
THÈSE
En vue de l’obtention du

DOCTORAT DE L’UNIVERSITÉ DE TOULOUSE

Délivré par l’Université Toulouse III - Paul Sabatier

Discipline ou spécialité : Informatique

Présentée et soutenue par Vincent Forest

Le 16 décembre 2008

Robust object-based algorithms

for direct shadow simulation

JURY

Rapporteurs : Nicolas Holzschuch - CR HDR - INRIA Rhône Alpes

Michael Wimmer - Ass. Prof. - TU Wien

Examinateurs : George Drettakis - DR - INRIA Sophia Antipolis

Christophe Schlick - Pr - Université de Bordeaux

Löıc Barthe - MCF - Université de Toulouse

Mathias Paulin - Pr - Université de Toulouse

Ecole doctorale : Mathématiques Informatique Télécommunications de Toulouse

Unité de recherche : Institut de Recherche en Informatique de Toulouse - UMR 5505

Directeur(s) de Thèse : Mathias Paulin

Acknowledgments

I would like to thank all the people who have helped me in one way or another during

my PhD. First, I would like to express my gratitude to my advisor, Mathias Paulin. He

pushed me towards new challenges and brought me unnumbered scientific skills as well

as support and encouragement. I sincerely thank him for his ongoing confidence in me.

Second, I would like to thank Löıc Barthe who has been an invaluable help during

the three years of my PhD. He was always available for discussions and gave me precious

advices. I thank him especially for his patience and his help for the completion of the

papers.

Next, I want to thank the other members of my reading committee, Michael Wimmer,

Nicolas Holzschuch, George Drettakis and Christophe Schlick for taking interest in my

work. Their insights and perspective comments were also much appreciated.

I would like to thank the members of the VORTEX team, for the work and entertain-

ment we had. I also want to thank all my colleagues and friends from the University of

Toulouse for the amazingly good time I had with them. I thank especially, the ”Voxari-

otes” Mathieu Muratet, Olivier Gourmel, Robin Bouriane and Anthony Pajot that have

provided help, insight into their research and ideas, and tough discussions. Special thanks

go to my old friends Guillaume Cabanac and Sylvain Rougemaille for their comments and

help during my research and teaching activities and for all the pleasant time I had dis-

cussing with them.

I thank also Gaël Guennebaud, Tamy boubekeur and Benjamin Segovia for all pas-

sionating and stimulating discussions we had.

I would like to thank my parents Yves and Marie-France Forest, for their love and

support over the years. Special thanks go to my uncle and godfather Michel André who

taught me the passion for computer science. Finally, my deepest gratitude goes to my

fiancée, Binh. She supported me at all steps of this thesis, and without her this thesis

would never have been possible. I dedicated this thesis to her.

i

To Binh

iii

Contents

Chapter 1 Introduction 1

1.1 The direct lighting problem . 2

1.1.1 Why efficient robust direct shadows are important 2

1.1.2 Assumptions about the direct shadow models 3

1.2 Computing shadows . 3

1.2.1 Hard and soft shadows . 4

1.2.2 Image-based and object-based shadow algorithms 4

1.3 Summary of contributions . 5

1.3.1 Penumbra wedge blending . 5

1.3.2 Depth complexity sampling . 5

1.3.3 Soft textured shadow volumes . 6

1.4 Thesis organization . 6

Chapter 2 Rasterizing shadows 9

2.1 The shadow problematic . 9

2.1.1 The light transport equation . 9

2.1.2 The direct illumination formulation 10

2.1.3 The problematic of rasterizing shadows 11

2.2 Hard shadows . 11

2.2.1 The shadow volumes . 12

2.2.2 The shadow maps . 15

2.3 Soft shadows . 20

2.3.1 Visually plausible soft shadows . 21

2.3.2 Physically plausible soft shadows 24

2.4 Discussion . 27

2.4.1 Designing a robust shadow algorithm 27

v

Contents

2.4.2 Image-based VS object-based framework 28

2.4.3 Conclusion . 28

Chapter 3 Penumbra wedge blending 31

3.1 The penumbra wedge algorithm . 31

3.1.1 Overview . 31

3.1.2 The penumbra wedge primitive . 32

3.1.3 Rendering the penumbra wedge . 34

3.1.4 Discussion and limitations . 35

3.2 The penumbra wedge blending . 36

3.2.1 The silhouette visibility buffer . 37

3.2.2 The penumbra blending . 39

3.3 Implementation . 40

3.3.1 The shadow volume framework . 41

3.3.2 The penumbra wedge framework 42

3.3.3 The silhouette visibility buffer evaluation 43

3.3.4 Computing the penumbra blending 44

3.4 Results . 45

3.4.1 Memory requirement . 45

3.4.2 Performances . 45

3.5 Discussion . 47

3.A Infinite shadow volume extrusion . 48

3.B Infinite penumbra wedge construction . 49

Chapter 4 Accurate shadows by DCS 53

4.1 Local depth complexity computation . 54

4.1.1 Depth complexity initialization . 54

4.1.2 Update of the depth complexity . 54

4.1.3 The counter packing encoding . 56

4.1.4 Advantages and drawbacks . 57

4.2 Light sampling strategy . 58

4.2.1 Sample distribution . 59

4.2.2 Interleaved sampling . 59

4.2.3 Adaptive distribution . 59

4.3 Depth complexity for shadow computation 60

vi

4.3.1 From depth complexity to visibility coefficient 60

4.3.2 Numerical integration of the direct lighting 61

4.3.3 Handling semi opaque occluders . 62

4.4 Implementation . 67

4.4.1 Sample distribution . 67

4.4.2 Soft shadow volume framework . 68

4.4.3 The depth complexity sampling step 69

4.4.4 Evaluating the direct illumination 72

4.5 Results . 72

4.5.1 Memory cost . 72

4.5.2 Performance analysis . 73

4.6 Discussion . 74

4.7 Conclusion . 76

Chapter 5 Soft textured shadow volumes 81

5.1 Soft textured shadow volumes . 82

5.1.1 The algorithm . 82

5.1.2 Soft textured shadow volume extrusion 83

5.1.3 Points into soft textured shadow volume 83

5.1.4 Accessing the transmittance texture 84

5.1.5 Light sampling strategy . 87

5.2 Unified object-based soft shadow framework 87

5.2.1 Penumbra wedge . 88

5.2.2 Depth complexity sampling . 89

5.3 Implementation . 90

5.3.1 Sample distribution . 91

5.3.2 Soft textured shadow volume extrusion 91

5.3.3 Transmittance sampling . 92

5.3.4 Direct illumination . 92

5.4 Results . 92

5.4.1 Memory consumption . 92

5.4.2 Performances . 93

5.5 Conclusion and discussion . 94

5.A Transmittance value . 98

5.B Vcoef from visibility bit mask . 99

vii

Contents

Chapter 6 Conclusion 101

6.1 Rasterizing accurate soft shadows . 101

6.2 The penumbra wedge blending . 102

6.3 Robust unified object-based framework . 102

6.3.1 The depth complexity sampling . 102

6.3.2 Soft textured shadow volumes . 103

6.4 Conclusion and future works . 104

Bibliography 107

viii

1

Introduction

The goal of this dissertation is to develop robust algorithms solving the problem of interac-

