888 research outputs found

    An empirical study on credit evaluation of SMEs based on detailed loan data

    Get PDF
    Small and micro-sized Enterprises (SMEs) are an important part of Chinese economic system.The establishment of credit evaluating model of SMEs can effectively help financial intermediaries to reveal credit risk of enterprises and reduce the cost of enterprises information acquisition. Besides it can also serve as a guide to investors which also helps companies with good credit. This thesis conducts an empirical study based on loan data from a Chinese bank of loans granted to SMEs. The study aims to develop a data-driven model that can accurately predict if a given loan has an acceptable risk from the bank’s perspective, or not. Furthermore, we test different methods to deal with the problem of unbalanced class and uncredible sample. Lastly, the importance of variables is analyzed. Remaining Unpaid Principal, Floating Interest Rate, Time Until Maturity Date, Real Interest Rate, Amount of Loan all have significant effects on the final result of the prediction.The main contribution of this study is to build a credit evaluation model of small and micro enterprises, which not only helps commercial banks accurately identify the credit risk of small and micro enterprises, but also helps to overcome creditdifficulties of small and micro enterprises.As pequenas e microempresas constituem uma parte importante do sistema económico chinês. A definição de um modelo de avaliação de crédito para estas empresas pode ajudar os intermediários financeiros a revelarem o risco de crédito das empresas e a reduzirem o custo de aquisição de informação das empresas. Além disso, pode igualmente servir como guia para os investidores, auxiliando também empresas com bom crédito. Na presente tese apresenta-se um estudo empírico baseado em dados de um banco chinês relativos a empréstimos concedidos a pequenas e microempresas. O estudo visa desenvolver um modelo empírico que possa prever com precisão se um determinado empréstimo tem um risco aceitável do ponto de vista do banco, ou não. Além disso, são efetuados testes com diferentes métodos que permitem lidar com os problemas de classes de dados não balanceadas e de amostras que não refletem o problema real a modelar. Finalmente, é analisada a importância relativa das variáveis. O montante da dívida por pagar, a taxa de juro variável, o prazo até a data de vencimento, a taxa de juro real, o montante do empréstimo, todas têm efeitos significativos no resultado final da previsão. O principal contributo deste estudo é, assim, a construção de um modelo de avaliação de crédito que permite apoiar os bancos comerciais a identificarem com precisão o risco de crédito das pequenas e micro empresas e ajudar também estas empresas a superarem as suas dificuldades de crédito

    Data mining in computational finance

    Get PDF
    Computational finance is a relatively new discipline whose birth can be traced back to early 1950s. Its major objective is to develop and study practical models focusing on techniques that apply directly to financial analyses. The large number of decisions and computationally intensive problems involved in this discipline make data mining and machine learning models an integral part to improve, automate, and expand the current processes. One of the objectives of this research is to present a state-of-the-art of the data mining and machine learning techniques applied in the core areas of computational finance. Next, detailed analysis of public and private finance datasets is performed in an attempt to find interesting facts from data and draw conclusions regarding the usefulness of features within the datasets. Credit risk evaluation is one of the crucial modern concerns in this field. Credit scoring is essentially a classification problem where models are built using the information about past applicants to categorise new applicants as ‘creditworthy’ or ‘non-creditworthy’. We appraise the performance of a few classical machine learning algorithms for the problem of credit scoring. Typically, credit scoring databases are large and characterised by redundant and irrelevant features, making the classification task more computationally-demanding. Feature selection is the process of selecting an optimal subset of relevant features. We propose an improved information-gain directed wrapper feature selection method using genetic algorithms and successfully evaluate its effectiveness against baseline and generic wrapper methods using three benchmark datasets. One of the tasks of financial analysts is to estimate a company’s worth. In the last piece of work, this study predicts the growth rate for earnings of companies using three machine learning techniques. We employed the technique of lagged features, which allowed varying amounts of recent history to be brought into the prediction task, and transformed the time series forecasting problem into a supervised learning problem. This work was applied on a private time series dataset

    2019 SDSU Data Science Symposium Abstracts

    Get PDF

    Two-Stage Fuzzy Multiple Kernel Learning Based on Hilbert-Schmidt Independence Criterion

    Full text link
    © 1993-2012 IEEE. Multiple kernel learning (MKL) is a principled approach to kernel combination and selection for a variety of learning tasks, such as classification, clustering, and dimensionality reduction. In this paper, we develop a novel fuzzy multiple kernel learning model based on the Hilbert-Schmidt independence criterion (HSIC) for classification, which we call HSIC-FMKL. In this model, we first propose an HSIC Lasso-based MKL formulation, which not only has a clear statistical interpretation that minimum redundant kernels with maximum dependence on output labels are found and combined, but also enables the global optimal solution to be computed efficiently by solving a Lasso optimization problem. Since the traditional support vector machine (SVM) is sensitive to outliers or noises in the dataset, fuzzy SVM (FSVM) is used to select the prediction hypothesis once the optimal kernel has been obtained. The main advantage of FSVM is that we can associate a fuzzy membership with each data point such that these data points can have different effects on the training of the learning machine. We propose a new fuzzy membership function using a heuristic strategy based on the HSIC. The proposed HSIC-FMKL is a two-stage kernel learning approach and the HSIC is applied in both stages. We perform extensive experiments on real-world datasets from the UCI benchmark repository and the application domain of computational biology which validate the superiority of the proposed model in terms of prediction accuracy

