and ρ ≡ fr(u)−f0(u) (mod k), Algorithm 3

finds an (f0 → f ′0)-reconfiguration sequence
−→
S f0,f ′

0
such that f ′0(u) = fr(u) and

ru(
−→
S f0,f ′

0
) = ρ.

Proof. We prove first prove Algorithm 3 properly finds an
−→
S f0,f ′

0
such that f ′0(u) =

fr(u) by the induction on |ρ|. If ρ = 0 then fr(u) − f0(u) = 0 and Algorithm 3

simply outputs f ′0 = f0. Therefore fr(u) = f0(u) = f ′0(u). Otherwise, if ρ > 0

(respectively, ρ < 0) then Algorithm 3 recolors some sink (respectively, source)

vertex v of
−→
B+(u, f0) to f0(v)+ (respectively,

−→
B−(u, f0) to f0(v)−). The existence

of such a vertex is ensured by absence of frozen vertices, i.e., if
−→
B (u, f0) contains

some directed cycle then vertices contained in such a cycle must be frozen.

We treat only the case ρ > 0 because the case ρ < 0 is symmetric. In this case

Algorithm 3 recolors some sink vertex v of
−→
B+(u, f) from f(v) to f(v)′. If v 6= u

then Algorithm 3 repeats until |A(
−→
B+(u, f))| = 0. Otherwise, Algorithm 3 recolors

u from f(u) to f(u)′ and decreases r to r − 1. Let f ′ be newly obtained coloring

and ρ′ = ρ− 1 where ρ is the value before recoloring. We consider the following two

cases:

• If f(u) = k and f ′(u) = 1 then fr(u)− f ′(u) = fr(u)− f(u) + k − 1.

• Otherwise f(u) + 1 = f ′(u) then fr(u)− f ′(u) = fr(u)− f(u)− 1.

In both case the following congruence holds:

fr(u)− f ′(u) ≡ fr(u)− f(u)− 1 ≡ ρ− 1 ≡ ρ′ (mod k)
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Therefore by the induction hypothesis in the remaining process Algorithm 3 outputs

f ′0 such that f ′0(u) = fr(u) holds.

Then we prove ru(
−→
S f0,f ′

0
) by induction of the length len(

−→
S f0,f ′

0
). If len(

−→
S f0,f ′

0
) = 0

then we can assume that ρ = 0 and len(
−→
S f0,f ′

0
) = ρ holds. Otherwise, we can assume

|r| > 0 and there are some cases of recoloring of f0:

• If r > 0 and there is some sink vertex v of
−→
B+(u, f0) that is not u, then

f0(u) = f1(u) and parameter ρ is unchanged therefore ru(
−→
S f1,f ′

0
) = ru(

−→
S f0,f ′

0
)

and fr(u) − f1(u) = fr(u) − f0(u) ≡ ρ (mod k). By induction hypothesis

ru(
−→
S f0,f ′

0
) = ru(

−→
S f1,f ′

0
) = ρ holds.

• If r > 0 and there is only one sink vertex
−→
B+(u, f0) namely u, then u is

recolored from f0(u) to f0(u)+ = f1(u) and parameter ρ is decreased into

ρ− 1. There are two subcases:

– If f0(u) = k and f1(u) = 1, then fr(u)−f1(u) = fr(u)−f0(u)+k−1 ≡ ρ−1

(mod k). Then by induction hypothesis ru(
−→
S f0,f ′

0
)−1 = ru(

−→
S f1,f ′

0
) = ρ−1

holds.

– Otherwise, if f0(u)+1 = f1(u), then fr(u)−f1(u) = fr(u)−f0(u)−1 ≡ ρ−

1 (mod k). Then by induction hypothesis ru(
−→
S f0,f ′

0
) − 1 = ru(

−→
S f1,f ′

0
) =

ρ− 1 holds.

In both cases we have ru(
−→
S f0,f ′

0
) = ρ.

• If r < 0 then we also have ru(
−→
S f0,f ′

0
) = ρ but we omit the proof since it is

symmetric.
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Let f ′0 be the coloring output by Algorithm 3 and
−→
S f0,f ′

0
be the (f0 → f ′0)-

reconfiguration sequence produced by Algorithm 3. Now we have fixed vertices

F = {u} for Algorithm 2, and then we can obtain an (f ′0 → fr)-reconfiguration

sequence
−→
S f ′

0,fr
. We omit the proof of the following lemma because it can be proved

in the same way as Lemma 19.

Lemma 23. Let f ′0 and F = {u} are coloring and fixed vertices which are output by

Algorithm 3. For these parameters Algorithm 2 finds an (f ′0 → fr)-reconfiguration

sequence
−→
S f ′

0,fr
such that,

len(
−→
S f ′

0,fr
) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf ′

0
(
−→
P u,v)|

Let
−→
S f0,fr be a concatenation of two subsequences

−→
S f0,f ′

0

−→
S f ′

0,fr
. Through the

execution of Algorithm 2 vertex u is always fixed, therefore we have ρ = ru(
−→
S f0,fr) =

ru(
−→
S f0,f ′

0
) + ru(

−→
S f ′

0,fr
) = ru(

−→
S f0,f ′

0
) + 0 = ru(

−→
S f0,f ′

0
). The following lemma and its

corollary shows that concatenation of Algorithm 3 and Algorithm 2 outputs
−→
S f0,fr

such that

len(
−→
S f0,fr) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ru(

−→
S f0,fr)|

which is the shortest (f0 → fr) with respect to fixed rotation ρ = ru(
−→
S f0,fr) of the

vertex u.

Lemma 24. Let f ′0 be the coloring obtained by Algorithm 3 with parameter u ∈ V (G)

and ρ ≡ fr(u)− f0(u) (mod k). Then,∑
v∈V (G)

|pfr(
−→
P u,v)− pf ′

0
(
−→
P u,v)| =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| − len(

−→
S f0,f ′

0
).

Proof. We prove by the induction on the length len(
−→
S f0,f ′

0
). If len(

−→
S f0,f ′

0
) = 0

i.e., f0 = f ′0, then by the definition of Algorithm 3, ρ must be 0 and the formula
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trivially holds. Otherwise if len(
−→
S f0,f ′

0
) > 0, then there is some coloring f1 such that

−→
S f0,f ′

0
= f0
−→
S f1,f ′

0
. In this case ρ 6= 0 and we consider some cases of the execution

of Algorithm 3.

• If ρ > 0 and u is recolored from f0(u) to f0(u)+ = f1(u), Then the rest

execution of Algorithm 3 takes f1 as an initial coloring and ρ−1 as parameters.

By induction hypothesis we have the following formula:

∑
v∈V (G)

|pfr(
−→
P u,v)− pf ′

0
(
−→
P u,v)|

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + (ρ− 1)| − len(

−→
S f1,f ′

0
)

Since we have pf (
−→
P u,u) − pf ′(

−→
P u,u) = 0 for any coloring f, f ′, we obtain the

following transformation:

∑
v∈V (G)

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + (ρ− 1)| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{u}

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + (ρ− 1)|

+|pfr(
−→
P u,u)− pf1(

−→
P u,u) + (ρ− 1)| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{u}

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + (ρ− 1)|+ |(ρ− 1)| − len(

−→
S f1,f ′

0
)

Since we have ρ > 0, we obtain the following transformation:

∑
v∈V (G)\{u}

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + (ρ− 1)|+ |(ρ− 1)| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{u}

|pfr(
−→
P u,v)− (pf1(

−→
P u,v) + 1) + ρ|+ |ρ| − (len(

−→
S f1,f ′

0
) + 1)

Finally, since pf1(
−→
P u,v) + 1 = pf0(

−→
P u,v) and len(

−→
S f1,f ′

0
) + 1 = len(

−→
S f0,f ′

0
), we
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have the desired formula:∑
v∈V (G)\{u}

|pfr(
−→
P u,v)− (pf1(

−→
P u,v) + 1) + ρ|+ |ρ| − (len(

−→
S f1,f ′

0
) + 1)

=
∑

v∈V (G)\{u}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|+ |ρ| − len(

−→
S f0,f ′

0
)

=
∑

v∈V (G)\{u}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+|pfr(
−→
P u,u)− pf0(

−→
P u,u) + ρ| − len(

−→
S f0,f ′

0
)

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| − len(

−→
S f0,f ′

0
)

• If ρ > 0 and some vertex w 6= u is recolored from f0(w) to f0(w)+ = f1(w),

then the rest execution of Algorithm 3 takes f1 as an initial coloring and ρ as

parameters. By induction hypothesis we have the following formula:∑
v∈V (G)

|pfr(
−→
P u,v)− pf ′

0
(
−→
P u,v)|

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf1(

−→
P u,v)− ρ| − len(

−→
S f1,f ′

0
)

Since we have pf1(
−→
P u,w) = pf0(

−→
P u,w) + 1 and pf1(

−→
P u,v) = pf0(

−→
P u,v) for any

vertex v 6= w, the following transformation holds:∑
v∈V (G)

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + ρ| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{w}

|pfr(
−→
P u,v)− pf1(

−→
P u,v) + ρ|

+|pfr(
−→
P u,w)− pf1(

−→
P u,w) + ρ| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{w}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+|pfr(
−→
P u,w)− (pf0(

−→
P u,w) + 1) + ρ| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{w}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+|(pfr(
−→
P u,w)− pf0(

−→
P u,w)) + (ρ− 1)| − len(

−→
S f1,f ′

0
)
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In the step 2 of Algorithm 3, there is a directed path from u to v contained

in forward blocking graph
−→
B+(u, f0). Let

−→
P u,w be such a directed path, then

pf0(
−→e ) = 1 holds for any −→e ∈ A(

−→
P u,w), which is minimum potential of a

directed edge. Therefore we have pfr(
−→
P u,w) − pf0(

−→
P u,w) ≥ 0. Together with

the assumption r > 0, we have the following transformation:∑
v∈V (G)\{w}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+|(pfr(
−→
P u,w)− pf0(

−→
P u,w)) + (ρ− 1)| − len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{w}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+(pfr(
−→
P u,w)− pf0(

−→
P u,w)) + (ρ− 1)− len(

−→
S f1,f ′

0
)

=
∑

v∈V (G)\{w}

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

+|pfr(
−→
P u,w)− pf0(

−→
P u,w) + ρ| − (len(

−→
S f1,f ′

0
) + 1)

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| − (len(

−→
S f1,f ′

0
) + 1)

Since we have len(
−→
S f0,f ′

0
) = len(

−→
S f1,f ′

0
) + 1, we obtain the desired formula:∑

v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| − (len(

−→
S f1,f ′

0
) + 1)

=
∑

v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| − len(

−→
S f0,f ′

0
)

• The case r < 0 is symmetric therefore we omit the proof.

In all case we have the desired formula.

By Lemma 22, 23, 24 and Eq. 4.9 we have the following corollary:

Corollary 4. Let
−→
S f0,f ′

0
be a reconfiguration sequence obtained by Algorithm 3 with

initial parameters u ∈ V (G) and ρ ≡ fr(u) − f0(u) (mod k), and
−→
S f ′

0,fr
be a re-

configuration sequence obtained by Algorithm 2 with initial fixed vertices F = {u}.
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Then we have

len(
−→
S f0,f ′

0
) + len(

−→
S f ′

0,fr
) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ|

and the reconfiguration sequence
−→
S f0,f ′

0

−→
S f ′

0,fr
is the shortest one among all recon-

figuration sequence such that ru(
−→
S f0,fr) = ρ.

Proof. The formula follows from Lemma 23 and 24. By Lemma 22 we have

ru(
−→
S f0,f ′

0
) = ρ. And by the fact that the vertex u is fixed through the execu-

tion of Algorithm 2, we have ru(
−→
S f ′

0,fr
) = 0. Therefore ru(

−→
S f0,fr) = ru(

−→
S f0,f ′

0
) =

ru(
−→
S f ′

0,fr
) = ρ holds. Then

len(
−→
S f0,f ′

0
) + len(

−→
S f ′

0,fr
) =

∑
v∈V (G)

|pfr(
−→
P u,v)− pf0(

−→
P u,v) + ru(

−→
S f0,fr)|

fits to the lower bound of the length of the reconfiguration sequence whose rotation

ru(
−→
S f0,fr) of u is ρ given by Eq. 4.9.