tive direct shadow generation. The direct shadows represent the region of the scene that is

not directly enlighten by an emitter. By robustness we mean the unconditional accuracy

of the solution according to the underlying scene representation. Currently, the com-

putation of robust direct shadows in interactive applications is particularly challenging.

In this dissertation we present solutions to reach this goal, by developing new render-

ing algorithms. We also point out the limitations of current interactive direct shadow

solutions.

Most offline and real time renderers generate approximative direct shadows rather

than accurate ones. Despite their efficiency, these approximations have to deal with strong

limitations and robustness issues. On the one hand, many efforts are made to increase

the general quality and the performances of these biased solutions. On the other hand,

surprisingly few attention is focused on interactive and robust direct shadow algorithms.

In fact, the accurate direct shadow computation is often considered as an highly time

consuming task where the interest is reserved to offline applications that require high

image fidelity. As a consequence, very few algorithms were designed to generate robust

shadows in interactive renderers while there is a considerable interest in solving this

problem.

To democratize robust direct shadows, it is important to find algorithmic tools that

are well suited for common renderers. Direct shadow algorithms have to avoid hand fixed

parameters. In addition, they must be independent of the world organization in order

to efficiently handle arbitrary animated scenes. Finally, they have to evaluate physically

plausible soft shadows whatever the geometric complexity, materials and illuminations of

the scene.

Our researches target the robust generation of physically plausible direct shadows for

rasterizers. Despite impressive improvements in real time ray tracing, the rasterization

1

Chapter 1. Introduction

algorithm is widely used in real time rendering. The rasterizers are very efficient for local

computations but do not provide an elegant and general purpose way to access the world

organization. Our goal is to keep the efficiency of the rasterization for local calculations

and to find robust physically plausible direct shadow algorithms despite the lack of a

global access to the scene.

In the following section we start with a brief overview of the direct lighting problem

to explicitly define what are direct shadows. We also discuss the common assumptions

of the direct shadow problematic. Then, we give a high-level view of the main direct

shadow techniques. Finally, we summarize the original contributions of this dissertation

and outline the thesis organization.

1.1 The direct lighting problem

The direct lighting corresponds to the amount of light that directly reaches the scene

surface. Considering a scene description, including lights, viewpoint of the rendering

image, geometries and their associated scattering properties, the main goal of the direct

lighting computation is to define how the visible receivers are directly enlighten by a light.

In fact the direct shadow problematic is the complementary of the direct lighting problem:

we have to evaluate how the light is directly occluded for each visible surface.

1.1.1 Why efficient robust direct shadows are important

Today, the interactive approximations of direct shadows produce visual pleasant results

improving the overall realism. However, they do not give sufficient visual informations

to define, for instance, the distance between the fallen character and the ground or the

mountain peak height. Robust realistic direct shadows do not exhibit such drawbacks

and naturally give clues to correctly perceive geometric shape, light positions or object

relationship.

Another issue of most interactive approximations of direct shadows is their inefficiency

to uniformly treat geometries with different scale. On the one hand, the direct shadows

cast by the trunk of an oak tree are often convincing. On the other hand, the direct

shadows of its leaves exhibit strong artifacts. Thanks to their robustness property, robust

direct shadow algorithms do not exhibit this drawback.

Despite incontestable advantages, robust realistic direct shadows are still associated to

prohibitive computation time. Ideally, robust interactive direct shadow algorithm would

be an attractive tool for direct lighting design of fully animated scenes. The robustness of

these algorithms would avoid scene specific bias parameter. In addition, thanks to their

2

1.2. Computing shadows

efficiency, they would propose a very intuitive feeling of the actions of the user on the

direct lighting parameters.

Starting from these observations, efficient robust direct shadow algorithms would be

very attractive in many ways. The combination of simplicity, realism and interactivity

would give a very powerful tool solving the direct lighting problem. As a result, despite

the high performances of current interactive approximations, we think that the benefits

of efficient robust direct shadow algorithms will outweighs their computational overhead.

1.1.2 Assumptions about the direct shadow models

Our works target the rasterization rendering algorithm and consequently, we are submitted

to its assumptions. Firstly, we assume a geometric optics model where the light travels

along a straight line between surfaces. The geometric optics ignores not very significant

effects for common environments (e.g. diffraction) but is adequate to accurately simulate

a high range of visual effects (including direct shadows).

Secondly, all the incoming geometric primitives have to naturally fulfill the rasterizer

requirements (e.g. triangles). For parametric or subdivision surfaces we simply consider

their tessellated discretization. However, we ignore primitives as voxels or points since

they are not particularly better suited for the efficient rendering of dynamic environments.

Finally, our researches target the lack of robust shadows for realistic direct lighting with

a rasterizer. We do not investigate other difficult rasterization tasks as the refraction, the

reflections or the global illumination. Thus, any existing rendering techniques targeting

such global effects are orthogonal to our work.

1.2 Computing shadows

One can define shadows as a visual effect in the general context of the light simulation.

Indeed, the robust light transport algorithms do not explicitly address the shadow prob-

lematic while they produce realistic images with shadows. In fact, the shadows are the

visual result of the visibility queries between the emitters and the receivers; according to

an emitter, receivers are in shadow if they do not see the emitter. Unlike ray tracers,

rasterizers do not explicitly test the reciprocal receiver/emitter visibility. As a result,

they require additional treatments in order to generate shadows.

In ground truth, the shadows are due to both direct emitters (direct shadows) as

well as indirect ones (indirect shadows). However, the shadow term is commonly used to

describe only direct shadows. Thus, in the rest of the dissertation we use this terminology

simplification in order to propose a synthetic discussion.

