4 research outputs found

    Robust object-based algorithms for direct shadow simulation

    Get PDF
    En informatique graphique, les algorithmes de générations d'ombres évaluent la quantité de lumière directement perçue par une environnement virtuel. Calculer précisément des ombres est cependant coûteux en temps de calcul. Dans cette dissertation, nous présentons un nouveau système basé objet robuste, qui permet de calculer des ombres réalistes sur des scènes dynamiques et ce en temps interactif. Nos contributions incluent notamment le développement de nouveaux algorithmes de génération d'ombres douces ainsi que leur mise en oeuvre efficace sur processeur graphique. Nous commençons par formaliser la problématique du calcul d'ombres directes. Tout d'abord, nous définissons ce que sont les ombres directes dans le contexte général du transport de la lumière. Nous étudions ensuite les techniques interactives qui génèrent des ombres directes. Suite à cette étude nous montrons que mêmes les algorithmes dit physiquement réalistes se reposent sur des approximations. Nous mettons également en avant, que malgré leur contraintes géométriques, les algorithmes d'ombres basées objet sont un bon point de départ pour résoudre notre problématique de génération efficace et robuste d'ombres directes. Basé sur cette observation, nous étudions alors le système basé objet existant et mettons en avant ses problèmes de robustesse. Nous proposons une nouvelle technique qui améliore la qualité des ombres générées par ce système en lui ajoutant une étape de mélange de pénombres. Malgré des propriétés et des résultats convaincants, les limitations théoriques et de mise en oeuvre limite la qualité générale et les performances de cet algorithme. Nous présentons ensuite un nouvel algorithme d'ombres basées objet. Cet algorithme combine l'efficacité de l'approche basée objet temps réel avec la précision de sa généralisation au rendu hors ligne. Notre algorithme repose sur l'évaluation locale du nombre d'objets entre deux points : la complexité de profondeur. Nous décrivons comment nous utilisons cet algorithme pour échantillonner la complexité de profondeur entre les surfaces visibles d'une scène et une source lumineuse. Nous générons ensuite des ombres à partir de cette information soit en modulant l'éclairage direct soit en intégrant numériquement l'équation d'illumination directe. Nous proposons ensuite une extension de notre algorithme afin qu'il puisse prendre en compte les ombres projetées par des objets semi-opaque. Finalement, nous présentons une mise en oeuvre efficace de notre système qui démontre que des ombres basées objet peuvent être générées de façon efficace et ce même sur une scène dynamique. En rendu temps réel, il est commun de représenter des objets très détaillés encombinant peu de triangles avec des textures qui représentent l'opacité binaire de l'objet. Les techniques de génération d'ombres basées objet ne traitent pas de tels triangles dit "perforés". De par leur nature, elles manipulent uniquement les géométries explicitement représentées par des primitives géométriques. Nous présentons une nouvel algorithme basé objet qui lève cette limitation. Nous soulignons que notre méthode peut être efficacement combinée avec les systèmes existants afin de proposer un système unifié basé objet qui génère des ombres à la fois pour des maillages classiques et des géométries perforées. La mise en oeuvre proposée montre finalement qu'une telle combinaison fournit une solution élégante, efficace et robuste à la problématique générale de l'éclairage direct et ce aussi bien pour des applications temps réel que des applications sensibles à la la précision du résultat.Direct shadow algorithms generate shadows by simulating the direct lighting interaction in a virtual environment. The main challenge with the accurate direct shadow problematic is its computational cost. In this dissertation, we develop a new robust object-based shadow framework that provides realistic shadows at interactive frame rate on dynamic scenes. Our contributions include new robust object-based soft shadow algorithms and efficient interactive implementations. We start, by formalizing the direct shadow problematic. Following the light transport problematic, we first formalize what are robust direct shadows. We then study existing interactive direct shadow techniques and outline that the real time direct shadow simulation remains an open problem. We show that even the so called physically plausible soft shadow algorithms still rely on approximations. Nevertheless we exhibit that, despite their geometric constraints, object-based approaches seems well suited when targeting accurate solutions. Starting from the previous analyze, we investigate the existing object-based shadow framework and discuss about its robustness issues. We propose a new technique that drastically improve the resulting shadow quality by improving this framework with a penumbra blending stage. We present a practical implementation of this approach. From the obtained results, we outline that, despite desirable properties, the inherent theoretical and implementation limitations reduce the overall quality and performances of the proposed algorithm. We then present a new object-based soft shadow algorithm. It merges the efficiency of the real time object-based shadows with the accuracy of its offline generalization. The proposed algorithm lies onto a new local evaluation of the number of occluders between twotwo points (\ie{} the depth complexity). We describe how we use this algorithm to sample the depth complexity between any visible receiver and the light source. From this information, we compute shadows by either modulate the direct lighting or numerically solve the direct illumination with an accuracy depending on the light sampling strategy. We then propose an extension of our algorithm in order to handle shadows cast by semi opaque occluders. We finally present an efficient implementation of this framework that demonstrates that object-based shadows can be efficiently used on complex dynamic environments. In real time rendering, it is common to represent highly detailed objects with few triangles and transmittance textures that encode their binary opacity. Object-based techniques do not handle such perforated triangles. Due to their nature, they can only evaluate the shadows cast by models whose their shape is explicitly defined by geometric primitives. We describe a new robust object-based algorithm that addresses this main limitation. We outline that this method can be efficiently combine with object-based frameworks in order to evaluate approximative shadows or simulate the direct illumination for both common meshes and perforated triangles. The proposed implementation shows that such combination provides a very strong and efficient direct lighting framework, well suited to many domains ranging from quality sensitive to performance critical applications