Now we can compute the length of the shortest (f0 → fr)-reconfiguration se-

quence
−→
S f0,fr satisfying ru(

−→
S f0,fr) = ρ for any integer ρ ≡ fr(u) − f0(u) (mod k).

To find the shortest (f0 → fr)-reconfiguration sequence, we have to find the value

of ρ which minimizes
∑

v∈V (G) |pfr(
−→
P u,v) − pf0(

−→
P u,v) + ρ|. To find this value we

exploit an well-known property in statistics, such that the median of real numbers

minimizes the sum of absolute errors. Let X ′ = (xi1 , xi2 , . . . , xin) be a sequence

obtained by sorting a sequence X = (x1, x2, . . . , xn) of real number by increasing

order. Then its median Med(X) of the sequence X is defined as follows:

Med(X) =

xin+1
2

if n is odd(
xin

2
+ xin

2 +1

)
/2 otherwise if n is even.
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The following lemma shows that the function which takes real number y and returns

the sum of absolute error of the sequence X from y is a convex function whose

minimum is y = Med(X)

Lemma 25. Let X = (x1, . . . , xn) be a sequence of real number. Then f(y) =∑
x∈X |x − y| is monotonically increasing on y ≥ Med(X) and monotonically de-

creasing on y ≤Med(X).

Proof. We only show the monotonically increasingness of f(y) on y ≥ Med(X),

because the proof of monotonically decreasingness is symmetric. Let a, b be real

numbers such that Med(X) ≤ a ≤ b. In the rest of proof we show f(a) ≤ f(b). Let

La, Ra, Lb, Rb be the sets {x ∈ X | x ≤ a}, {x ∈ X | x > a}, {x ∈ X | x ≤ b} and

{x ∈ X | x > b} respectively.

f(b)− f(a)

=
∑
x∈X

|x− b| −
∑
x∈X

|x− a|

=

(∑
x∈Lb

(b− x) +
∑
x∈Rb

(x− b)

)
−

(∑
x∈La

(a− x) +
∑
x∈Ra

(x− a)

)

=

(∑
x∈Lb

(b− x) +
∑
x∈La

(x− a)

)
−

(∑
x∈Ra

(x− a) +
∑
x∈Rb

(b− x)

)

=

 ∑
x∈Lb\La

(b− x) +
∑
x∈La

(b− x) +
∑
x∈La

(x− a)


−

 ∑
x∈Ra\Rb

(x− a) +
∑
x∈Rb

(x− a) +
∑
x∈Rb

(b− x)


=

 ∑
x∈Lb\La

(b− x) +
∑
x∈La

(b− a)

−
 ∑

x∈Ra\Rb

(x− a) +
∑
x∈Rb

(b− a)


Since Lb \ La = Ra \ Rb = X \ (La ] Rb) and b is maximum of such a set, we have
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the following succeeding transformation: ∑
x∈Lb\La

(b− x) +
∑
x∈La

(b− a)

−
 ∑

x∈Ra\Rb

(x− a) +
∑
x∈Rb

(b− a)


=

∑
x∈X\(La]Rb)

(a+ b− 2x) +
∑
x∈La

(b− a)−
∑
x∈Rb

(b− a)

≥
∑

x∈X\(La]Rb)

(a+ b− 2b) +
∑
x∈La

(b− a)−
∑
x∈Rb

(b− a)

=
∑

x∈X\(La]Rb)

(a− b) +
∑
x∈La

(b− a)−
∑
x∈Rb

(b− a)

=(|X| − |La| − |Rb|)(a− b) + |La|(b− a)− |Rb|(b− a)

=(2|La| − |X|)(b− a)

Since a ≥Med(X), we have |La| ≥ |X|/2 by the property of median. Thus, we have

(2|La| − |X|)(b− a) ≥ 0. By above discussion, we have f(b)− f(a) ≥ 0. Therefore

monotonically increasingness hold for y ≥Med(X).

The following lemma complete the proof of Theorem 12.

Lemma 26. Let V (G) = {v1, v2, . . . , vn} and u be arbitrary vertex, and let X =

(x1, x2, . . . , xn) be a sequence where xi = pf0(
−→
P u,v)− pfr(

−→
P u,v). Then

min

{ ∑
v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v) + ρ

∣∣ : ρ ≡ fr(u)− f0(u) (mod k)

}

= min

{ ∑
v∈V (G)

∣∣pfr(−→P u,v)− pf0(
−→
P u,v) + ρ

∣∣ :

ρ ∈
{⌊

Med(X)− (fr(u)− f0(u))

k

⌋
,

⌈
Med(X)− (fr(u)− f0(u))

k

⌉}}
Proof. We want to obtain the value ρ ≡ fr(u)−f0(u) (mod k) which minimizes the

value
∑

v∈V (G) |pfr(
−→
P u,v)− pf0(

−→
P u,v) + ρ| =

∑
v∈V (G) |pf0(

−→
P u,v)− pfr(

−→
P u,v)− ρ| of

Eq. 4.8. By Lemma 25, ρ = Med(X) minimizes this value, however ρ ≡ (fr(u) −
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f0(u)) (mod k) is cannot always be Med(X). Therefore we choose ρ as either least

ρ ≡ (fr(u)−f0(u)) (mod k) which is at least Med(X), or greatest ρ ≡ (fr(u)−f0(u))

(mod k) which is at most Med(X), that is

ρ ∈
{⌊

Med(X)− (fr(u)− f0(u))

k

⌋
,

⌈
Med(X)− (fr(u)− f0(u))

k

⌉}
.

We finally claim that dist(f0, fr) can be computed in linear time, based on The-

orem 12, and that a shortest (f0 → fr)-reconfiguration sequence can be output in

polynomial time.

Lemma 27. For any vertex u ∈ V (G), two integers ρu,1 and ρu,2 of Theorem 12(b)

can be obtained in O(n+m) time. Furthermore,

(a) dist(f0, fr) can be computed in O(n+m) time; and

(b) a shortest (f0 → fr)-reconfiguration sequence can be output in O(kn(n + m))

time.

We prove Lemma 27 by the following three lemmas. First we show (a) for the

case where Frozen(f0) 6= ∅.

Lemma 28. The value of Eq. 4.7 can be computed in O(n+m) time.

Proof. It suffices to show that we can compute the values pf0(
−→
P u,v) for all vertices

v ∈ V (G) in O(m) total time. Notice that the starting point u is fixed, then we

can use the same technique used in Lemma 16. We construct a spanning rooted

tree rooted by the vertex u in O(n + m) time. Then we can compute pf0(
−→
P u,v)

for all vertices in O(n) time by successive addition of potentials of arcs. The whole

computation takes O(n+m) time.
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For the other case where Frozen(f0) = ∅ we exploit the median of medians

algorithm [2] to compute the value of Eq. 4.8 in O(n + m) time. Finally we show

that we can compute the value of Eq. 4.8 in O(m) time using well-known the median

of medians algorithm [2].

Lemma 29. The values ρu,1 and ρu,2 of Theorem 12(b) and the value of Eq. 4.8 can

be computed in O(n+m) time.

Proof. Let V (G) = {v1, v2, . . . , vn}. We first compute the values pf0(
−→
P u,v) and

pf0(
−→
P u,v) for all vertices in O(n+m) total time using the same method as Lemma 28.

Then we compute the median Med(X) of the sequence X = (x1, x2, . . . , xn) where

xi = pf0(
−→
P u,v) − pfr(

−→
P u,v) in O(n) time, using median of medians algorithm [2]

which finds ith largest element of given sequence of n elements of total ordered set

in O(n) time for any i ≤ n. Then by Lemma 26 we can determine two choices ρu,1

and ρu,2 of ρ which minimizes
∑

v∈V (G) |pfr(
−→
P u,v) − pf0(

−→
P u,v) + ρ| in O(n) time.

Therefore computation of ρu,1 and ρu,2 takes O(n+m) time.

Once ρu,1 and ρu,2 is determined, the value of Eq. 4.8 can be computed inO(n+m)

time by the same way as the proof of Lemma 28.

Finally we show that we can obtain the actual shortest (f0 → fr)-reconfiguration

sequence in O(kn(n+m)) time.

Lemma 30. Then a shortest (f0 → fr)-reconfiguration sequence can be output in

O(kn(n+m)) time.

Proof. For the case Frozen(f0) 6= ∅, by the proof of Lemma 19 we can obtain the

shortest (f0 → fr)-reconfiguration sequence by Algorithm 2. Its running time is

estimated as follows: Since the step 2 decreases the size of V (Gf) \ F exactly one,
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the iteration of step 1 to 2 occurs at most n times. For the iteration of the step

2-1 to 2-2 we need to go into detail. Recoloring of the picked vertex v occurs at

most k time. We need to recolor a sink (source) vertex w of forward blocking graph

−→
B+(v, f) (backward blocking graph

−→
B−(v, f)). However we need not to reconstruct

the blocking graph at each iteration of the step 2-2. While the color of the vertex v

has been unchanged, the recoloring can be done by the following procedure:

1. Let B be forward blocking graph
−→
B+(v, f) (backward blocking graph

−→
B−(v, f)) if f(v) < fr(v) (f(v) > fr(v)).

2. Choose a sink (source) vertex w and recolor it to f(w)+ (f(w)−), then delete

w from B.

3. Repeat the step 2 until the vertex v is recolored.

Therefore we need to construct the blocking graph at most k time. The construction

of B takes O(n + m) time and after construction of B, at most |V (B)| = O(n)

step recoloring occurs until v is recolored, therefore whole recoloring step takes

n · k · (O(n+m) +O(n)) = O(kn(n+m)) time.

For the case Frozen(f0) = ∅, the recoloring algorithm consists of three parts:

Finding the value ρ which minimizes the value of Eq. 4.8, Algorithm 3, and Algo-

rithm 2. As mentioned above, Algorithm 2 can be computed in O(kn(n+m)) time.

By Lemma 29 the value of ρ can be found in O(n + m) time. The running time

of Algorithm 3 can be estimated as O(k(n + m)) in the same way as Algorithm 2.

Therefore for the case we need O(n+m) +O(k(n+m)) +O(kn(n+m)) time.
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Figure 4.3: A claw graph.

4.4 Algorithm for Claw Recolorability

In this section we show that coloring reconfiguration under R-

recolorability can be solved in polynomial time if the recolorability graph R

is claw, which is a complete bipartite graph K1,3, shown in Figure .

Theorem 13. Coloring reconfiguration under R-recolorability can be

solved in polynomial time if R is a claw graph.

Proof. Let R = ({1, 2, 3, 4}, {{1, 4}, {2, 4}, {3, 4}}). We show that any instance

of coloring reconfiguration under R-recolorability can be transformed

into an instance of 3-coloring reconfiguration. Let f0, fr be the initial

and target colorings a graph G of coloring reconfiguration under R-

recolorability. Let u be a vertex in {v ∈ V (G) | f0(v) = 4}. We recolor u

to arbitrary color in {1, 2, 3} \ {f0(v) | v ∈ N(G, u)}, if {1, 2, 3} \ {f0(v) | v ∈

N(G, u)} 6= ∅. We repeat it until any further recoloring of a vertex occurs. Let

f ′0 be the obtained coloring. In the same way f ′r can be obtained. Notice that a

vertex colored 4 and its neighbor vertices are frozen on f ′0, f
′
r, therefore we assume

that
⋃
{N(G, v) | v ∈ V (G), f ′0(v) = 4} =

⋃
{N(G, v) | v ∈ V (G), f ′r(v) = 4} and

for any v ∈
⋃
{N(G, v) | v ∈ V (G), f ′0(v) = 4}, f ′0(v) = f ′r(v) holds, otherwise

the instance is no-instance. Let Vi = {v | v ∈ N(G, u), f ′0(v) = i, f ′0(u) = 4}. We

contract the vertices in Vi into a vertex vi, and construct a clique by joining v1, v2, v3

by edges. Then we remove all vertices colored 4 on f ′0, and we obtain an instance
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of 3-coloring reconfiguration. Let GT be the obtained graph and f ′0T , f
′
rT be

the obtained colorings.

We show that the instance of coloring reconfiguration under R-

recolorability is reachable if and only if the obtained instance of 3-coloring

reconfiguration is reachable. The proof is similar to the proof of Theorem .

