2,860 research outputs found

    Optimal CHP Planning in Integrated Energy Systems considering Use-of-System Charges

    Get PDF
    This paper proposes a novel optimal planning model for combined heat and power (CHP) in multiple energy systems of natural gas and electricity to benefit both networks by deferring investment for network owners and reducing use-of-system (UoS) charge for network users. The new planning model considers the technical constraints of both electricity and natural gas systems. A two-stage planning approach is proposed to determine the optimal site and size of CHPs. In the first stage, a long-run incremental cost matrix is designed to reflect CHP locational impact on both natural gas and electricity network investment, used as a criterion to choose the optimal location. In the second stage, CHP size is determined by solving an integrated optimal model with the objective to minimize total incremental network investment costs. The proposed method is resolved by the interior-point method and implemented on a practically integrated electricity and natural gas systems. Two case studies are conducted to test the performance for single and multiple CHPs cases. This paper enables cost-efficient CHP planning to benefit integrated natural gas and electricity networks and network users in terms of reduced network investment cost and consequently reduced UoS charges

    Impact Assessment of Hypothesized Cyberattacks on Interconnected Bulk Power Systems

    Full text link
    The first-ever Ukraine cyberattack on power grid has proven its devastation by hacking into their critical cyber assets. With administrative privileges accessing substation networks/local control centers, one intelligent way of coordinated cyberattacks is to execute a series of disruptive switching executions on multiple substations using compromised supervisory control and data acquisition (SCADA) systems. These actions can cause significant impacts to an interconnected power grid. Unlike the previous power blackouts, such high-impact initiating events can aggravate operating conditions, initiating instability that may lead to system-wide cascading failure. A systemic evaluation of "nightmare" scenarios is highly desirable for asset owners to manage and prioritize the maintenance and investment in protecting their cyberinfrastructure. This survey paper is a conceptual expansion of real-time monitoring, anomaly detection, impact analyses, and mitigation (RAIM) framework that emphasizes on the resulting impacts, both on steady-state and dynamic aspects of power system stability. Hypothetically, we associate the combinatorial analyses of steady state on substations/components outages and dynamics of the sequential switching orders as part of the permutation. The expanded framework includes (1) critical/noncritical combination verification, (2) cascade confirmation, and (3) combination re-evaluation. This paper ends with a discussion of the open issues for metrics and future design pertaining the impact quantification of cyber-related contingencies

    Assessment of underlying capacity mechanism studies for Greece

    Get PDF
    The increased electricity production from variable sources in the EU combined with the overall decline in demand in recent years, have raised concerns about the security of electricity supply, in general, and in particular about generation adequacy and flexibility, prompting some Member States to consider new public interventions, the so-called capacity remuneration mechanisms. This work presents a review of the underlying capacity mechanism studies for Greece based on European best practices to highlight the latest developments and current trends.JRC.C.3-Energy Security, Distribution and Market

    Assessing the impact of investments in Cross-border pipelines on the security of gas supply in the EU

    Get PDF
    The European Union (EU) is highly dependent on external natural gas supplies and has experienced severe gas cuts in the past, mainly driven by the technical complexity of the high-pressure natural gas system and political instability in some of the supplier countries. Declining indigenous natural gas production and growing demand for gas in the EU has encouraged investments in cross-border transmission capacity to increase the sharing of resources between the member states, particularly in the aftermath of the Russia-Ukraine gas crisis in January 2009. This article models the EU interconnected natural gas system to assess the impact of investments in the gas transmission network by comparing the performance of the system for scenarios of 2009 and 2017, using a mathematical optimization approach. The model uses the technical data of the infrastructures, such as production, storage, regasification, and exchange capacity through cross-border pipelines, and proposes an optimal collaborative strategy which ensures the best possible coverage of overall demand. The actual peak demand situations of the extreme cases of 2009 and 2017 are analyzed under hypothetical supply crises caused by geopolitical or commercial disputes. The application of the proposed methodology leads to results which show that the investments made in this system do not decongest the cross-border pipeline network but improve the demand coverage. Countries such as Spain and Italy experience a lower impact on gas supply due to the variety of mechanisms available to cover their demand. Furthermore, the findings prove that cooperation facilitates the supply of demand in crisis situations

    競争環境における入札戦略並びに送電線混雑管理に関する研究

    Get PDF
    制度:新 ; 文部省報告番号:乙2143号 ; 学位の種類:博士(工学) ; 授与年月日:2008/1/18 ; 早大学位記番号:新468

    Artificial Intelligence for Resilience in Smart Grid Operations

    Get PDF
    Today, the electric power grid is transforming into a highly interconnected network of advanced technologies, equipment, and controls to enable a smarter grid. The growing complexity of smart grid requires resilient operation and control. Power system resilience is defined as the ability to harden the system against and quickly recover from high-impact, low-frequency events. The introduction of two-way flows of information and electricity in the smart grid raises concerns of cyber-physical attacks. Proliferated penetration of renewable energy sources such as solar photovoltaic (PV) and wind power introduce challenges due to the high variability and uncertainty in generation. Unintentional disruptions and power system component outages have become a threat to real-time power system operations. Recent extreme weather events and natural disasters such as hurricanes, storms, and wildfires demonstrate the importance of resilience in the power system. It is essential to find solutions to overcome these challenges in maintaining resilience in smart grid. In this dissertation, artificial intelligence (AI) based approaches have been developed to enhance resilience in smart grid. Methods for optimal automatic generation control (AGC) have been developed for multi-area multi-machine power systems. Reliable AI models have been developed for predicting solar irradiance, PV power generation, and power system frequencies. The proposed short-horizon AI prediction models ranging from few seconds to a minute plus, outperform the state-of-art persistence models. The AI prediction models have been applied to provide situational intelligence for power system operations. An enhanced tie-line bias control in a multi-area power system for variable and uncertain environments has been developed with predicted PV power and bus frequencies. A distributed and parallel security-constrained optimal power flow (SCOPF) algorithm has been developed to overcome the challenges in solving SCOPF problem for large power networks. The methods have been developed and tested on an experimental laboratory platform consisting of real-time digital simulators, hardware/software phasor measurement units, and a real-time weather station

    Linking Energy System Models:Exploring analyses, methodologies, and theoretical dilemmas

    Get PDF

    Social, environmental and economic impacts of alternative energy and fuel supply chains

    Get PDF
    Energy supply nowadays, being a vital element of a country’s development, has to independently meet diverse, sustainability criteria, be it economic, environmental and social. The main goal of the present research work is to present a methodological framework for the evaluation of alternative energy and fuel Supply Chains (SCs), consisting of a broad topology (representation) suggested, encompassing all the well-known energy and fuel SCs, under a unified scheme, a set of performance measures and indices as well as mathematical model development, formulated as Multi-objective Linear Programming with the extension of incorporating binary decisions as well (Multi-objective Mixed Integer-Linear programming). Basic characteristics of the current modelling approach include the adaptability of the model to be applied at different levels of energy SCs decisions, under different time frames and for multiple stakeholders. Model evaluation is carried for a set of Greek islands, located in the Aegean Archipelagos, examining both the existing energy supply options as well future, more sustainable Energy Supply Chains (ESCs) configurations. Results of the specific research work reveal the social and environmental costs which are underestimated under the traditional energy supply options' evaluation, as well as the benefits that may be produced from renewable energy based applications in terms of social security and employment
    corecore