    Credit scoring: comparison of non‐parametric techniques against logistic regression

    Get PDF
    Dissertation presented as the partial requirement for obtaining a Master's degree in Information Management, specialization in Knowledge Management and Business IntelligenceOver the past decades, financial institutions have been giving increased importance to credit risk management as a critical tool to control their profitability. More than ever, it became crucial for these institutions to be able to well discriminate between good and bad clients for only accepting the credit applications that are not likely to default. To calculate the probability of default of a particular client, most financial institutions have credit scoring models based on parametric techniques. Logistic regression is the current industry standard technique in credit scoring models, and it is one of the techniques under study in this dissertation. Although it is regarded as a robust and intuitive technique, it is still not free from several critics towards the model assumptions it takes that can compromise its predictions. This dissertation intends to evaluate the gains in performance resulting from using more modern non-parametric techniques instead of logistic regression, performing a model comparison over four different real-life credit datasets. Specifically, the techniques compared against logistic regression in this study consist of two single classifiers (decision tree and SVM with RBF kernel) and two ensemble methods (random forest and stacking with cross-validation). The literature review demonstrates that heterogeneous ensemble approaches have a weaker presence in credit scoring studies and, because of that, stacking with cross-validation was considered in this study. The results demonstrate that logistic regression outperforms the decision tree classifier, has similar performance in relation to SVM and slightly underperforms both ensemble approaches in similar extents

    A new approach of top-down induction of decision trees for knowledge discovery

    Get PDF
    Top-down induction of decision trees is the most popular technique for classification in the field of data mining and knowledge discovery. Quinlan developed the basic induction algorithm of decision trees, ID3 (1984), and extended to C4.5 (1993). There is a lot of research work for dealing with a single attribute decision-making node (so-called the first-order decision) of decision trees. Murphy and Pazzani (1991) addressed about multiple-attribute conditions at decision-making nodes. They show that higher order decision-making generates smaller decision trees and better accuracy. However, there always exist NP-complete combinations of multiple-attribute decision-makings.;We develop a new algorithm of second-order decision-tree inductions (SODI) for nominal attributes. The induction rules of first-order decision trees are combined by \u27AND\u27 logic only, but those of SODI consist of \u27AND\u27, \u27OR\u27, and \u27OTHERWISE\u27 logics. It generates more accurate results and smaller decision trees than any first-order decision tree inductions.;Quinlan used information gains via VC-dimension (Vapnik-Chevonenkis; Vapnik, 1995) for clustering the experimental values for each numerical attribute. However, many researchers have discovered the weakness of the use of VC-dim analysis. Bennett (1997) sophistically applies support vector machines (SVM) to decision tree induction. We suggest a heuristic algorithm (SVMM; SVM for Multi-category) that combines a TDIDT scheme with SVM. In this thesis it will be also addressed how to solve multiclass classification problems.;Our final goal for this thesis is IDSS (Induction of Decision Trees using SODI and SVMM). We will address how to combine SODI and SVMM for the construction of top-down induction of decision trees in order to minimize the generalized penalty cost

    Data Science for Finance: Targeted Learning from (Big) Data to Economic Stability and Financial Risk Management