We first prove if part. Let 〈f ′0T , f ′1T , . . . , f ′`T 〉 be a reconfiguration sequence for

3-coloring reconfiguration, where f ′`T = f ′rT . Since v1, v2, v3 are frozen and

only the color of V (GT ) \ {v1, v2, v3} changes, for each f ′i T there is a corresponding

coloring f ′i of G such that f ′i |V (G)\{v∈V (G)|f ′
0(v)=4} = f ′i T |V (GT )\{v1,v2,v3}. For each

i ∈ {0, 1, . . . , `− 1} we can construct a coloring f ′i,i+1 such that

f ′i,i+1(v) =

{
4 if f ′i(v) 6= f ′i+1(v);

f ′i(v) otherwise

which is adjacent to f ′i and f ′i+1. Therefore 〈f ′0, f ′0,1, f ′1, . . . , f ′`−1,`, f ′`〉 is an reconfig-

uration sequence of coloring reconfiguration under R-recolorability.

We then prove the only-if direction. Let 〈f ′0, f ′1, . . . , f ′`〉 be a reconfiguration

sequence where f ′` = f ′r. We construct a sequence of colorings 〈f ′′0 , f ′′1 , . . . , f ′′` 〉 of GT

as follows:

f ′′i (v) =


i if v = vi ∈ {v1, v2, v3};
f ′i(v) if v /∈ {v1, v2, v3} and fi(v) ∈ {1, 2, 3};
f ′i−1(v) if v /∈ {v1, v2, v3} and fi(v) = 4.

Note that f ′′0 = f ′0T and f ′′` = f ′`T hold. We now claim that the sequence

〈f ′′0 , f ′′1 , . . . , f ′′` 〉 is a (redundant) reconfiguration sequence of GT , by proving the

following (a) and (b):

(a) f ′′i is a 4-coloring of G for each i ∈ {0, 1, . . . , `}; and

(b)
∣∣{v ∈ V (G) : f ′′i (v) 6= f ′′i+1(v)}

∣∣ ≤ 1 for each i ∈ {0, 1, . . . , `− 1}.
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We first prove the claim (a) above. If adjacent vertices v, w are colored 1, 2 or

3 in f ′i , they have different colors not only in f ′i but also in f ′′i . Let w be a vertex

in G such that f ′i(w) = 4. The vertex w is colored with f ′q(w) ∈ {1, 2, 3} such that

q = max{j | 0 ≤ j ≤ i−1, f ′j(w) 6= 4}. Then, f ′j(w) = 4 for all j ∈ {q+1, q+2, . . . , i}

and hence every vertex v ∈ N(G,w) is colored with the same color f ′q(v), because

any recoloring must be made via the color 4. Therefore no neighbor of w has the

same color of w in f ′′i and f ′′i is a proper 3-coloring.

We finally prove the claim (b) above. Let v be the vertex which is recolored

between f ′i and f ′i+1 for i ∈ {0, 1, . . . , `−1}. If v is recolored from a color in {1, 2, 3}

to 4, then we have f ′′i = f ′′i+1 and the claim holds. Note that v stays with the same

color f ′′i (v) = f ′′i+1(v) until it is recolored some color in {1, 2, 3}. Therefore, the claim

holds also for the case where v is recolored from a color in {1, 2, 3, 4} to another

color {1, 2, 3}, because only v is recolored between f ′i and f ′i+1.
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Chapter 5

Directed recolorability

In this chapter we generalize the concept of recolorability graph into digraph

and study the complexity status of the generalized problem. For a color set

C = {1, 2, . . . , k}, directed recolorability graph
−→
R is a digraph whose vertex set V (G)

is the color set C. We define coloring reconfiguration under directed
−→
R -

recolorability by means of reconfiguration graph; let G be a graph and
−→
R be

a directed recolorability graph which is defined on a color set C of size k, then di-

rected
−→
R -reconfiguration graph

−→
C −→

R
(G) is a digraph defined as follows: the vertex

set V (
−→
C −→

R
(G)) is the set of all k-colorings of G, and for two k-colorings f, f ′ of G,

there is an arc from (f, f ′) ∈ A(
−→
C −→

R
(G)) if the following two conditions hold:

• |{v ∈ V (G) | f(v) 6= f ′(v)}| = 1; and

• if f(v) 6= f ′(v) then (f(v), f ′(v)) ∈ A(
−→
R ).

Informally, the color c of a vertex can be changed into other color c′ if the resulting

color assignment is a proper k-coloring of G, and there is an arc (c, c′) ∈ A(
−→
R ). For

two colorings f, f ′, a (f → f ′)-reconfiguration sequence is a directed path from f to

f ′ on
−→
C −→

R
(G).

In Section 5.1 we show that coloring reconfiguration under directed
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−→
R -recolorability is NP-hard even if the directed recolorability graph is a poly-

tree of maximum outdegree two and maximum indegree two. On the other hand, in

Section 5.2 we give a polynomial-time algorithm of the problem for the case where

the directed recolorability graph is a rooted tree. Note that if the directed recol-

orability graph is acyclic, then the problem is in NP since no vertex is colored to

a same color twice, i.e., there is no sequence of coloring 〈f0, f1, . . . , f`〉 such that

〈f0(v), f1(v), . . . , f`(v)〉 = 〈c, c′, . . . , c〉 for a vertex v and two different colors c, c′,

then the length of any reconfiguration sequence is at most |V (G)| · (|V (
−→
R )| − 1) =

n(k − 1).

5.1 NP-hardness for polytree

In this section we show the following:

Theorem 14. There is a polytree of maximum outdegree two and maximum

indegree two such that coloring reconfiguration under directed
−→
R -

recolorability is NP-hard.

Proof. As well as the proof of Theorem 4, we show the NP-hardness by a polynomial-

time reduction from 3-coloring of planar graphs [13]. Every planar graph is 4-

colorable [1], and 4-coloring of a planar graph can be computed in polynomial-

time [23]. Let G be a given planar graph and we first give a 4-coloring fF : V (G)→

{1, 2, 3, 4} of G in polynomial-time. Then we separate the vertex set V (G) into four

subsets V1, V2, V3, V4, where Vi = {v ∈ V (G) | fF (v) = i}.

We construct an instance of coloring reconfiguration under directed

R-recolorability fro m the graph G. Let G′ be an undirected graph defined as
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V1

V2

V3

V4

vl1

vl2

vl3

vl4

vl

vu

vr1

vr2

vr3

vr4

vr

G

Figure 5.1: A graph G′.
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c1 cr1 cr2 cr3

cr4

cr5

csvr

csvr1,vr2,vr3,vr4

ctvr

ctvu

ctV1

ctV2

ctV3

ctV4

ctvr1

ctvr2

ctvr3

ctvr4

Figure 5.2: Directed recolorability graph which is a polytree.

follows (see also Figure 5.1):

V (G′) = V (G) ∪ {vl1, vl2, vl3, vl4, vl, vu, vr, vr1, vr2, vr3, vr4}

E(G′) = E(G) ∪
⋃

i∈{1,2,3,4}

{vliv | v ∈ Vi} ∪
⋃

i∈{1,2,3,4}

{vriv | v ∈ Vi}

∪ {vl1vl, vl2vl, vl3vl, vl4vl, vlvu, vuvr, vrvr1, vrvr2, vrvr3, vrvr4}

We also define a directed recolorability graph
−→
R as follows (see also Figure 5.2):



5.1 NP-hardness for polytree 107

V (
−→
R ) = {csvl1 , c

s
vl2
, csvl3 , c

s
vl4
, ctvl1,vl2,vl3,vl4 , c

s
V1
, csV2

, csV3
, csV4

, csvl , c
t
vl
,

cl1, cl2, cl3, cl4, cl5, c
s
vu , c1, c2, c3, c

t
vu , cr1, cr2, cr3, cr4, cr5,

csvr , c
t
vr , c

t
V1
, ctV2

, ctV3
, ctV4

, csvr1,vr2,vr3,vr4 , c
t
vr1
, ctvr2 , c

t
vr3
, ctvr4}

A(
−→
R ) = {(csvl1 , c

s
V1

), (csvl2 , c
s
V2

), (csvl3 , c
s
V3

), (csvl4 , c
s
V4

),

(csV1
, cl4), (c

s
V2
, cl4), (c

s
V3
, cl5), (c

s
V4
, cl5),

(cl4, cl3), (cl5, cl3), (cl3, cl2), (cl2, cl1),

(csvu , c
s
vl

), (csvl , cl2), (cl1, c
t
vl

), (ctvl , c
t
vl1,vl2,vl3,vl4

),

(cl1, c3), (c3, c2), (c2, c1), (c1, cr1),

(csvr1,vr2,vr3,vr4 , c
s
vr), (c

s
vr , cr1), (cr2, c

t
vr), (c

t
vr , c

t
vu),

(cr1, cr2), (cr2, cr3), (cr3, cr4), (cr3, cr5),

(cr4, c
t
V1

), (cr4, c
t
V2

), (cr5, c
t
V3

), (cr5, c
t
V4

),

(ctV1
, ctvr1), (c

t
V2
, ctvr2), (c

t
V3
, ctvr3), (c

t
V4
, ctvr4)},

where each element in V (
−→
R ) represents some color in C = {1, 2, . . . , 37}. Then we

define initial and target colorings f0, ft of G′ as follows:

f0(v) =


csVi

if v ∈ Vi
csvr1,vr2,vr3,vr4 if v ∈ {vr1, vr2, vr3, vr4}
csv otherwise;

ft(v) =


ctVi

if v ∈ Vi
ctvl1,vl2,vl3,vl4 if v ∈ {vl1, vl2, vl3, vl4}
ctv otherwise.

We now prove that there is an (f0 → fr)-reconfiguration sequence on
−→
C −→

R
(G′) if

and only if there is a 3-coloring of G. We first prove the if part. For a vertex v and

two colors c, c′ such that there is an directed path 〈c = c0, c1, . . . , c` = c′〉 from c to
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c′ on
−→
C −→

R
(G′), we say recolor v from c to c′ to express a successive ` recoloring steps

of v from c = c0 to c1, c2, . . . , c` = c′. Let fT : V (G) → {1, 2, 3} be a 3-coloring of

G. An (f0 → fr)-reconfiguration sequence can be obtained by following steps:

1. Recolor vertices in {v ∈ V (G) | fT (v) = 1} from csVi
to c1 for each i ∈

{1, 2, 3, 4}.

2. Recolor vertices in {v ∈ V (G) | fT (v) = 2} from csVi
to c2 for each i ∈

{1, 2, 3, 4}.

3. Recolor vertices in {v ∈ V (G) | fT (v) = 3} from csVi
to c3 for each i ∈

{1, 2, 3, 4}.

4. Recolor vli from csvli to ctvl1,vl2,vl3,vl4 , for each i ∈ {1, 2, 3, 4}.

5. Recolor vl from csvl to ctvl .

6. Recolor vu from csvu to ctvu .

7. Recolor vr from csvr to ctvr .

8. Recolor vri from ctvr1,vr2,vr3,vr4 , to csvri for each i ∈ {1, 2, 3, 4}.

9. Recolor vertices in {v ∈ V (G) | fT (v) = 1} from c1 to ctVi
for each i ∈

{1, 2, 3, 4}.

10. Recolor vertices in {v ∈ V (G) | fT (v) = 2} from c2 to ctVi
for each i ∈

{1, 2, 3, 4}.

11. Recolor vertices in {v ∈ V (G) | fT (v) = 3} from c3 to ctVi
for each i ∈

{1, 2, 3, 4}.
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For each step we take a vertex v and recolor it from some color c to another color c′.

Notice that there is no adjacent vertex of v having any color on the directed path

from c to c′ on
−→
C −→

R
(G′), therefore we can execute this recoloring process.

Then we prove the only-if part. We assume there is an (f0 → fr)-reconfiguration

sequence S. Let v ∈ V1. We pick some colorings from S as follows:

• fv,c3 is the first coloring on the sequence S such that fv,c3(v) = c3.

• fvl1 is the first coloring on the sequence S such that fvl1(vl1) = ctvl1,vl2,vl3,vl4 .

• fvl is the first coloring on the sequence S such that fvl(vl) = ctvl .

• fvu is the first coloring on the sequence S such that fvu(vu) = ctvu .

• fvr is the first coloring on the sequence S such that fvr(vr) = ctvr .