3

Chapter 1. Introduction

1.2.1 Hard and soft shadows

In computer graphics, it is convenient to define light sources by infinitesimal thin emitters.

With such point lights, the receivers are either illuminated or not. Despite the simplicity

of the solution, the hard transition of this binary repartition cannot pretend to realism.

In real environments, light sources are extended and the receivers can lie in the light,

in the shadow or in the penumbra (i.e. it is partially illuminated). The penumbra defines

the realistic soft transition between light and shadow and it is useful to define the size

of the lights as well as the distance between objects. Indeed, the more the distance from

occluder to receiver increases, the more the penumbra region is large.

In order to generate accurate soft shadows, one have to evaluate the amount of light

that directly reaches each visible receiver. The obvious solution consists in numerically

solve the direct lighting problem by discretizing the surfacic light in a set of infinitesimal

thin emitters. Hard shadow tests finally define which light sample are visible for the

receivers. Unfortunately, in rasterization, accumulating several hard shadow computa-

tions is both inadequate and very inefficient. In order to achieve interactive rendering of

realistic rasterized soft shadows, specific algorithms must be designed.

1.2.2 Image-based and object-based shadow algorithms

Paradoxically, the strength and the weakness of the rasterization rendering algorithm

relies on its Z-buffer visibility algorithm. This algorithm works as follows. First, the

rasterizable primitives are projected onto the image plane and discretized according to the

view sample distribution. Then the Z-buffer stores for each view sample which projecting

surface points are the closest to the viewpoint. The out-of-order style of the Z-buffer

algorithm is particularly well suited for animated scenes. Nevertheless, it does not provide

a general-purpose visibility algorithm, i.e. it cannot define the reciprocal visibility between

arbitrary surface points.

On the one hand, the Z-buffer algorithm can be generalized to the shadow generation.

Indeed, by rasterizing the scene from the light viewpoint, one can retrieve which surfaces

are ”visible” by the light. The points store into the light Z-buffer are consequently directly

illuminated while others are in the shadow. This image based approach is a very intuitive

and efficient tool for generating shadows with a rasterizer. However, due to the light

Z-buffer discretization, the resulting shadows exhibit strong accuracy issues.

On the other hand, one can build for each occluder a volume that includes the region

that it occludes. Then, the Z-buffer visibility algorithm defines which receivers lie into

this volume, i.e. which are in the shadow of the associated occluder. Unlike image based

shadows, the accuracy of these object-based shadows is not biased by the discretization

4

1.3. Summary of contributions

of the visibility information. However, the robust extrusion of the shadow bounding

geometry imposes geometric constraints and limits the overall rendering performances.

1.3 Summary of contributions

Our contributions fall in three areas: a new penumbra blending heuristic that addresses

the shadow overestimation artifact of the penumbra wedge algorithm [AAM03], a new

robust soft shadow algorithm, and a new algorithm that addresses the lack of robust soft

shadows cast by triangles having a spatially varying transmittance property.

1.3.1 Penumbra wedge blending

Today, the efficient rasterization of physically plausible soft shadows is based on restrictive

assumptions. The accuracy of the proposed solutions are thus limited to specific cases.

We investigate the penumbra wedge algorithm [AAM03]. Despite the apparent ro-

bustness of this object-based framework, it exhibits a lack of accuracy when penumbrae

are overlapped. We present a penumbra blending heuristic that drastically reduces this

penumbra overestimation artifact. We then discuss the limitations of the proposed solu-

tion from both theoretical and implementation point of views.

1.3.2 Depth complexity sampling

We present a new robust object-based soft shadow algorithm that merges the efficiency

of the penumbra wedge algorithm [AAM03] with the accuracy of the offline soft shadow

volume approach [LAA+05]. To compute shadows, we distribute a set of samples onto

light sources. Then, we define which light samples are visible for each visible receiver by

evaluating locally the number of occluders (i.e. the depth complexity) lying between the

receivers and the light samples.

This new robust soft shadow algorithm is particularly well suited for rasterizers and

is comparable in quality with ray traced shadows even in very difficult direct lighting

situations. It is interactive, physically based and its low memory cost is independent of

the geometric complexity of the scene. Furthermore, it performs especially well with fully

animated scenes and non uniform light sources, and does not exhibit common soft shadow

issues (e.g. light leaking, shadow popping, magnification aliasing, etc.).

The key advantage of our algorithm is that it uses the penumbra wedge framework to

sample the depth complexity. This has several consequences. First, the penumbra wedge

algorithm brings the global visibility problem to a local depth complexity evaluation.

The computations are thus independent for each view sample and efficiently evaluated

5

Chapter 1. Introduction

by a high end rasterizer. Second, due to the Monte Carlo sample distribution, averaging

several runs would give a depth complexity evaluation that would be very close to the

exact solution. Third, the visibility information is naturally derived from the depth

complexity. By evaluating the depth complexity between receivers and light samples we

can thus numerically solve the direct lighting.

1.3.3 Soft textured shadow volumes

In order to improve the performances, it is convenient to define very detailed and thin

objects with few triangles and textures encoding their binary transmittance (e.g. fence).

Despite their robustness in computing shadows cast by fully opaque triangles, object-

based shadow frameworks are not able to deal with this object representation.

We address this limitation. We present a general algorithm computing robust and

accurate soft shadows for triangles with a spatially varying transmittance denoted as S-

triangles. First, we extrude a primitive from each S-triangle that includes its shadow

influence. For the receivers lying into this volume, we then evaluate its direct lighting by

numerically computing the light/receiver visibility.

This soft shadow algorithm computes physically based soft shadows that are cast

by S-triangles. It is interactive, robust and it is efficiently evaluated by rasterizers. In

addition, we show how this technique can be efficiently included into object-based soft

shadow algorithms. This results in unified object-based frameworks computing robust

direct shadows for both standard and perforated triangles in fully animated scenes.

1.4 Thesis organization

The following chapter presents shadow algorithms for rasterizers. We first introduce

the main hard shadow approaches and describe how their quality and performances can

be improved. We then investigate both visually and physically plausible soft shadows.

Visually plausible algorithms favor visual pleasant results rather than accurate solutions.

Due to their strong assumptions, we outline that they exhibit issues that drastically limit

their realism. Physically plausible approaches compute more convincing soft shadows.

We give an overview of some algorithms and we point out that despite their physically

plausible background, they must deal with restrictive assumptions as well as accuracy

issues. Starting from these observations, we finally detail our technical choices for our

investigation of the robust soft shadow problematic.