    Efficient Physically-Based Shadow Algorithms

    Get PDF
    This research focuses on developing efficient algorithms for computing shadows in computer-generated images. A distinctive feature of the shadow algorithms presented in this thesis is that they produce correct, physically-based results, instead of giving approximations whose quality is often hard to ensure or evaluate.\ud \ud Light sources that are modeled as points without any spatial extent produce hard shadows with sharp boundaries. Shadow mapping is a traditional method for rendering such shadows. A shadow map is a depth buffer computed from the scene, using a point light source as the viewpoint. The finite resolution of the shadow map requires that its contents are resampled when determining the shadows on visible surfaces. This causes various artifacts such as incorrect self-shadowing and jagged shadow boundaries. A novel method is presented that avoids the resampling step, and provides exact shadows for every point visible in the image.\ud \ud The shadow volume algorithm is another commonly used algorithm for real-time rendering of hard shadows. This algorithm gives exact results and does not suffer from any resampling problems, but it tends to consume a lot of fillrate, which leads to performance problems. This thesis presents a new technique for locally choosing between two previous shadow volume algorithms with different performance characteristics. A simple criterion for making the local choices is shown to yield better performance than using either of the algorithms alone.\ud \ud Light sources with nonzero spatial extent give rise to soft shadows with smooth boundaries. A novel method is presented that transposes the classical processing order for soft shadow computation in offline rendering. Instead of casting shadow rays, the algorithm first conceptually collects every ray that would need to be cast, and then processes the shadow-casting primitives one by one, hierarchically finding the rays that are blocked.\ud \ud Another new soft shadow algorithm takes a different point of view into computing the shadows. Only the silhouettes of the shadow casters are used for determining the shadows, and an unintrusive execution model makes the algorithm practical for production use in offline rendering.\ud \ud The proposed techniques accelerate the computing of physically-based shadows in real-time and offline rendering. These improvements make it possible to use correct, physically-based shadows in a broad range of scenes that previous methods cannot handle efficiently enough.\ud \ud This thesis consists of an overview and of the following 5 publications:\ud \ud 1. T. Aila and S. Laine. Alias-Free Shadow Maps. In Rendering Techniques 2004 (Eurographics Symposium on Rendering), pages 161-166. Eurographics Association, 2004.\ud 2. S. Laine and T. Aila. Hierarchical Penumbra Casting. Computer Graphics Forum, 24 (3): 313-322, 2005.\ud 3. S. Laine. Split-Plane Shadow Volumes. In Graphics Hardware 2005 (Eurographics Symposium Proceedings), pages 23-32. Eurographics Association, 2005.\ud 4. S. Laine, T. Aila, U. Assarsson, J. Lehtinen and T. Akenine-Möller. Soft Shadow Volumes for Ray Tracing. ACM Transactions on Graphics, 24 (3): 1156-1165, 2005.\ud 5. J. Lehtinen, S. Laine and T. Aila. An Improved Physically-Based Soft Shadow Volume Algorithm. Computer Graphics Forum, 25 (3): 303-312, 2006.\u
    corecore