• fvr1 is the first coloring on the sequence S such that fvr1(vr1) = cr2.

• fv,cr1 is the first coloring on the sequence S such that fv,cr1(v) = cr1.

For convenience we denote fi < fi′ for two colorings fi, fi′ ∈ S = 〈f0, f1, . . . , ft〉 if

i < i′. The following relationships hold for the above colorings:

• fvl1 must occur after fv,c3 on S. (fv,c3 < fvl1)

• fvl must occur after fvl1 on S. (fvl1 < fvl)

• fvu must occur after fvl on S. (fvl < fvu)

• fvr must occur fvu on S. (fvu < fvr)

• fvr1 must occur fvr on S. (fvr < fvr1)

• fv,cr1 must occur fvr1 on S. (fvr1 < fv,cr1)
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Therefore fv,c3 < fvl1 < fvl < fvu < fvr < fvr1 < fv,cr1 holds. Between fv,c3 and

fv,cr1 on S the color of the vertex v is either c1, c2 or c3, hence fvu(v) ∈ {c1, c2, c3}.

For vertices w ∈ V2∪V3∪V4, we can prove fvu(w) ∈ {c1, c2, c3} in similar way. Then

fvu |V (G) is a 3-coloring of G.

Notice that in the proof of Theorem 14 the color of a vertex traverses the shortest

path between initial color and target color of the vertex, hence the number of steps

required to reach from initial coloring to target coloring can be calculated: it is

12 · |V (G)|+7 ·4+3+10+3+7 ·4 = 12 · |V (G)|+72 and depends only on the size of

the planar graph G. Conversely, for an instance of coloring reconfiguration

under R-recolorability where R is the underlying graph of Figure 5.2 and the

graph and its initial and target coloring can be obtained as same as the proof of

Theorem 14 from a planar graph G, if we give a restriction of the number of steps to

be 12 · |V (G)|+ 72, to reach from the initial coloring to the target coloring we must

trace the same reconfiguration sequence as the proof of Theorem 14. Therefore we

obtain the following corollary:

Corollary 5. coloring reconfiguration under R-recolorabillity is NP-

complete if the number of steps is restricted by unary number and even if the recol-

orability graph R is a tree of maximum degree three.

5.2 Algorithm for rooted tree

By Theorem 14 coloring reconfiguration under directed
−→
R -

recolorability is NP-hard for polytree. In this section we show that the

problem is polynomial-time solvable for rooted tree, more restricted class of

polytree.
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Lemma 31. Let
−→
R be a rooted tree and f0, fr : V (G) → V (

−→
R ) be colorings of a

graph G. Then there is an (f0 → fr)-reconfiguration sequence on
−→
C −→

R
(G) if and

only if the following two statements hold:

(a) for each vertex v ∈ V (G), there is a directed path from f0(v) to fr(v) on

−→
C −→

R
(G); and

(b) for each edge vw ∈ E(G), the directed path from f0(v) to fr(v) does not contain

the directed path from f0(w) to fr(w).

Proof. Let f0, fr be initial and target colorings of the graph G satisfying two con-

ditions (a) and (b). A directed path
−→
P f0(v)→fr(v) from f0(v) to fr(v) on

−→
R is

uniquely specified for each vertex v ∈ V (G). We define distance between f0 and

fr as
∑
{length of

−→
P f0(v)→fr(v) | v ∈ V (G)}. We prove the lemma by the induction

on the distance between f0 and fr. Clearly f0 = fr if and only if the distance

between f0 and fr is 0. If
−→
P f0(v)→fr(v) = 〈c0, c1, . . . , c`〉 is of length at least 1, we

define next(v) = c1, which is, roughly speaking, the color which the vertex to be

recolored to. Notice that the distance between current coloring and target coloring

decreases exactly 1 if we recolor a vertex v to next(v). We prove that if f0 6= fr then

there exists a vertex v which can be recolored next(v) and the resulting coloring

also satisfies the conditions (a) and (b), and then by induction hypothesis the claim

holds.

We construct a directed graph
−→
G′ as follows:

V (
−→
G′) = V (G)

A(
−→
G′) = {(v, w) | v, w ∈ V (G), (f0(v), f0(w)) ∈ A(

−→
R )}

There is no directed cycle in G′ since if it exists then
−→
R must have a directed cycle.
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Therefore there are two cases: (A)
−→
G′ has no arc, or (B)

−→
G′ has a sink vertex of inde-

gree at least one. If the case (A) holds, any vertex for which next(v) is defined has no

neighbor colored next(v), therefore we can recolor a vertex v to next(v). Otherwise,

if case (B) holds, let v be some sink vertex of indegree at least one on
−→
G′, and let

w be a vertex such that (w, v) ∈
−→
G′. If next(v) is not defined, then

−→
P f0(v)→fr(v) =

〈f0(v)〉. Since (w, v) ∈
−→
G′,
−→
P f0(w)→fr(w) = 〈f0(w), next(w) = f0(v), . . . 〉 therefore

−→
P f0(w)→fr(w) contains

−→
P f0(w)→fr(w), which contradicts the assumption (a). Therefore

next(v) is defined and v can be recolored to next(v).

Then we prove the recoloring preserves the conditions (a) and (b). Let f ′0 be

the coloring obtained by recoloring a vertex v to next(v) on f0. Since we recolor a

vertex v to next(v), the condition (a) also holds on f0. We prove that the condition

(b) holds for f ′0 by contradiction. There are two cases:

• If
−→
P f ′

0(v)→fr(v) contains
−→
P f ′

0(w)→fr(w) for neighbor w of v, since (f0(v), f ′0(v)) ∈

A(
−→
R ),
−→
P f0(v)→fr(v) contains

−→
P f ′

0(v)→fr(v), and since f ′0(w) = f0(w),
−→
P f0(v)→fr(v)

contains
−→
P f0(w)→fr(w) which contradicts the assumption (b).

• If
−→
P f ′

0(v)→fr(v) is contained by
−→
P f ′

0(w)→fr(w) =
−→
P f0(w)→fr(w) = 〈c0, c1, . . . , c`〉 for

neighbor w of v, since v, w are adjacent, f ′0(v) 6= f ′0(w). Then f ′0(v) = ci for

some i ∈ {1, . . . , `}. Since
−→
R is a rooted tree f0(v) such that (f0(v), f ′0(v)) ∈

A(
−→
R ) is uniquely specified as f0(v) = ci−1. Therefore

−→
P f0(v)→fr(v) is contained

−→
P f0(w)→fr(w) which contradicts the assumption (b).
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Chapter 6

Edge-coloring reconfiguration

In this chapter we deal with edge-coloring reconfiguration, which is col-

oring reconfiguration where the input graph is restricted to line graphs. Ito et

al. [18] showed that list edge-coloring reconfiguration is PSPACE-complete

even for planar graphs of maximum degree three, using six colors. Since 3-coloring

reconfiguration is solved in linear time, list edge coloring reconfigura-

tion is solved in polynomial time if the number of colors is at most three, using

polynomial time reduction of Theorem 1.

In this chapter we show two results. First, we show that list edge-coloring

reconfiguration is PSPACE-complete even for planar graphs of maximum degree

three and bounded bandwidth, if the number of colors is four. As the second result

we show that edge-coloring reconfiguration is PSPACE-completeness even

for planar graph and bounded bandwidth quadratic to k, where k is the number of

colors at least 5.

We prove the first claim in the next theorem:

Theorem 15. For every number of k of colors at least four, the list edge-

coloring reconfiguration problem for planar graphs of bounded bandwidth and

maximum degree three.
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neutral

{1,4} {1,4}

{1,4} {1,4}

{1,4} {1,4}

{1,4} {1,4}
forbidden

v wv ww’v’

(a) (b) (c)

Figure 6.1: (a) Color assignments to connector edges, (b) their corresponding orien-
tations of the edges vv′ and ww′, and (c) the corresponding orientations of an NCL
edge vw.

Proof. Similarly as in 3, we prove by a reduction from NCL.

Link edge gadget

Recall that, in a given NCL machine, two NCL vertices v and w are joined by

a single NCL edge vw. Therefore, the link edge gadget between v and w should be

consistent with the orientations of the NCL edge vw, as follows (see also Figure 6.1):

If we assign the color 1 to the connector edge vv′ (i.e., the inward direction for v),

then ww′ must be colored with 4 (i.e., the outward direction for w); conversely, vv′

must be colored with 4 if we assign 1 to ww′. In particular, the gadget must forbid a

list edge-coloring which assigns 1 to both vv′ and ww′ (i.e., the inward directions for

both v and w), because such a coloring corresponds to the direction which illegally

contributes to both v and w at the same time. On the other hand, assigning 4 to
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{3,1}{1,2}{2,3}

v ww’v’

Figure 6.2: Link edge gadget with two connector edges vv′ and ww′ for list edge-
coloring reconfiguration.

both vv′ and ww′ (i.e., the outward directions for both v and w) corresponds to the

neutral orientation of the NCL edge vw which contributes to neither v nor w, and

hence we simply do not care such an orientation.

Figure 6.2 illustrates our link edge gadget between two NCL vertices v and

w. Figure 6.3(b) illustrates the “reconfiguration graph” of this link edge gadget

together with two connector edges vv′ and ww′: each rectangle represents a node

of the reconfiguration graph, that is, a list edge-coloring of the gadget, where the

underlined bold number represents the color assigned to the edge, and two rectangles

are joined by an edge in the reconfiguration graph if their corresponding list edge-

colorings are adjacent. Then, the reconfiguration graph is connected as illustrated

in Figure 6.3(b), and the link edge gadget has no list edge-coloring which assigns 1

to the two connector edges vv′ and ww′ at the same time, as required. Furthermore,

the reversal of the NCL edge vw can be simulated by the path via the neutral

orientation of vw, as illustrated in Figure 6.3(a). Thus, this link edge gadget works

correctly.

And gadget

Consider an NCL and vertex v. Figure 6.4(a) illustrates all valid orientations

of the three connector edges for v; each box represents a valid orientation of the

three connector edges for v, and two boxes are joined by an edge if their orienta-

tions are adjacent. We construct our and gadget so that it correctly simulates this

reconfiguration graph in Figure 6.4(a).
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{1,2}{2,3}{3,1} {1,4}

neutral

{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

{1,2}{2,3}{3,1} {1,4}{4,1}

link edge gadget

v w

(a) (b)

Figure 6.3: (a) Three orientations of an NCL edge vw, and (b) all list edge-colorings
of the link edge gadget with two connector edges.

Figure 6.5 illustrates our and gadget for each NCL and vertex v, where e1,

e2 and ea correspond to the three connector edges for v such that e1 and e2 come

from the two weight-1 NCL edges and ea comes from the weight-2 NCL edge. Fig-

ure 6.4(b) illustrates the reconfiguration graph for all list edge-colorings of the and

gadget, where each large dotted box surrounds all colorings having the same color

assignments to the three connector edges for v. Then, we can see that these list

edge-colorings are “internally connected,” that is, any two list edge-colorings in the

same dotted box are reconfigurable with each other without recoloring any connector

edge. Furthermore, this gadget preserves the “external adjacency” in the following

sense: if we contract the list edge-colorings in the same dotted box in Figure 6.4(b)
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into a single vertex, then the resulting graph is exactly the graph depicted in Fig-

ure 6.4(a). Therefore, we can conclude that our and gadget correctly works as an

NCL and vertex.

Or gadget

Figure 6.6 illustrates our or gadget for each NCL or vertex v, where e1, e2 and

e3 correspond to the three connector edges for v. To verify that this or gadget

correctly simulates an NCL or vertex, it suffices to show that this gadget satisfies

both the internal connectedness and the external adjacency. Since this gadget has

1575 list edge-colorings, we have checked these sufficient conditions by a computer

search of all list edge-colorings of the gadget.

Reduction

As we have explained before, we replace each of link edges and stars of NCL

and/or vertices with its corresponding gadget; let G be the resulting graph. Since

NCL remains PSPACE-complete even if an input NCL machine is planar, bounded

bandwidth and of maximum degree three [26], the resulting graph G is also planar,

bounded bandwidth and of maximum degree three; notice that, since each gadget

consists of only a constant number of edges, the bandwidth of G is also bounded.