In chapter three we detail the penumbra wedge algorithm [AMA02]. We then describe

how we improve its realism using a new penumbra blending heuristic [FBP06]. From a

6

1.4. Thesis organization

more practical point of view, we develop an algorithm that implements the penumbra

wedges and our penumbra blending heuristic. After a detailed performance analysis we

discuss the intrinsic limitations of this algorithm from both theoretical and implementa-

tion point of view.

The following two chapters describe a new robust soft shadow framework for raster-

izers. Chapter four presents how the depth complexity function can be used in order to

compute soft shadows. We detail how we combine our new efficient local depth complex-

ity evaluation with the rasterization rendering algorithm in order to compute accurate

shadows by depth complexity sampling [FBP08]. In chapter five we investigate one of

the main limitation of object-based shadows. We design a new soft shadow algorithm

that computes soft shadows cast by triangles with a spatially varying transmittance. We

then describe how this approach can be efficiently integrated in common object-based

framework in order to propose a new unified and robust object-based algorithm for the

accurate simulation of direct shadows [FBP09].

7

2

Rasterizing shadows

Shadows computation is a widely studied topic. Many algorithms have been designed for

both offline and real time applications in order to reduce the computational cost of the

shadow generation. In this chapter we first formalize the problematic of direct shadows.

We then discuss about some shadow algorithms designed for the rasterization rendering

algorithm. These approaches fall into two categories: hard shadow algorithms and soft

shadow algorithms. We briefly summarize their principle and discuss their results in order

to exhibit their advantages and drawbacks. From these observations, we finally detail our

technical choices for our investigation toward the robust simulation of direct shadows.

2.1 The shadow problematic

In this section we briefly formalize the concept of direct shadows. We then outline what

may be evaluated when targeting robust solutions.

2.1.1 The light transport equation

By assuming a geometric optics, the light transport equation applied to each wavelength

is given by [Kaj86]:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+

∫
M
L
(
x→ x′

)
fs
(
x→ x′ → x′′

)
G
(
x↔ x′

)
dA (x) (2.1)

M is the union of all scene surfaces, A is the area measure on M, Le (x′ → x′′) is the

emitted radiance from x′ to x′′, L is the radiance function and fs is the Bidirectional

Scattering Distribution Function (BSDF). The function G is the geometric term given

by:

G
(
x↔ x′

)
= V

(
x↔ x′

) cosθocosθi
||x− x′||2

(2.2)

9

Chapter 2. Rasterizing shadows

where θo and θi are the angles between the segment x ↔ x′ and the surface normals at

x and x′, respectively. Finally, V (x↔ x′) represents the binary visibility between x and

x′.

2.1.2 The direct illumination formulation

The function L (x′ → x′′) defines the radiance leaving x′ in the direction of x′′. The

incoming radiance of x′ includes the radiance directly emitted from the light sources to

x′ as well as the radiance scattered from scene surfaces in the direction of x′. However,

the direct shadow simulation only depends on direct illumination, i.e. the radiance that

directly reaches the surface from the light.

The incoming direct and indirect radiance reaching x′ can be separated from the

transport equation as follows:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+ L′

(
x′ → x′′

)
(2.3)

where L′ is given by:

L′
(
x′ → x′′

)
=

∫
M
Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
G
(
x↔ x′

)
dA (x)

+

∫
M
L′
(
x→ x′

)
fs
(
x→ x′ → x′′

)
G
(
x↔ x′

)
dA (x) (2.4)

The first integral of the equation 2.4 represents the radiance directly emitted by the union

of the scene surfaces M in the direction of x′. The function Le (x→ x′) is equal to zero

everywhere excepted for emissive surface, i.e. the light sources. Thus, this integral simply

defines the radiance directly emitted from x to x′. The second integral of the equation

represents the indirect illumination, i.e. the radiance scattered from the scene surfaces

M to x′.

Our research targets the robust shadow generation in order to simulate the direct

lighting. Consequently, we assume that the indirect illumination is evaluated with respect

to any algorithms. The equation 2.4 becomes:

L′
(
x′ → x′′

)
=

∫
M′

Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
G
(
x↔ x′

)
dA (x)

+ I
(
x′ → x′′

)
(2.5)

where I is the indirect incoming radiance. This results in the following light transport

10

2.2. Hard shadows

equation:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+ I

(
x′ → x′′

)
+

∫
M
Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
V
(
x↔ x′

) cosθocosθi
||x− x′||2︸ ︷︷ ︸
G′(x↔x′)

dA (x) (2.6)

2.1.3 The problematic of rasterizing shadows

In order to simulate realistic direct illumination, we have to evaluate the equation 2.6.

However, the visibility query V (x↔ x′) is globally dependent of the environment. The

rasterization rendering algorithm does not provide any global information on the scene

organization. As a result, the equation 2.6 cannot be directly evaluated by a rasterizer.

In fact, the fixed direct lighting evaluation of the common rasterization Application Pro-

gramming Interfaces (API) [SA06, Mic08] does not perform any visibility query. Thus,

each light illuminates all the scene; in other words, there is no shadow.

In order to compute realistic direct lighting, one have to develop specific shadow

algorithms, i.e. algorithms that solve the visibility queries. In the following sections we

investigate the existing solutions that rasterize shadows.

2.2 Hard shadows

Hard shadows are a simplification of the shadow problematic. They are based on the

assumption that light sources are infinitesimal small: receivers are either in the shadow

or not. The resulting radiance evaluation is thus given by:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+ I

(
x′ → x′′

)
+

∑
x ∈ L

Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
V
(
x↔ x′

) cosθi

||x− x′||2
(2.7)

with L the set of positions of the unsurfacic light sources in the scene. This section

presents the two main algorithms that allow the interactive rendering of hard shadows.

We also describe some methods develop to improve the quality as well as the efficiency of

these algorithms.

11

Chapter 2. Rasterizing shadows

2.2.1 The shadow volumes

The shadow volume algorithm [Cro77] generates object-based hard shadows. For each

light source, the silhouette edges of a 2D-manifold closed mesh are extruded through the

direction from the light to the edge vertexes. (A silhouette edge is defined as an edge

shared by two faces which the light lies on the positive side of one face and the negative

side of the other). The resulting extruded geometry includes the scene region directly

occluded by the mesh, i.e. the scene volume lying in its shadow. The face orientation

with respect to the camera is then used to list the number of enters into and exits out

the shadow volumes. Surface samples with less outputs than inputs are included into a

shadow volume and consequently are in the shadow.