    Get PDF
    A thesis submitted in partial fulfillment of the requirements for the degree of Doctor in Information Management, specialization in Statistics and EconometricsThe modelling, measurement, and management of systemic financial stability remains a critical issue in most countries. Policymakers, regulators, and managers depend on complex models for financial stability and risk management. The models are compelled to be robust, realistic, and consistent with all relevant available data. This requires great data disclosure, which is deemed to have the highest quality standards. However, stressed situations, financial crises, and pandemics are the source of many new risks with new requirements such as new data sources and different models. This dissertation aims to show the data quality challenges of high-risk situations such as pandemics or economic crisis and it try to theorize the new machine learning models for predictive and longitudes time series models. In the first study (Chapter Two) we analyzed and compared the quality of official datasets available for COVID-19 as a best practice for a recent high-risk situation with dramatic effects on financial stability. We used comparative statistical analysis to evaluate the accuracy of data collection by a national (Chinese Center for Disease Control and Prevention) and two international (World Health Organization; European Centre for Disease Prevention and Control) organizations based on the value of systematic measurement errors. We combined excel files, text mining techniques, and manual data entries to extract the COVID-19 data from official reports and to generate an accurate profile for comparisons. The findings show noticeable and increasing measurement errors in the three datasets as the pandemic outbreak expanded and more countries contributed data for the official repositories, raising data comparability concerns and pointing to the need for better coordination and harmonized statistical methods. The study offers a COVID-19 combined dataset and dashboard with minimum systematic measurement errors and valuable insights into the potential problems in using databanks without carefully examining the metadata and additional documentation that describe the overall context of data. In the second study (Chapter Three) we discussed credit risk as the most significant source of risk in banking as one of the most important sectors of financial institutions. We proposed a new machine learning approach for online credit scoring which is enough conservative and robust for unstable and high-risk situations. This Chapter is aimed at the case of credit scoring in risk management and presents a novel method to be used for the default prediction of high-risk branches or customers. This study uses the Kruskal-Wallis non-parametric statistic to form a conservative credit-scoring model and to study its impact on modeling performance on the benefit of the credit provider. The findings show that the new credit scoring methodology represents a reasonable coefficient of determination and a very low false-negative rate. It is computationally less expensive with high accuracy with around 18% improvement in Recall/Sensitivity. Because of the recent perspective of continued credit/behavior scoring, our study suggests using this credit score for non-traditional data sources for online loan providers to allow them to study and reveal changes in client behavior over time and choose the reliable unbanked customers, based on their application data. This is the first study that develops an online non-parametric credit scoring system, which can reselect effective features automatically for continued credit evaluation and weigh them out by their level of contribution with a good diagnostic ability. In the third study (Chapter Four) we focus on the financial stability challenges faced by insurance companies and pension schemes when managing systematic (undiversifiable) mortality and longevity risk. For this purpose, we first developed a new ensemble learning strategy for panel time-series forecasting and studied its applications to tracking respiratory disease excess mortality during the COVID-19 pandemic. The layered learning approach is a solution related to ensemble learning to address a given predictive task by different predictive models when direct mapping from inputs to outputs is not accurate. We adopt a layered learning approach to an ensemble learning strategy to solve the predictive tasks with improved predictive performance and take advantage of multiple learning processes into an ensemble model. In this proposed strategy, the appropriate holdout for each model is specified individually. Additionally, the models in the ensemble are selected by a proposed selection approach to be combined dynamically based on their predictive performance. It provides a high-performance ensemble model to automatically cope with the different kinds of time series for each panel member. For the experimental section, we studied more than twelve thousand observations in a portfolio of 61-time series (countries) of reported respiratory disease deaths with monthly sampling frequency to show the amount of improvement in predictive performance. We then compare each country’s forecasts of respiratory disease deaths generated by our model with the corresponding COVID-19 deaths in 2020. The results of this large set of experiments show that the accuracy of the ensemble model is improved noticeably by using different holdouts for different contributed time series methods based on the proposed model selection method. These improved time series models provide us proper forecasting of respiratory disease deaths for each country, exhibiting high correlation (0.94) with Covid-19 deaths in 2020. In the fourth study (Chapter Five) we used the new ensemble learning approach for time series modeling, discussed in the previous Chapter, accompany by K-means clustering for forecasting life tables in COVID-19 times. Stochastic mortality modeling plays a critical role in public pension design, population and public health projections, and in the design, pricing, and risk management of life insurance contracts and longevity-linked securities. There is no general method to forecast the mortality rate applicable to all situations especially for unusual years such as the COVID-19 pandemic. In this Chapter, we investigate the feasibility of using an ensemble of traditional and machine learning time series methods to empower forecasts of age-specific mortality rates for groups of countries that share common longevity trends. We use Generalized Age-Period-Cohort stochastic mortality models to capture age and period effects, apply K-means clustering to time series to group countries following common longevity trends, and use ensemble learning to forecast life expectancy and annuity prices by age and sex. To calibrate models, we use data for 14 European countries from 1960 to 2018. The results show that the ensemble method presents the best robust results overall with minimum RMSE in the presence of structural changes in the shape of time series at the time of COVID-19. In this dissertation’s conclusions (Chapter Six), we provide more detailed insights about the overall contributions of this dissertation on the financial stability and risk management by data science, opportunities, limitations, and avenues for future research about the application of data science in finance and economy

    Survey on highly imbalanced multi-class data

    Get PDF
    Machine learning technology has a massive impact on society because it offers solutions to solve many complicated problems like classification, clustering analysis, and predictions, especially during the COVID-19 pandemic. Data distribution in machine learning has been an essential aspect in providing unbiased solutions. From the earliest literatures published on highly imbalanced data until recently, machine learning research has focused mostly on binary classification data problems. Research on highly imbalanced multi-class data is still greatly unexplored when the need for better analysis and predictions in handling Big Data is required. This study focuses on reviews related to the models or techniques in handling highly imbalanced multi-class data, along with their strengths and weaknesses and related domains. Furthermore, the paper uses the statistical method to explore a case study with a severely imbalanced dataset. This article aims to (1) understand the trend of highly imbalanced multi-class data through analysis of related literatures; (2) analyze the previous and current methods of handling highly imbalanced multi-class data; (3) construct a framework of highly imbalanced multi-class data. The chosen highly imbalanced multi-class dataset analysis will also be performed and adapted to the current methods or techniques in machine learning, followed by discussions on open challenges and the future direction of highly imbalanced multi-class data. Finally, for highly imbalanced multi-class data, this paper presents a novel framework. We hope this research can provide insights on the potential development of better methods or techniques to handle and manipulate highly imbalanced multi-class data
    corecore