In addition, we construct two list edge-colorings of G which correspond to two

given NCL configurations C0 and Cr of the NCL machine. Note that there are

(in general, exponentially) many list edge-colorings which correspond to the same

NCL configuration. However, by the construction of the three gadgets, no two

distinct NCL configurations correspond to the same list edge-coloring of G. We

arbitrarily choose two list edge-colorings f0 and fr of G which correspond to C0 and

Cr, respectively.

This completes the construction of our corresponding instance of list edge-
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coloring reconfiguration. Clearly, the construction can be done in polynomial

time.

Correctness

We now prove that there exists a desired sequence of NCL configurations between

C0 and Cr if and only if there exists a reconfiguration sequence between f0 and fr.

We first prove the only-if direction. Suppose that there exists a desired sequence

of NCL configurations between C0 and Cr, and consider any two adjacent NCL

configurations Ci−1 and Ci in the sequence. Then, only one NCL edge vw changes

its orientation between Ci−1 and Ci. Notice that, since both Ci−1 and Ci are valid

NCL configurations, the NCL and/or vertices v and w have enough in-coming arcs

even without vw. Therefore, we can simulate this reversal by the reconfiguration

sequence of list edge-colorings in Figure 6.3(b) which passes through the neutral

orientation of vw as illustrated in Figure 6.3(a). Recall that both and and or

gadgets are internally connected, and preserve the external adjacency. Therefore,

any reversal of an NCL edge can be simulated by a reconfiguration sequence of list

edge-colorings of G, and hence there exists a reconfiguration sequence between f0

and fr.

We now prove the if direction. Suppose that there exists a reconfiguration se-

quence 〈f0, f1, . . . , f`〉 from f0 to f` = fr. Notice that, by the construction of gadgets,

any list edge-coloring of G corresponds to a valid NCL configuration such that some

NCL edges may take the neutral orientation. In addition, f0 and fr correspond

to valid NCL configurations without any neutral orientation. Pick the first index

i in the reconfiguration sequence 〈f0, f1, . . . , f`〉 which corresponds to changing the

direction of an NCL edge vw to the neutral orientation. Then, since the neutral

orientation contributes to neither v nor w, we can simply ignore the change of the



119

NCL edge vw and keep the direction of vw as the same as the previous direction. By

repeating this process and deleting redundant orientations if needed, we can obtain

a sequence of valid adjacent orientations between C0 and Cr such that no NCL edge

takes the neutral orientation.

Then we prove the following theorem for the non-list variant.

Theorem 16. For every integer k ≥ 5, the edge-coloring reconfiguration

problem is PSPACE-complete for planar graphs of bandwidth quadratic in k and

maximum degree k.

To prove the theorem, similarly as in the previous theorem, we will construct

three types of gadgets corresponding to a link edge and stars of NCL and/or

vertices. However, since we deal with the non-list variant, every edge has all k

colors as its available colors. Thus, we construct one more gadget, called a color

gadget, which restricts the colors available for the edge. The gadget is simply a star

having k leaves, and we assign the k colors to the edges of the star in both f0 and fr.

(See Figure 6.7(a) as an example for k = 5.) Note that, since the color set consists

of only k colors, these k edges must stay the same colors in any reconfiguration

sequence. Thus, if we do not want to assign a color c to an edge e, then we connect

the leaf edge with the color c to an endpoint v of e. (See Figure 6.7(b).) In this

way, we can treat the edge e as if it has the list L(e) of available colors. However,

we need to pay attention to the fact that all edges e′ sharing the endpoint v cannot

receive the color c by connecting such color gadgets to v. Therefore, our gadgets

are constructed so that all endpoints of connector edges shared by other gadgets

are attached with the same color gadgets which forbid colors 2 and 5, 6, . . . , k, and
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hence we can connect the gadgets consistently.

Figures 6.8 and 6.9 illustrate all gadgets for the non-list variant, where the avail-

able colors for each edge is attached as the list of the edge. Notice that the gadgets

in Figure 6.8 forbid the colors i (and j), and 6, 7, . . . , k, where i, j ≤ 5. We again

emphasize that all (red) endpoints of connector edges shared by other gadgets are

attached with the same color gadgets which forbid colors 2 and 5, 6, . . . , k, and hence

we can connect the gadgets consistently. Then, the link edge gadget and and/or

gadgets have 10, 40, 297752 edge-colorings, respectively. We have checked that all

gadgets satisfy both the internal connectedness and the external adjacency by a

computer search of all edge-colorings of the gadgets. Therefore, by the same argu-

ments as the proof of Theorem 15, we can conclude that an instance of NCL is a

yes-instance if and only if the corresponding instance of edge-coloring recon-

figuration is a yes-instance.

Recall that NCL remains PSPACE-complete even if an input NCL machine is

planar, bounded bandwidth, and of maximum degree three [26]. Thus, the resulting

graph G is also planar. Notice that only the size of the color gadget depends on k,

and the other (parts of) gadgets are of constant sizes. Since k ≥ 5, the maximum

degree of G is k, i.e., the degree of the center of each color gadget. In addition,

since each gadget in Figure 6.8 contains O(k) color gadgets, it contains O(k2) edges.

Therefore, the number of edges in each gadget in Figure 6.9 can be bounded by a

quadratic in k. Since the bandwidth of the input NCL machine is a constant, that

of G can be bounded by a quadratic in k.

This completes the proof of Theorem 16.
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Figure 6.4: (a) All valid orientations of the three connector edges for an NCL and
vertex v, and (b) all list edge-colorings of the and gadget in Figure 6.5.
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Figure 6.5: And gadget for list edge-coloring reconfiguration.
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Figure 6.7: (a) Gadget for restricting a color (k = 5), and (b) edge e whose available
colors are restricted to {2, 4, 5}.



123

ij 5

i

j

k

6

i+1

1

k

i 1

j+1

1
k j 1 7

k
1

1

k 1

i 5

i k

6

i+1

1

k

i 1

7
k
1

1

k 1

Figure 6.8: Explanatory note for the gadgets in Figure 6.9.



124 Chapter6 Edge-coloring reconfiguration

{1,3} {3,1}{3,2} {2,3,5} {5,3}

25 45 14 14 24 25

link edge gadget

{1,4}

23 12 12

{4,2} {2,4,3} {4,1} {1,5} {5,2} {2,4} {4,1}

{1,4} {4,5} {5,4,3}

{4,3}

25

25 35 15 5 1323 34 35 25

AND gadget

{4,5}
{5,4,1}

{1,4}

{3,1} {1,5} {5,1,4} {5,2}
{2,3}{2,3}

{2,3,4} {2,3,4}

{4,1}

{2,3}

{5,2}

{5,1,4}

{1,5}

{3,1}

{2,3}
{4,5}

{5,4,1}

{1,4}

{2,3,4}

{4,1}

{5,4,1}

{1,4}

{4,5}

{2,3}

{4,1}
{5,2}

{5,1,4}

{1,5}

{3,1}

{2,3}

23

23

23 23

23

23

1

45

24

23

14

5

1

232445 14

5

1

45

24

23

14

5

OR gadget

3

3

3

25

25

25

Figure 6.9: Link edge, and, and or gadgets for the non-list variant.
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Chapter 7

Conclusions

In this thesis, we studied coloring reconfiguration problem and its general-

izations from the viewpoints of recolorability and irreversible rules.

In Chapter 3 and 4 we investigated the complexity status of coloring recon-

figuration under R-recolorability from the viewpoint of the structure of

the recolorability graph R. We showed that coloring reconfiguration under

R-recolorability is linear-time solvable for any recolorability graph R of maxi-

mum degree two, while there is a recolorability graph R of maximum degree three

such that coloring reconfiguration under R-recolorability is PSPACE-

complete. We also showed that not all recolorability graph R of maximum degree

three makes coloring reconfiguration under R-recolorability PSPACE-

complete: in Section 4.4 we showed that coloring reconfiguration under

R-recolorability is polynomial-time solvable if R is claw graph.

In Chapter 5 we studied the irreversible rules of coloring reconfigura-

tion problem by a further generalization of recolorability graph, directed re-

colorability graph. We showed that coloring reconfiguration under
−→
R -

recolorability is NP-hard if R is polytree, while it is polynomial-time solvable

if R is rooted tree. As a corollary of NP-hardness, we also showed that length re-
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stricted version of coloring reconfiguration under R-recolorability is

NP-complete.

In Chapter 6 we studied the computational hardness of list edge-coloring

reconfiguration and edge-coloring reconfiguration. We sharply classi-

fied the complexity status of list edge-coloring reconfiguration from the

viewpoint of the number of colors. We also gave the first hardness result for edge-

coloring reconfiguration. As an open question, the complexity status of

edge-coloring reconfiguration with number of colors four is still unknown.

In this thesis we introduced the idea of recolorability which parameterizes the

structure of transformation rules, and we explored the complexity status of col-

oring reconfiguration problem with respect to the recolorability. In the past

investigation of the reconfiguration problem, such a parameterization has been stud-

ied in limited way. Most of reconfiguration problems have single transformation rule,

and few one has multiple, but finite number of transformation rules. For instance,

independent set reconfiguration has three types of transformation rule [20].

Transformation rules for a reconfiguration problem is selected in “suitable” way, but

their validity has not been argued. Our future work is to give exhaustive analysis of

transformation rules of such problems by parameterizing the transformation rules.
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Appendix A

Source codes for Chapter 6

We list source files of the program of verification of OR-gadgets of Theorem 15 and

Theorem 16. All of the source codes are written in Haskell, and confirmed to run

in ghc version 8.6.5. ListEdgeColoring.hs and EdgeColoring.hs correspond to

Theorem 15 and Theorem 16. Each files import the common module Crur.hs. In

this program the color is treated as an integer, and the colorings of the gadgets are

lists of integer indexed by edge. For example, the list [1, 2] assigns the color one

to first edge, and assigns color 2 to second edge. The numberings of the edges of

OR-gadgets are drawn in Figure A.1 and Figure A.2.
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Figure A.1: Indices of edges of OR-gadget of list edge-coloring reconfigu-
ration.
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Figure A.2: Indices of edges of OR-gadget of edge-coloring reconfiguration.
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Crur.hs

1 module Crur where
2 import Data . Array (Array , ( ! ) , bounds , indices , listArray )
3 import Data .Maybe ( fromJust )
4 import Data . Set ( Set , empty , insert , notMember )
5
6 type Vertex = Int
7 type Adjacency = [ Vertex ]
8 type GraphAL = [ Adjacency ] −− Adjacency l i s t
9 type GraphAA = Array Int Adjacency −− Adjacency array

10
11 type Color = Int
12 type Rec = [Maybe [ Color ] ]
13 type LRec = [ Rec ]
14 type LRecA = Array Int (Array Int (Maybe [ Color ] ) )
15
16 type Color ing = [ Color ]
17 type SemiColor ing = [Maybe Color ]
18
19 showColoring : : Co lor ing −> String
20 showColoring = concat . map show
21
22 gAL2GAA : : GraphAL −> GraphAA
23 gAL2GAA l = listArray (1 , length l ) l
24
25 lRec2LRecA : : LRec −> LRecA
26 lRec2LRecA l =
27 listArray (1 , length l )
28 $ map (\ l ’−>listArray (1 , length l ’ ) l ’ ) l
29
30 i sPrope rCo lo r ing : : GraphAA −> Color ing −> Bool
31 i sPrope rCo lo r ing g c =
32 l et
33 ca = listArray (bounds g ) c
34 i l = indices g
35 in
36 a l l (\ i −> a l l (\ j −> ca ! i /= ca ! j )
37 ( g ! i : : [ Int ] ) ) i l
38
39 i sProperSemiColor ing : : GraphAA −> SemiColor ing −> Bool
40 i sProperSemiColor ing g c =
41 l et
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42 ca = listArray (bounds g ) c
43 i l = indices g
44 in
45 a l l (\ i −> a l l (\ j −> ca ! i /= ca ! j | | ca ! i
46 == Nothing | | ca ! j == Nothing ) ( g ! i : : [ Int ] ) ) i l
47
48 enumNeighborColoring
49 : : GraphAA −> LRecA −> Color ing −> [ Co lor ing ]
50 enumNeighborColoring g l c =
51 f i l t e r ( i sPrope rCo lo r ing g )
52 $ eNCaux (snd $ bounds g ) c
53 where
54 eNCaux : : Int −> [ Color ] −> [ [ Color ] ]
55 eNCaux 0 = [ ]
56 eNCaux n (d : ds ) =
57 l et
58 ( , end ) = bounds g
59 in
60 (map ( : ) ( fromJust ( ( l ! ( end−n+1)) !d ) ) <∗> [ ds ] )
61 ++ (map (d : ) $ eNCaux (n−1) ds )
62
63 enumConColoring
64 : : GraphAA −> LRecA −> Color ing −> Set Color ing
65 enumConColoring g l c = eCCaux empty c
66 where
67 eCCaux : : Set Color ing −> Color ing −> Set Color ing
68 eCCaux s d =
69 l et s ’ = insert d s
70 in fo ld l eCCaux s ’ ( f i l t e r ( f l i p notMember s ’ )
71 $ enumNeighborColoring g l d)
72
73 enumConColoringProp
74 : : GraphAA −> LRecA −> ( Color ing −> Bool )
75 −> Color ing −> Set Color ing
76 enumConColoringProp g l p c = eCCaux empty c
77 where
78 eCCaux : : Set Color ing −> Color ing −> Set Color ing
79 eCCaux s d =
80 i f p d then
81 l et s ’ = insert d s
82 in fo ld l eCCaux s ’ ( f i l t e r ( f l i p notMember s ’ )
83 $ enumNeighborColoring g l d)
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84 else s