Despite specific software [BB84] or hardware [FGH+85] implementations and a gener-

alization to common meshes (open models, non-planar polygons) [Ber86] current shadow

volume rendering is based on the frame buffer reformulation [FF88] of the initial algo-

rithm. Using this formulation, the shadow volume test is performed as follows. First, the

Z-buffer is initialized with the scene depth as seen from the viewpoint. Then a stencil

defines which view samples are in the shadow or not [Hei91]. This stencil buffer is first

initialized to zero (i.e. no shadow). The update of the stencil values is then performed by

the rasterization of the shadow volumes with respect to a specific stencil update strategy

(Z-pass or Z-fail). View samples are in the shadow if their resulting stencil value are not

equal to zero.

Z-pass stencil update

To perform the stencil update, the shadow volume geometry is decomposed into two

batches according to the primitive orientation from the camera point of view. On the

one hand, the stencil value of visible surfaces is incremented when they are occluded by

the rasterization of the front facing faces of the shadow volumes. On the other hand,

the stencil value is decremented for the visible surfaces behind the back facing shadow

volume polygons. In fact, the stencil buffer is updated for the shadow volume geometry

that passes the Z-buffer visibility test (figure 2.1).

This initial Z-pass strategy has to deal with a strong robustness issue. Indeed, the

stencil update rules must be inverted for the view samples lying in a shadow volume,

i.e. when the image plane clips the shadow volume. This case is particularly difficult to

handle since it is not obvious to define if a view sample is included into a shadow volume

or not. A solution consists in capping the shadow volumes by the image plane of the

camera [BJ, McC00, HHLH05]. However, despite its apparent robustness, this solution is

in practice quite fragile (e.g. precision issues, singularities, etc.).

12

2.2. Hard shadows

Camera

Front facing polygon

Shadow

volume point

Back facing polygons

+1
+1

+1 -1

-1

1
0

1
0

Occluder

Receiver points

00

0

Shadow

0 0 0 0

Figure 2.1: Illustration of the Z-pass stencil update strategy.

Z-fail stencil update

An alternative to the Z-pass stencil test consists in inverting the stencil update strategy

[BS99, Car00] (figure 2.2): the stencil values are incremented or decremented for the sur-

faces that are not occluded by respectively the back or front faces of the shadow volumes.

This shadow test is based on the failure to render the back faces of the shadow volume

with respect to the viewpoint. Consequently, shadow volumes must be closed; i.e. they

have to be capped at both front and back side. The front cap geometry is simply defined

by the polygons of the mesh that front faces the light. For the back cap, triangles of

the mesh which the light lies on their negative side are projected in the same way of the

extruded silhouette vertexes.

Camera

Shadow

volume point

Back facing polygons

+1 0
-11

0

1
0

Shadow

Occluder

Receiver points

00

0
0

0
+1

0

0
0

Front facing polygon

Figure 2.2: Illustration of the Z-fail stencil update strategy.

Unlike the Z-pass approach, the Z-fail strategy do not have to deal with the drawback

of the image plane clipping since it lists the shadow volume enters/exits from infinity

rather than from the viewpoint. Nevertheless, it must pay attention to the clipping of

the shadow volume by the far plane of the frustum. In practice, this clipping plane is

either disabled or set to infinity during the Z-fail shadow volume rasterization [EK02].

This results in a robust stencil update strategy providing pixel accurate hard shadows.

Z-pass VS Z-fail algorithm

Despite its robustness, the Z-fail shadow test is more time consuming than the Z-pass

algorithm. The additional capping geometry requires additional geometric processing

13

Chapter 2. Rasterizing shadows

and its rendering increases the overall fill rate cost. In order to improve performances,

the two strategies can be combined [Len02, EK02]. Indeed, the Z-fail strategy is only

required for the rendering of the shadow volumes that are clipped by the image plane.

In all other situations, using the Z-pass algorithm does not compromise the robustness of

the solution.

The selection of the stencil update strategy can be performed per pixel rather than

per shadow volume [Lai05]. In this situation, the selection is made by comparing a low

resolution Z-buffer with a per shadow volume split plane. This per pixel selection reduces

the stencil buffer updates but does not address the Z-pass robustness issue nor the fill rate

cost. Indeed, hardware modifications are required in order to cull multiple pixels before

they would be processed. In addition, the selection of the Z-pass strategy still requires

the perfectible capping of the shadow volumes by the image plane [HHLH05].

Semi infinite VS infinite projection

The silhouette edge extrusion and the back capping geometry construction are performed

using either a semi infinite or an infinite projection with respect to the light position. In

the first case, the projection does not strictly guarantee that the shadows are correctly

computed since the shadow volume includes only a part of the occluded region. In practice,

extruding the shadow volumes up to the bounding limit of the scene is sufficient to obtain

accurate shadow tests.

On the other hand, the infinite projection is a general, easy and elegant solution con-

structing robust shadow volumes. This infinite transformation is very simply performed

by setting to zero the homogeneous coordinate of the projection direction. The resulting

shadow volume includes the whole occluded region and thus it has not to pay attention

to the scene specific bounding volume.

The fill rate bottleneck

The rendering of the shadow geometric primitives drastically increases the overall fill

rate cost of the shadow volume algorithm. Several approaches were designed in order to

limit this bottleneck. These algorithms are generally complementary and can be used

concurrently in order to achieve high fill rate reduction.

A common optimization consists in limiting the shadow volume rendering to the light

influence in the image space [MHE+03]. Better fill rate reduction can be achieved by

taking also into account the geometry of the receivers [Len05].

Hierarchical shadow volumes [AAM04] are also designed to reduce the shadow volume

rasterization cost. This algorithm limits the full resolution shadow volume rendering

14

2.2. Hard shadows

to the shadow borders. In addition, thanks to its multi-resolution property, it provides

an efficient way to decrease the memory bandwidth requirements of the stencil buffer

updates.

Removing shadow volumes that are themselves in shadow does not influence the accu-

racy of the solution. In addition, the shadow volume rendering affects only the appearance

of the receivers. Starting from these observations, the culling and clamping algorithm

[LWGM04] culls the shadow volumes that do not influence the accuracy of the shadows

and finally clamped the resulting shadow volume polygons to its receiver regions. This

drastically reduces the fill rate cost of the shadow volume rendering.