ListEdgeColoring.hs

1 import Crur
2 import Data .Char ( intToDigit )
3 import Data .Maybe (catMaybes)
4 import Data . Set as DS (elems , f i l t e r , findMin , s i z e )
5
6 orGad : : GraphAL
7 orGad =
8 [
9 [ 4 ] , −− 1

10 [ 7 ] , −− 2
11 [ 1 3 , 1 4 ] , −− 3
12 [ 1 , 5 ] , −− 4
13 [ 4 , 6 ] , −− 5
14 [ 5 , 1 0 , 2 1 ] , −− 6
15 [ 2 , 8 ] , −− 7
16 [ 7 , 9 ] , −− 8
17 [ 8 , 1 7 , 1 8 ] , −− 9
18 [ 6 , 1 1 , 2 1 , 2 3 ] , −− 10
19 [ 1 0 , 1 2 , 2 3 , 2 4 ] , −− 11
20 [ 1 1 , 1 3 , 2 4 ] , −− 12
21 [ 3 , 1 2 , 1 4 ] , −− 13
22 [ 3 , 1 3 , 1 5 , 2 5 ] , −− 14
23 [ 1 4 , 1 6 , 2 5 , 2 6 ] , −− 15
24 [ 1 5 , 1 7 , 2 6 ] , −− 16
25 [ 9 , 1 6 , 1 8 ] , −− 17
26 [ 9 , 1 7 , 1 9 , 2 7 ] , −− 18
27 [ 1 8 , 2 0 , 2 2 , 2 7 ] , −− 19
28 [ 1 9 , 2 1 , 2 2 ] , −− 20
29 [ 6 , 1 0 , 2 0 ] , −− 21
30 [ 1 9 , 2 0 , 2 3 ] , −− 22
31 [ 1 0 , 1 1 , 2 2 ] , −− 23
32 [ 1 1 , 1 2 , 2 5 ] , −− 24
33 [ 1 4 , 1 5 , 2 4 ] , −− 25
34 [ 1 5 , 1 6 , 2 7 ] , −− 26
35 [ 1 8 , 1 9 , 2 6 ] −− 27
36 ]
37
38 orGadLRec : : LRec
39 orGadLRec =
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40 [
41 [ −− 1
42 Just [ 4 ] ,
43 Nothing ,
44 Nothing ,
45 Just [ 1 ]
46 ] ,
47 [ −− 2
48 Just [ 4 ] ,
49 Nothing ,
50 Nothing ,
51 Just [ 1 ]
52 ] ,
53 [ −− 3
54 Just [ 4 ] ,
55 Nothing ,
56 Nothing ,
57 Just [ 1 ]
58 ] ,
59 [ −− 4
60 Nothing ,
61 Nothing ,
62 Just [ 4 ] ,
63 Just [ 3 ]
64 ] ,
65 [ −− 5
66 Nothing ,
67 Just [ 3 ] ,
68 Just [ 2 ] ,
69 Nothing
70 ] ,
71 [ −− 6
72 Nothing ,
73 Just [ 4 ] ,
74 Nothing ,
75 Just [ 2 ]
76 ] ,
77 [ −− 7
78 Nothing ,
79 Just [ 4 ] ,
80 Nothing ,
81 Just [ 2 ]
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82 ] ,
83 [ −− 8
84 Nothing ,
85 Just [ 3 ] ,
86 Just [ 2 ] ,
87 Nothing
88 ] ,
89 [ −− 9
90 Nothing ,
91 Nothing ,
92 Just [ 4 ] ,
93 Just [ 3 ]
94 ] ,
95 [ −− 10
96 Just [ 3 ] ,
97 Nothing ,
98 Just [ 1 ] ,
99 Nothing

100 ] ,
101 [ −− 11
102 Just [ 2 , 3 ] ,
103 Just [ 1 , 3 ] ,
104 Just [ 1 , 2 ] ,
105 Nothing
106 ] ,
107 [ −− 12
108 Just [ 3 ] ,
109 Nothing ,
110 Just [ 1 ] ,
111 Nothing
112 ] ,
113 [ −− 13
114 Nothing ,
115 Nothing ,
116 Just [ 4 ] ,
117 Just [ 3 ]
118 ] ,
119 [ −− 14
120 Nothing ,
121 Just [ 3 ] ,
122 Just [ 2 ] ,
123 Nothing



134 AppendixA Source codes for Chapter 6

124 ] ,
125 [ −− 15
126 Just [ 2 , 3 ] ,
127 Just [ 1 , 3 ] ,
128 Just [ 1 , 2 ] ,
129 Nothing
130 ] ,
131 [ −− 16
132 Nothing ,
133 Just [ 3 ] ,
134 Just [ 2 ] ,
135 Nothing
136 ] ,
137 [ −− 17
138 Nothing ,
139 Just [ 4 ] ,
140 Nothing ,
141 Just [ 2 ]
142 ] ,
143 [ −− 18
144 Just [ 2 ] ,
145 Just [ 1 ] ,
146 Nothing ,
147 Nothing
148 ] ,
149 [ −− 19
150 Just [ 2 , 3 ] ,
151 Just [ 1 , 3 ] ,
152 Just [ 1 , 2 ] ,
153 Nothing
154 ] ,
155 [ −− 20
156 Just [ 2 ] ,
157 Just [ 1 ] ,
158 Nothing ,
159 Nothing
160 ] ,
161 [ −− 21
162 Just [ 4 ] ,
163 Nothing ,
164 Nothing ,
165 Just [ 1 ]
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166 ] ,
167 [ −− 22
168 Nothing ,
169 Nothing ,
170 Just [ 4 ] ,
171 Just [ 3 ]
172 ] ,
173 [ −− 23
174 Nothing ,
175 Just [ 4 ] ,
176 Nothing ,
177 Just [ 2 ]
178 ] ,
179 [ −− 24
180 Nothing ,
181 Just [ 4 ] ,
182 Nothing ,
183 Just [ 2 ]
184 ] ,
185 [ −− 25
186 Just [ 4 ] ,
187 Nothing ,
188 Nothing ,
189 Just [ 1 ]
190 ] ,
191 [ −− 26
192 Just [ 4 ] ,
193 Nothing ,
194 Nothing ,
195 Just [ 1 ]
196 ] ,
197 [ −− 27
198 Nothing ,
199 Nothing ,
200 Just [ 4 ] ,
201 Just [ 3 ]
202 ]
203 ]
204
205 orGadColoring : : Co lor ing
206 orGadColoring = [
207 1 , 1 , 1 , 4 , 3 , 2 , 4 , 2 , 3 , 3 , 1 , 3 , 4 , 2 ,
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208 3 , 2 , 4 , 1 , 2 , 1 , 4 , 3 , 2 , 2 , 1 , 1 , 3
209 ]
210
211 main : : IO ( )
212 main = do
213 l et
214 g = gAL2GAA orGad
215 l = lRec2LRecA orGadLRec
216 −− Enumerate c o l o r i n g s r e a c h a b l e from orGadColoring
217 c o l o r i n g s = enumConColoring g l orGadColoring
218 putStrLn
219 $ ”or−gadget has ”
220 ++ (show $ length c o l o r i n g s )
221 ++ ” c o l o r i n g s connected to ”
222 ++ showColoring orGadColoring
223 −− V e r i f i c a t i o n o f i n t e r n a l connectedness
224 l et
225 −− Returns True
226 −− when 1 st , 2nd , 3 rd edges have c o l o r 1 ,1 ,1
227 pro111 = (==[1 ,1 ,1 ] ) . take 3
228 −− Ver i fy connectedness o f c o l o r i n g s
229 −− s a t i s f y i n g pro111
230 con111 = DS. f i l t e r pro111 c o l o r i n g s
231 == enumConColoringProp g l pro111
232 ( findMin $ DS. f i l t e r pro111 c o l o r i n g s )
233 putStrLn $
234 ”111 i s ”
235 ++ ( i f con111 then ” connected ” else ” d i s connected ” )
236 ++ ” and has ”
237 ++ show (DS. s i z e $ DS. f i l t e r pro111 c o l o r i n g s )
238 ++ ” c o l o r i n g s ”
239 −− Ver i fy f o r the case 114 ,141 ,144 ,411 ,441
240 l et
241 pro114 = (==[1 ,1 ,4 ] ) . take 3
242 con114 = DS. f i l t e r pro114 c o l o r i n g s
243 == enumConColoringProp g l pro114
244 ( findMin $ DS. f i l t e r pro114 c o l o r i n g s )
245 putStrLn $
246 ”114 i s ”
247 ++ ( i f con114 then ” connected ” else ” d i s connected ” )
248 ++ ” and has ”
249 ++ show (DS. s i z e $ DS. f i l t e r pro114 c o l o r i n g s )
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250 ++ ” c o l o r i n g s ”
251 l et
252 pro141 = (==[1 ,4 ,1 ] ) . take 3
253 con141 = DS. f i l t e r pro141 c o l o r i n g s
254 == enumConColoringProp g l pro141
255 ( findMin $ DS. f i l t e r pro141 c o l o r i n g s )
256 putStrLn $
257 ”141 i s ”
258 ++ ( i f con141 then ” connected ” else ” d i s connected ” )
259 ++ ” and has ”
260 ++ show (DS. s i z e $ DS. f i l t e r pro141 c o l o r i n g s )
261 ++ ” c o l o r i n g s ”
262 l et
263 pro144 = (==[1 ,4 ,4 ] ) . take 3
264 con144 = DS. f i l t e r pro144 c o l o r i n g s
265 == enumConColoringProp g l pro144
266 ( findMin $ DS. f i l t e r pro144 c o l o r i n g s )
267 putStrLn $
268 ”144 i s ”
269 ++ ( i f con144 then ” connected ” else ” d i s connected ” )
270 ++ ” and has ”
271 ++ show (DS. s i z e $ DS. f i l t e r pro144 c o l o r i n g s )
272 ++ ” c o l o r i n g s ”
273 l et
274 pro411 = (==[4 ,1 ,1 ] ) . take 3
275 con411 = DS. f i l t e r pro411 c o l o r i n g s
276 == enumConColoringProp g l pro411
277 ( findMin $ DS. f i l t e r pro411 c o l o r i n g s )
278 putStrLn $
279 ”411 i s ”
280 ++ ( i f con411 then ” connected ” else ” d i s connected ” )
281 ++ ” and has ”
282 ++ show (DS. s i z e $ DS. f i l t e r pro411 c o l o r i n g s )
283 ++ ” c o l o r i n g s ”
284 l et
285 pro414 = (==[4 ,1 ,4 ] ) . take 3
286 con414 = DS. f i l t e r pro414 c o l o r i n g s
287 == enumConColoringProp g l pro414
288 ( findMin $ DS. f i l t e r pro414 c o l o r i n g s )
289 putStrLn $
290 ”414 i s ”
291 ++ ( i f con414 then ” connected ” else ” d i s connected ” )
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292 ++ ” and has ”
293 ++ show (DS. s i z e $ DS. f i l t e r pro414 c o l o r i n g s )
294 ++ ” c o l o r i n g s ”
295 l et
296 pro441 = (==[4 ,4 ,1 ] ) . take 3
297 con441 = DS. f i l t e r pro441 c o l o r i n g s
298 == enumConColoringProp g l pro441
299 ( findMin $ DS. f i l t e r pro441 c o l o r i n g s )
300 putStrLn $
301 ”441 i s ”
302 ++ ( i f con441 then ” connected ” else ” d i s connected ” )
303 ++ ” and has ”
304 ++ show (DS. s i z e $ DS. f i l t e r pro441 c o l o r i n g s )
305 ++ ” c o l o r i n g s ”
306 −− Case 444 does not e x i s t
307 l et
308 pro444 = (==[4 ,4 ,4 ] ) . take 3
309 putStrLn $ ”444 does ”
310 ++ ( i f null
311 $ DS. f i l t e r pro444 c o l o r i n g s then ”not ” else ”” )
312 ++ ” e x i s t ”
313 −− V e r i f i c a t i o n o f e x t e r n a l adjacency
314 l et
315 −− Returns ad jacen t c o l o r i n g o f c o l
316 −− s a t i s f y i n g pro i f e x i s t , as a p a i r
317 t e s t pro c o l =
318 l et
319 ne i =
320 Prelude . f i l t e r pro
321 $ enumNeighborColoring g l c o l
322 in i f null ne i then Nothing
323 else Just ( co l , head ne i )
324 −− Ver i fy adjacency between 111 and 114
325 l et
326 con111 114 =
327 catMaybes $ map ( t e s t pro114 )
328 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
329 putStrLn $ ”111 and 114 are ”
330 ++ i f null con111 114 then ”not ad jacent ”
331 else ” adjacent by ”
332 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con111 114 ) )
333 ++ ( ”\n”++(map intToDigit$snd$head con111 114 ) )
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334 −− Ver i fy adjacency between 111 and 141
335 l et
336 con111 141 =
337 catMaybes $ map ( t e s t pro141 )
338 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
339 putStrLn $ ”111 and 141 are ”
340 ++ i f null con111 141 then ”not ad jacent ”
341 else ” adjacent by ”
342 ++ ( ”\n”++ (map i n tToDig i t$ f s t$head con111 141 ) )
343 ++ ( ”\n”++ (map intToDigit$snd$head con111 141 ) )
344 −− Ver i fy adjacency between 111 and 411
345 l et
346 con111 411 =
347 catMaybes $ map ( t e s t pro411 )
348 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
349 putStrLn $ ”111 and 411 are ”
350 ++ i f null con111 411 then ”not ad jacent ”
351 else ” adjacent by ”
352 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con111 411 ) )
353 ++ ( ”\n”++(map intToDigit$snd$head con111 411 ) )
354 −− Ver i fy adjacency between 114 and 144
355 l et
356 con114 144 =
357 catMaybes $ map ( t e s t pro144 )
358 $ DS. elems $ DS. f i l t e r pro114 c o l o r i n g s
359 putStrLn $ ”114 and 144 are ”
360 ++ i f null con114 144 then ”not ad jacent ”
361 else ” adjacent by ”
362 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con114 144 ) )
363 ++ ( ”\n”++(map intToDigit$snd$head con114 144 ) )
364 −− Ver i fy adjacency between 114 and 414
365 l et
366 con114 414 =
367 catMaybes $ map ( t e s t pro414 )
368 $ DS. elems $ DS. f i l t e r pro114 c o l o r i n g s
369 putStrLn $ ”114 and 414 are ”
370 ++ i f null con114 414 then ”not ad jacent ”
371 else ” adjacent by ”
372 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con114 414 ) )
373 ++ ( ”\n”++(map intToDigit$snd$head con114 414 ) )
374 −− Ver i fy adjacency between 141 and 144
375 l et



140 AppendixA Source codes for Chapter 6

376 con141 144 =
377 catMaybes $ map ( t e s t pro144 )
378 $ DS. elems $ DS. f i l t e r pro141 c o l o r i n g s
379 putStrLn $ ”141 and 144 are ”
380 ++ i f null con141 144 then ”not ad jacent ”
381 else ” adjacent by ”
382 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con141 144 ) )
383 ++ ( ”\n”++(map intToDigit$snd$head con141 144 ) )
384 −− Ver i fy adjacency between 141 and 441
385 l et
386 con141 441 =
387 catMaybes $ map ( t e s t pro441 )
388 $ DS. elems $ DS. f i l t e r pro141 c o l o r i n g s
389 putStrLn $ ”141 and 441 are ”
390 ++ i f null con141 441 then ”not ad jacent ”
391 else ” adjacent by ”
392 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con141 441 ) )
393 ++ ( ”\n”++(map intToDigit$snd$head con141 441 ) )
394 −− Ver i fy adjacency between 411 and 414
395 l et
396 con411 414 =
397 catMaybes $ map ( t e s t pro414 )
398 $ DS. elems $ DS. f i l t e r pro411 c o l o r i n g s
399 putStrLn $ ”411 and 414 are ”
400 ++ i f null con411 414 then ”not ad jacent ”
401 else ” adjacent by ”
402 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con411 414 ) )
403 ++ ( ”\n”++(map intToDigit$snd$head con411 414 ) )
404 −− Ver i fy adjacency between 411 and 441
405 l et
406 con411 441 =
407 catMaybes $ map ( t e s t pro441 )
408 $ DS. elems $ DS. f i l t e r pro411 c o l o r i n g s
409 putStrLn $ ”411 and 441 are ”
410 ++ i f null con411 441 then ”not ad jacent ”
411 else ” adjacent by ”
412 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con411 441 ) )
413 ++ ( ”\n”++(map intToDigit$snd$head con411 441 ) )

EdgeColoring.hs

1 import Crur
2 import Data .Char ( intToDigit )
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3 import Data .Maybe (catMaybes)
4 import Data . Set as DS (elems , f i l t e r , findMin , s i z e )
5
6 orGad : : GraphAL
7 orGad =
8 [
9 [ 4 , 2 4 ] , −− 1

10 [ 1 0 , 1 1 ] , −− 2
11 [ 1 7 , 1 8 ] , −− 3
12 [ 1 , 5 , 2 4 ] , −− 4
13 [ 4 , 6 ] , −− 5
14 [ 5 , 7 ] , −− 6
15 [ 6 , 8 , 2 7 ] , −− 7
16 [ 7 , 9 , 2 7 , 2 8 ] , −− 8
17 [ 8 , 1 0 , 2 8 ] , −− 9
18 [ 2 , 9 , 1 1 ] , −− 10
19 [ 2 , 1 0 , 1 2 ] , −− 11
20 [ 1 1 , 1 3 ] , −− 12
21 [ 1 2 , 1 4 ] , −− 13
22 [ 1 3 , 1 5 , 3 0 ] , −− 14
23 [ 1 4 , 1 6 , 3 0 , 3 1 ] , −− 15
24 [ 1 5 , 1 7 , 3 1 ] , −− 16
25 [ 3 , 1 6 , 1 8 ] , −− 17
26 [ 3 , 1 7 , 1 9 ] , −− 18
27 [ 1 8 , 2 0 ] , −− 19
28 [ 1 9 , 2 1 ] , −− 20
29 [ 2 0 , 2 2 , 3 3 ] , −− 21
30 [ 2 1 , 2 3 , 2 5 , 3 3 ] , −− 22
31 [ 2 2 , 2 4 , 2 5 ] , −− 23
32 [ 1 , 4 , 2 3 ] , −− 24
33 [ 2 2 , 2 3 , 2 6 ] , −− 25
34 [ 2 5 , 2 7 ] , −− 26
35 [ 7 , 8 , 2 6 ] , −− 27
36 [ 8 , 9 , 2 9 ] , −− 28
37 [ 2 8 , 3 0 ] , −− 29
38 [ 1 4 , 1 5 , 2 9 ] , −− 30
39 [ 1 5 , 1 6 , 3 2 ] , −− 31
40 [ 3 1 , 3 3 ] , −− 32
41 [ 2 1 , 2 2 , 3 2 ] −− 33
42 ]
43
44 orGadLRec : : LRec
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45 orGadLRec =
46 [
47 [ −− 1
48 Just [ 4 ] ,
49 Nothing ,
50 Nothing ,
51 Just [ 1 ] ,
52 Nothing
53 ] ,
54 [ −− 2
55 Just [ 4 ] ,
56 Nothing ,
57 Nothing ,
58 Just [ 1 ] ,
59 Nothing
60 ] ,
61 [ −− 3
62 Just [ 4 ] ,
63 Nothing ,
64 Nothing ,
65 Just [ 1 ] ,
66 Nothing
67 ] ,
68 [ −− 4
69 Just [ 4 , 5 ] ,
70 Nothing ,
71 Nothing ,
72 Just [ 1 , 5 ] ,
73 Just [ 1 , 4 ]
74 ] ,
75 [ −− 5
76 Just [ 5 ] ,
77 Nothing ,
78 Nothing ,
79 Nothing ,
80 Just [ 1 ]
81 ] ,
82 [ −− 6
83 Just [ 3 ] ,
84 Nothing ,
85 Just [ 1 ] ,
86 Nothing ,
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87 Nothing
88 ] ,
89 [ −− 7
90 Nothing ,
91 Just [ 3 ] ,
92 Just [ 2 ] ,
93 Nothing ,
94 Nothing
95 ] ,
96 [ −− 8
97 Nothing ,
98 Just [ 3 , 4 ] ,
99 Just [ 2 , 4 ] ,