2.2.2 The shadow maps

The shadow map algorithm is the most popular real time hard shadow algorithm. Unlike

the shadow volumes, its first formulation [Wil78] was directly consistent and practical

for common environments. This image-based approach first rasterizes the scene from the

viewpoint of an infinitesimal thin light. This rendering pass initialized a light Z-buffer

(i.e. the shadow map) that stores the closest surfaces for a set of samples distributed onto

the light image plane (figure 2.3). In common rasterizers, this light Z-buffer is defined

by a regular grid of pixels where a sample is set at the center of each pixel. In a second

step, the scene is rendered from the camera point of view. During this pass, each visible

surface sample is projected onto the light image plane in order to define its associated

shadow map texel. The real distance from the light source to this surface sample is then

compared to the one stored into the shadow map (figure 2.3). If its distance is equal to

the one stored into the shadow map, then this surface point is directly visible by the light

and so it is illuminated. Otherwise, it is in shadow.

Occluder

Shadow

Camera

Light

Light image

plane

Z

Z

0

1

Z'0

p1

p0

p'0�����1 �����������

ZZ �������

�����������

p'

Figure 2.3: The shadow map algorithm. First, the light Z-buffer stores the closest
distance from the light to the scene surface (e.g. Z0 and Z1). For each visible receiver,
its distance to the light source is compared to the distance stored into the light Z-buffer.
According to the result of the comparison, the receiver is either in the shadow (point P ′0)
or illuminated (point P1).

15

Chapter 2. Rasterizing shadows

The simplicity of the shadow map formulation is particularly well suited for their

hardware support [SKvW+92]. In addition, thanks to its image-based nature, it is in-

dependent of the geometric representation; in other words, it works on all rasterizable

primitives without specific treatment. However, this shadow algorithm exhibit a strong

accuracy issue: the discretization of the shadow map leads to undersampling artifacts.

Indeed, every pixel in the shadow map represents a pyramid of straight lines starting from

the light and passing through the pixel on the light image plane. Undersampling artifacts

appear when this ray bundle hits a visible surface region greater than the pixel size onto

the camera image plane [SD02] (figure 2.4).

Camera

Camera image

plane

Light

Light image

plane

Light ray

bundle

visible surface region

Figure 2.4: Light space undersampling.

These aliasing can be reduced by globally increasing the shadow map resolution. In

fact, this obvious solution is both inadequate and inefficient. Providing higher resolution

does not address the overall aliasing while it increases both the computational cost and

the memory requirements of the shadow computation. As an illustration, in an natural

environment, a high resolution for the sun shadow map is useless for the shadows of the

far away big trees. On the contrary, its resolution is still insufficient to generate un-aliased

shadows casted by the small grass in front of the camera.

In practice, this undersampling issue is particularly difficult to handle. There are

principally three approaches that reduce these artifacts: the warping of the shadow map,

the local increase of its resolution and its filtering.

Shadow map warping

Warping algorithms reduce the aliasing by deforming the scene as seen by the light view-

point. The resulting light Z-buffer stores the closest surfaces of the deformed scene.

Despite the uniformity of the shadow map, its depth sampling resolution is thus increased

in stretched regions and decreased in squeezed parts.

16

2.2. Hard shadows

Based on this observation, the perspective shadow map algorithm [SD02] adapts the

shadow map resolution according to the projected size of the shadows onto the image

plane. First, it transforms the scene and the light by the perspective transformation of

the camera. The shadow map is then generated in this space by rasterizing the scene from

the transformed light viewpoint. Despite its neatness, this approach exhibits singularities

when the lights lie behind the viewpoint. Furthermore, in order to achieve visual pleasant

hard shadows, it must pay attention to the relationship between the camera and the light

positions [Koz04].

Light space perspective [WSP04] and trapezoidal [MT04] shadow maps generalize the

previous warping method. In contrast to perspective shadow maps, these algorithms do

not exhibit singularities. Furthermore they equalize the error over the visualized depth

range and so they give an equivalent hard shadow quality on all the visible scene distance.

Several shadow map investigations outline that a logarithmic shadow map parametriza-

tion would limit the undersampling aliasing [WSP04, LTYM06, FZSXL06]. Thus, by

using a logarithmic perspective parametrization, one can drastically reduce the shadow

map aliasing [LGT+06, Llo07]. Unfortunately, due to the lack of logarithmic rasterization

hardware [LGMM07], such approach is still inefficient.

Non uniform shadow map resolution

In order to adaptively reduce the light Z-buffer undersampling, one can use several shadow

maps and define their resolution according to an aliasing error metric. The first algorithm

based on multiple shadow maps, partition the visible depth range in order to compute

accurate shadows due to the sun-light [TQJN99]. The number of the view frustum par-

titions depends of the relationship between viewing and solar directions as well as the

required shadow accuracy. The parallel split [FZSXL06, ZSN07] and cascaded [Eng07]

shadow map algorithms are based on the same overall idea. According to the aliasing

error, they split the view frustum and generate several smaller shadow maps for each

split part. In the same way, Lloyd et al. [LTYM06] propose a metric for evaluating the

perspective aliasing error over the view frustum. Finally, they limit the aliasing error of

directional lights by using existing partitioning and shadow map warping algorithms.

Rather than partitioning the view frustum, the adaptive shadow maps [FFBG01] use

a hierarchical quadtree in order to refine the light Z-buffer in the scene regions with high

aliasing error. In the same way, the tiled shadow maps algorithm [Arv04] adapts the

resolution of each tiles according to an aliasing measurement heuristic.

By using a general projective transformation one can ensure the one-to-one correspon-

dence between the image plane pixels and the shadow map texels. On the one hand,

Chong and Gortler [CG04] use the partitioning of warped shadow maps to achieve this

17

Chapter 2. Rasterizing shadows

exact correspondence for few surfaces. On the other hand, the irregular shadow map

[AL04, JMB04] is a general purpose data structure that addresses the aliasing error in

all situations. This algorithm distributes the shadow map samples according to the pro-

jection of visible surface points onto the light image plane. Despite its accuracy, this

method requires specific software or hardware [SEA08] implementation still not efficiently

generalized to common renderers.

Shadow map filtering

In computer graphics, textures are filtered in order to limit minification or magnification

aliasing. In practice, shadow maps are nothing more than textures that store the scene

depth as seen by light sources. Thus, reducing their aliasing by using filtering seems

particularly attractive. However, a common filtering (bi-linear, tri-linear, anisotropic) is

prohibited since it would generate new depth values rather than reducing shadow aliasing.