100 Just [ 2 , 3 ] ,
101 Nothing
102 ] ,
103 [ −− 9
104 Nothing ,
105 Just [ 3 ] ,
106 Just [ 2 ] ,
107 Nothing ,
108 Nothing
109 ] ,
110 [ −− 10
111 Nothing ,
112 Just [ 5 ] ,
113 Nothing ,
114 Nothing ,
115 Just [ 2 ]
116 ] ,
117 [ −− 11
118 Just [ 4 , 5 ] ,
119 Nothing ,
120 Nothing ,
121 Just [ 1 , 5 ] ,
122 Just [ 1 , 4 ]
123 ] ,
124 [ −− 12
125 Just [ 5 ] ,
126 Nothing ,
127 Nothing ,
128 Nothing ,
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129 Just [ 1 ]
130 ] ,
131 [ −− 13
132 Just [ 3 ] ,
133 Nothing ,
134 Just [ 1 ] ,
135 Nothing ,
136 Nothing
137 ] ,
138 [ −− 14
139 Nothing ,
140 Just [ 3 ] ,
141 Just [ 2 ] ,
142 Nothing ,
143 Nothing
144 ] ,
145 [ −− 15
146 Nothing ,
147 Just [ 3 , 4 ] ,
148 Just [ 2 , 4 ] ,
149 Just [ 2 , 3 ] ,
150 Nothing
151 ] ,
152 [ −− 16
153 Nothing ,
154 Just [ 3 ] ,
155 Just [ 2 ] ,
156 Nothing ,
157 Nothing
158 ] ,
159 [ −− 17
160 Nothing ,
161 Just [ 5 ] ,
162 Nothing ,
163 Nothing ,
164 Just [ 2 ]
165 ] ,
166 [ −− 18
167 Just [ 4 , 5 ] ,
168 Nothing ,
169 Nothing ,
170 Just [ 1 , 5 ] ,
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171 Just [ 1 , 4 ]
172 ] ,
173 [ −− 19
174 Just [ 5 ] ,
175 Nothing ,
176 Nothing ,
177 Nothing ,
178 Just [ 1 ]
179 ] ,
180 [ −− 20
181 Just [ 3 ] ,
182 Nothing ,
183 Just [ 1 ] ,
184 Nothing ,
185 Nothing
186 ] ,
187 [ −− 21
188 Nothing ,
189 Just [ 3 ] ,
190 Just [ 2 ] ,
191 Nothing ,
192 Nothing
193 ] ,
194 [ −− 22
195 Nothing ,
196 Just [ 3 , 4 ] ,
197 Just [ 2 , 4 ] ,
198 Just [ 2 , 3 ] ,
199 Nothing
200 ] ,
201 [ −− 23
202 Nothing ,
203 Just [ 3 ] ,
204 Just [ 2 ] ,
205 Nothing ,
206 Nothing
207 ] ,
208 [ −− 24
209 Nothing ,
210 Just [ 5 ] ,
211 Nothing ,
212 Nothing ,
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213 Just [ 2 ]
214 ] ,
215 [ −− 25
216 Just [ 4 ] ,
217 Nothing ,
218 Nothing ,
219 Just [ 1 ] ,
220 Nothing
221 ] ,
222 [ −− 26
223 Just [ 4 , 5 ] ,
224 Nothing ,
225 Nothing ,
226 Just [ 1 , 5 ] ,
227 Just [ 1 , 4 ]
228 ] ,
229 [ −− 27
230 Nothing ,
231 Nothing ,
232 Nothing ,
233 Just [ 5 ] ,
234 Just [ 4 ]
235 ] ,
236 [ −− 28
237 Just [ 4 ] ,
238 Nothing ,
239 Nothing ,
240 Just [ 1 ] ,
241 Nothing
242 ] ,
243 [ −− 29
244 Just [ 4 , 5 ] ,
245 Nothing ,
246 Nothing ,
247 Just [ 1 , 5 ] ,
248 Just [ 1 , 4 ]
249 ] ,
250 [ −− 30
251 Nothing ,
252 Nothing ,
253 Nothing ,
254 Just [ 5 ] ,
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255 Just [ 4 ]
256 ] ,
257 [ −− 31
258 Just [ 4 ] ,
259 Nothing ,
260 Nothing ,
261 Just [ 1 ] ,
262 Nothing
263 ] ,
264 [ −− 32
265 Just [ 4 , 5 ] ,
266 Nothing ,
267 Nothing ,
268 Just [ 1 , 5 ] ,
269 Just [ 1 , 4 ]
270 ] ,
271 [ −− 33
272 Nothing ,
273 Nothing ,
274 Nothing ,
275 Just [ 5 ] ,
276 Just [ 4 ]
277 ]
278 ]
279
280 orGadColoring : : Co lor ing
281 orGadColoring = [
282 1 , 1 , 1 , 4 , 5 , 1 , 3 , 2 , 3 , 2 , 4 , 5 , 1 , 3 , 2 , 3 ,
283 2 , 4 , 5 , 1 , 3 , 2 , 3 , 2 , 4 , 5 , 4 , 4 , 5 , 4 , 4 , 5 , 4
284 ]
285
286 main : : IO ( )
287 main = do
288 l et
289 g = gAL2GAA orGad
290 l = lRec2LRecA orGadLRec
291 −− Enumerate c o l o r i n g s r e a c h a b l e from orGadColoring
292 c o l o r i n g s = enumConColoring g l orGadColoring
293 putStrLn
294 $ ”or−gadget has ”
295 ++ (show $ length c o l o r i n g s )
296 ++ ” c o l o r i n g s connected to ”
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297 ++ showColoring orGadColoring
298 −− V e r i f i c a t i o n o f i n t e r n a l connectedness
299 l et
300 −− Returns True
301 −− when 1 st , 2nd , 3 rd edges have c o l o r 1 ,1 ,1
302 pro111 = (==[1 ,1 ,1 ] ) . take 3
303 −− Ver i fy connectedness o f c o l o r i n g s
304 −− s a t i s f y i n g pro111
305 con111 = DS. f i l t e r pro111 c o l o r i n g s
306 == enumConColoringProp g l pro111
307 ( findMin $ DS. f i l t e r pro111 c o l o r i n g s )
308 putStrLn $
309 ”111 i s ”
310 ++ ( i f con111 then ” connected ” else ” d i s connected ” )
311 ++ ” and has ”
312 ++ show (DS. s i z e $ DS. f i l t e r pro111 c o l o r i n g s )
313 ++ ” c o l o r i n g s ”
314 −− Ver i fy f o r the case 114 ,141 ,144 ,411 ,441
315 l et
316 pro114 = (==[1 ,1 ,4 ] ) . take 3
317 con114 = DS. f i l t e r pro114 c o l o r i n g s
318 == enumConColoringProp g l pro114
319 ( findMin $ DS. f i l t e r pro114 c o l o r i n g s )
320 putStrLn $
321 ”114 i s ”
322 ++ ( i f con114 then ” connected ” else ” d i s connected ” )
323 ++ ” and has ”
324 ++ show (DS. s i z e $ DS. f i l t e r pro114 c o l o r i n g s )
325 ++ ” c o l o r i n g s ”
326 l et
327 pro141 = (==[1 ,4 ,1 ] ) . take 3
328 con141 = DS. f i l t e r pro141 c o l o r i n g s
329 == enumConColoringProp g l pro141
330 ( findMin $ DS. f i l t e r pro141 c o l o r i n g s )
331 putStrLn $
332 ”141 i s ”
333 ++ ( i f con141 then ” connected ” else ” d i s connected ” )
334 ++ ” and has ”
335 ++ show (DS. s i z e $ DS. f i l t e r pro141 c o l o r i n g s )
336 ++ ” c o l o r i n g s ”
337 l et
338 pro144 = (==[1 ,4 ,4 ] ) . take 3
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339 con144 = DS. f i l t e r pro144 c o l o r i n g s
340 == enumConColoringProp g l pro144
341 ( findMin $ DS. f i l t e r pro144 c o l o r i n g s )
342 putStrLn $
343 ”144 i s ”
344 ++ ( i f con144 then ” connected ” else ” d i s connected ” )
345 ++ ” and has ”
346 ++ show (DS. s i z e $ DS. f i l t e r pro144 c o l o r i n g s )
347 ++ ” c o l o r i n g s ”
348 l et
349 pro411 = (==[4 ,1 ,1 ] ) . take 3
350 con411 = DS. f i l t e r pro411 c o l o r i n g s
351 == enumConColoringProp g l pro411
352 ( findMin $ DS. f i l t e r pro411 c o l o r i n g s )
353 putStrLn $
354 ”411 i s ”
355 ++ ( i f con411 then ” connected ” else ” d i s connected ” )
356 ++ ” and has ”
357 ++ show (DS. s i z e $ DS. f i l t e r pro411 c o l o r i n g s )
358 ++ ” c o l o r i n g s ”
359 l et
360 pro414 = (==[4 ,1 ,4 ] ) . take 3
361 con414 = DS. f i l t e r pro414 c o l o r i n g s
362 == enumConColoringProp g l pro414
363 ( findMin $ DS. f i l t e r pro414 c o l o r i n g s )
364 putStrLn $
365 ”414 i s ”
366 ++ ( i f con414 then ” connected ” else ” d i s connected ” )
367 ++ ” and has ”
368 ++ show (DS. s i z e $ DS. f i l t e r pro414 c o l o r i n g s )
369 ++ ” c o l o r i n g s ”
370 l et
371 pro441 = (==[4 ,4 ,1 ] ) . take 3
372 con441 = DS. f i l t e r pro441 c o l o r i n g s
373 == enumConColoringProp g l pro441
374 ( findMin $ DS. f i l t e r pro441 c o l o r i n g s )
375 putStrLn $
376 ”441 i s ”
377 ++ ( i f con441 then ” connected ” else ” d i s connected ” )
378 ++ ” and has ”
379 ++ show (DS. s i z e $ DS. f i l t e r pro441 c o l o r i n g s )
380 ++ ” c o l o r i n g s ”
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381 −− Case 444 does not e x i s t
382 l et
383 pro444 = (==[4 ,4 ,4 ] ) . take 3
384 putStrLn $ ”444 does ”
385 ++ ( i f null $ DS. f i l t e r pro444 c o l o r i n g s then ”not ”
386 else ”” )
387 ++ ” e x i s t ”
388 −− V e r i f i c a t i o n o f e x t e r n a l adjacency
389 l et
390 −− Returns ad jacen t c o l o r i n g o f c o l
391 −− s a t i s f y i n g pro i f e x i s t , as a p a i r
392 t e s t pro c o l =
393 l et
394 ne i =
395 Prelude . f i l t e r pro
396 $ enumNeighborColoring g l c o l
397 in i f null ne i then Nothing
398 else Just ( co l , head ne i )
399 −− Ver i fy adjacency between 111 and 114
400 l et
401 con111 114 =
402 catMaybes $ map ( t e s t pro114 )
403 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
404 putStrLn $ ”111 and 114 are ”
405 ++ i f null con111 114 then ”not ad jacent ”
406 else ” adjacent by ”
407 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con111 114 ) )
408 ++ ( ”\n”++(map intToDigit$snd$head con111 114 ) )
409 −− Ver i fy adjacency between 111 and 141
410 l et
411 con111 141 =
412 catMaybes $ map ( t e s t pro141 )
413 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
414 putStrLn $ ”111 and 141 are ”
415 ++ i f null con111 141 then ”not ad jacent ”
416 else ” adjacent by ”
417 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con111 141 ) )
418 ++ ( ”\n”++(map intToDigit$snd$head con111 141 ) )
419 −− Ver i fy adjacency between 111 and 411
420 l et
421 con111 411 =
422 catMaybes $ map ( t e s t pro411 )
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423 $ DS. elems $ DS. f i l t e r pro111 c o l o r i n g s
424 putStrLn $ ”111 and 411 are ”
425 ++ i f null con111 411 then ”not ad jacent ”
426 else ” adjacent by ”
427 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con111 411 ) )
428 ++ ( ”\n”++(map intToDigit$snd$head con111 411 ) )
429 −− Ver i fy adjacency between 114 and 144
430 l et
431 con114 144 =
432 catMaybes $ map ( t e s t pro144 )
433 $ DS. elems $ DS. f i l t e r pro114 c o l o r i n g s
434 putStrLn $ ”114 and 144 are ”
435 ++ i f null con114 144 then ”not ad jacent ”
436 else ” adjacent by ”
437 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con114 144 ) )
438 ++ ( ”\n”++(map intToDigit$snd$head con114 144 ) )
439 −− Ver i fy adjacency between 114 and 414
440 l et
441 con114 414 =
442 catMaybes $ map ( t e s t pro414 )
443 $ DS. elems $ DS. f i l t e r pro114 c o l o r i n g s
444 putStrLn $ ”114 and 414 are ”
445 ++ i f null con114 414 then ”not ad jacent ”
446 else ” adjacent by ”
447 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con114 414 ) )
448 ++ ( ”\n”++(map intToDigit$snd$head con114 414 ) )
449 −− Ver i fy adjacency between 141 and 144
450 l et
451 con141 144 =
452 catMaybes $ map ( t e s t pro144 )
453 $ DS. elems $ DS. f i l t e r pro141 c o l o r i n g s
454 putStrLn $ ”141 and 144 are ”
455 ++ i f null con141 144 then ”not ad jacent ”
456 else ” adjacent by ”
457 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con141 144 ) )
458 ++ ( ”\n”++(map intToDigit$snd$head con141 144 ) )
459 −− Ver i fy adjacency between 141 and 441
460 l et
461 con141 441 =
462 catMaybes $ map ( t e s t pro441 )
463 $ DS. elems $ DS. f i l t e r pro141 c o l o r i n g s
464 putStrLn $ ”141 and 441 are ”
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465 ++ i f null con141 441 then ”not ad jacent ”
466 else ” adjacent by ”
467 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con141 441 ) )
468 ++ ( ”\n”++(map intToDigit$snd$head con141 441 ) )
469 −− Ver i fy adjacency between 411 and 414
470 l et
471 con411 414 =
472 catMaybes $ map ( t e s t pro414 )
473 $ DS. elems $ DS. f i l t e r pro411 c o l o r i n g s
474 putStrLn $ ”411 and 414 are ”
475 ++ i f null con411 414 then ”not ad jacent ”
476 else ” adjacent by ”
477 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con411 414 ) )
478 ++ ( ”\n”++(map intToDigit$snd$head con411 414 ) )
479 −− Ver i fy adjacency between 411 and 441
480 l et
481 con411 441 =
482 catMaybes $ map ( t e s t pro441 )
483 $ DS. elems $ DS. f i l t e r pro411 c o l o r i n g s
484 putStrLn $ ”411 and 441 are ”
485 ++ i f null con411 441 then ”not ad jacent ”
486 else ” adjacent by ”
487 ++ ( ”\n”++(map i n tToDig i t$ f s t$head con411 441 ) )
488 ++ ( ”\n”++(map intToDigit$snd$head con411 441 ) )
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