The percentage closer filtering [RSC87] was specifically designed for the filtering of

the shadow maps. It anti-alias the casted shadows by filtering the result of the shadow

test for near shadow map texels. In fact, this is very close to standard texture filtering

techniques [Hec89]. The main difference is that filtered data are the binary result of the

shadow map test of near texels rather than their value. Thanks to this similarity, common

graphics hardwares accelerate the percentage closer bilinear filtering. Nevertheless, high

shadow quality requires a large number of samples. Unfortunately, since the filtering is

performed after the shadow test, it is impossible to use prefiltered mipmaps [Wil83] in

order to accelerate this process.

Variance shadow maps [DL06] are quite similar to standard shadow maps. They

store both the depth and the squared depth of the environment as seen from the light

viewpoint. The two first moments of the depth distribution are then evaluated by locally

convolving the variance shadow map. From these values, the mean and the variance of

the distribution are computed in order to define the probability that visible surfaces are

in shadow. The clue of the algorithm is that the computation of the moments is a linear

process that can be evaluated with common texture filtering hardware. As a consequence,

performances can be greatly enhanced with hardware accelerated bi-linear, tri-linear or

anisotropic filtering. Nevertheless, this probabilistic algorithm gives an upper bound on

the probability that the surfaces are in shadow. In fact, this upper bound becomes an

equality only for planar and parallel occluders but leads to strong light leaking issues

when the depth complexity increases. Unfortunately, even though this light leakages can

be reduced [Lau07, LM08], they cannot be completely removed.

Convolution shadow maps [AMB+07] do not exhibit light leaking artifacts but keep the

desirable linear property of variance shadow maps. This algorithm encodes the visibility

18

2.2. Hard shadows

function with respect to a Fourier series expansion. A low order expansion is however

quite inefficient to handle function discontinuities. Thus, this algorithm suffers of light

bleeding near occluders. In addition, visual pleasant results require a high truncation

order that leads to a prohibitive memory consumption. One can note that convolution

shadow maps share some similarities with deep [LV00] and opacity [KN01] shadow maps.

In the same way, they encode the visibility function with respect to a basis that allows

its linear filtering.

Exponential shadow maps [Sal08, AMS+08] are a specialization of convolution shadow

maps. This algorithm drastically reduces light bleeding while it improves the performances

and reduce the memory requirements. Rather than using the Fourier series expansion, the

shadow map values are projected onto exponential basis. As previously, the projection is

then stored into basis textures naturally filtered by common texture filtering techniques.

Nevertheless, this approach is based on the assumption that filtered depth values are

lower than the distance from the light to the receiver. When this assumption is violated,

percentage closer filtering has to be used, limiting the performances and the quality of

the resulting shadows.

Handling shadow acne and omni-directional lights

A shadow casted by a surface onto itself leads to shadow acne artifacts. Such incorrect

self-shadowing is partially due to the finite precision of the computations. It is however

emphasized by the discrete nature of the shadow maps. Indeed, each shadow map texel

stores the depth of the scene for the direction from the light to its center. Due to this

discrete representation, shadow acne appears on surfaces which its distance from the light

is greater than its corresponding shadow map value (figure 2.5). This artifact can be

limited by increasing the depth discretization resolution [ZSN07] or using a specific depth

offset [AMB+07, Lau07]. Nevertheless, no general solution exists.

The shadow map algorithm captures the scene depth according to a given linear pro-

jection. Explicit treatments are thus required to handle omni-directional lights. Multiple

shadow maps can be captured by performing several linear projection of the scene. A

more sophisticated solution consists in using non linear projections reducing the num-

ber of shadow maps [BAS02]. However, these projections are not supported by graphics

hardware and are approximated using high tessellated objects in conjunction of a non

linear projection of their vertexes. In practice, omni-directional shadow maps are simply

generated from six linear projections of the scene [Die01]. Despite its simplicity, this so-

lution significantly increases the rendering cost as well as the memory requirements of the

shadows. In addition, the algorithms addressing the shadow map issues (undersampling,

shadow acne, etc.) are designed for directional lights. When dealing with omni-directional

19

Chapter 2. Rasterizing shadows

Light

Shadow acne

Light image plane

S Shadow map

texel value

Geometry

Figure 2.5: For each texel, the shadow map saves the distance from the light to a scene
sample S. Due to this discretization, shadow acne artifacts occur when the surfaces are
occluded by their own shadow map texel.

lights, their computational cost is thus drastically increased due to the multiple shadow

maps used to compute the omni-directional visibility.

2.3 Soft shadows

Real environments are illuminated by extended lights that generate a soft transition be-

tween the light and the shadow. The receivers lying into this penumbra region are partially

illuminated, i.e. they see only a part of the light. In computer graphics, approximating

or evaluating the ”amount of light” that reaches a surface (equation 2.6) is far more time

consuming than solving the binary hard shadow problematic.

Due to the recent impressive increase of both the horsepower and the programmability

of the graphics hardware, interactive soft shadows are today widely investigated [HLHS03].

Nevertheless, rasterizing realistic soft shadows in real time is still challenging. One can

accumulate several hard shadow renderings in order to numerically evaluate the direct

illumination according to a set of light samples [BB84, HH97, Her97]:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+ I

(
x′ → x′′

)
+

∑
k ∈ N

1

|Lk|
∑

x ∈ Lk

1

p (x)
Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
V
(
x↔ x′

) cosθocosθi
||x− x′||2

(2.8)

where N is the number of extended light sources, Lk the set of samples distributed onto

the light source k, p (x) the probability distribution function for the sample x and V the

visibility evaluated with a hard shadow algorithm. This solution is however particularly

inefficient since, as we saw previously, rasterizing hard shadows is not obvious. In order

20

2.3. Soft shadows

to efficiently compute soft shadows, specific approaches must be designed.

Many interactive soft shadow algorithms approximate the direct lighting (equation 2.6)

by decorrelating the shadow generation from the lighting evaluation. In this situation, the

direct illumination of the light is modulated by a visibility coefficient (Vcoef) representing

the visibility integral for the direction towards the area light source:

L
(
x′ → x′′

)
= Le

(
x′ → x′′

)
+ I

(
x′ → x′′

)
+

∑
x ∈ L′

Le

(
x→ x′

)
fs
(
x→ x′ → x′′

)
Vcoef

(
k ↔ x′

) cosθi

||x− x′||2
(2.9)

with L′ the set of the positions of the area light centers and k the area light corresponding

to x. The Vcoef represents the percentage of visible light and is given by:

Vcoef
(
k ↔ x′

)
=

1

|Lk|
∑

x ∈ Lk

1

p (x)
V
(
x↔ x′

)
(2.10)

Equation 2.8 is a simplification of the direct lighting. It extends the hard shadow prob-

lematic (equation 2.7) by replacing the binary visibility V by the Vcoef attenuation factor.

Despite its simplicity, this formulation exhibits some limitations. Indeed, the BSDF of

the receiver x′′ is evaluated only for the light direction starting from the light center

while it must be computed for the bundle of directions between x′′ and the area light

(equation 2.6). In addition, the emitted radiance is assumed to be constant for each light

source. However, this assumption does no remain valid when dealing with lights emitting

a spatial varying radiance (i.e. textured lights). Despite its drawbacks, the accuracy of

the Vcoef formulation is commonly considered as acceptable when targeting efficient soft

shadows. Nevertheless, the use of Vcoef lead to an approximative direct illumination.

In the following we first present visually plausible soft shadow algorithms. Based on

heuristics or the filtering of hard shadows, they provide a visual pleasant approximation

of the Vcoef . We then discuss about more accurate solutions. In contrast to visually

plausible approaches, their goal is to explicitly evaluate the Vcoef (equation 2.10) or the

direct lighting integral.

We point out that the goal of this analysis is to give a brief overview of the advantages

and drawbacks of the more relevant techniques that rasterize soft shadows in general

situations. Thus, we do not investigate the algorithms designed for specific purpose as

low frequency shadows [RWS+06], shadows casted by height fields [SN08], etc.

2.3.1 Visually plausible soft shadows

In the following, we briefly describe some methods providing a visual pleasant approxima-

tion of the Vcoef . These algorithms are based on the visual aspect of the shadows rather

21

Chapter 2. Rasterizing shadows

than a rigorous mathematical and physically plausible background.

We propose to separate this soft shadow algorithms in three categories. The first group

includes the techniques based on heuristics evaluated using one or several shadow maps.

The second class of algorithms approximates the Vcoef by rasterizing additional shadow

primitives. Finally, the last category includes the approaches based on the convolution of

hard shadows.

Soft shadow mapping heuristics

The layered attenuation map algorithm [KM99, ARHM00] directly extends the shadow

map approach. This algorithm is based on a set of shadow maps generated from several

positions onto light sources. These light Z-buffers are used to identify multiple depth

layers of the scene (typically four) as seen from the light viewpoint. In each layer, each

texel stores the distance from the light to the scene as well as a percentage of occlusion (i.e.

the complementary of the Vcoef) computed from the underlying samples that it occludes.

Soft shadows are finally obtained by modulating the direct illumination by the layered

attenuation maps. Despite its similarity with the shadow map approach, in practice, this

algorithm is not well suited for real time rendering. Indeed, in order to obtain a visual

pleasant Vcoef , this algorithm requires a high number of shadow map renderings that limits

its overall performances.

Heidrich et al. [HBS00] computes the Vcoef using few shadow maps captured from the

end vertexes of a linear light. The shadow maps are then analyzed in order to separate

the receivers from the occluders. The Vcoef is approximated by the Gouraud shading of

the polygons linking the occluders to the receivers. The performances of the proposed

algorithm is however directly linked to the complexity of the casted shadows. Furthermore,

despite its extension to polygonal lights [YTD02], it imposes restrictive conditions onto

the type of light sources that can be treated.

Unlike the previous approaches, Brabec and Seidel [BS02] use a single shadow map

to approximate soft shadows. Their method is in fact very similar to standard shadow

mapping. Based on the work of Parker et al. [PSS98], they use the depth information

encoded into the shadow map to extend the shadow region and create the penumbra. For

each visible surface point, the algorithm retrieves its corresponding position into the light

image plane. It then identifies the nearest shadow map texel that is illuminated or that is

closer to the light, whether the surface is respectively in the shadow or not. The relative

position of the receiver, the light and the occluder are finally used to approximate the

Vcoef . Even though this approach is more efficient than using multiple shadow maps, its

performances are directly linked to the size of the search region into the shadow map.

Finally it suffers of several quality drawbacks due to its inherent assumptions.

22

2.3. Soft shadows

The flood fill soft shadow algorithm [AHT04, RT06] approximates the Vcoef using an

heuristic directly evaluated into the camera image plane. First, it generates hard shadows

by using shadow maps. Then, it detects the shadow borders by filtering the hard shadows

as seen from the camera. Finally it judiciously spreads out the initial binary Vcoef from

the shadow boundary to the neighbor pixels. Pixels lying into shadows are brighten while

pixels close to hard shadow boundary are darken. Nevertheless, the multiple rendering

passes used to spread out the occlusion information limits the performance. Furthermore,

it exhibits strong artifacts that reduce the overall shadow quality.

Object-based approaches

As a first step toward real time object-based soft shadows, Haines [Hai01] rasterizes

specific shadow primitives directly onto the planar receivers. First, the umbra region

is computed using the shadow volume approach. Plateaus are then extracted from the

silhouette edges detected during the shadow volume step and projected onto the planar

receivers. The rendering of the projected plateaus finally gives an approximation of the

penumbra region. Nevertheless, common environments are particularly difficult to handle

since this algorithm only efficiently deals with planar receivers.

On the contrary, the penumbra map [WH03] and the smoothie [CD03] algorithms

approximate a Vcoef independently of the receiver shape. They first evaluate the umbra

region using shadow maps. The silhouette edges of the occluders with respect to the

light center are then extended perpendicularly to the corresponding occluding surface.

Finally, they use these extruded extensions to evaluate a gradual variation of the shadow

border that simulates the Vcoef . Despite their overall efficiency, these approaches can only

approximate the outer penumbra part of the soft shadows, i.e. the penumbra region lying

outside the original hard shadows. As a consequence, the occluders will always cast an

umbra even for very thin objects that should cast only penumbra.

Filtering hard shadows

One can observe that convolving the visibility as captured from the light source, would

provide a very good approximation of the Vcoef when the light, the occluder and the re-

ceiver lie in parallel planes. From this starting point, Soler and Sillion [SS98] convolve the

hard shadows in order to approximate soft shadows. The proposed algorithm recursively

subdivides the occluders with respect to a specific error metric. The soft shadows eval-

uated from each subset of occluders are then combined to obtain the final soft shadows.

Due to its error driven nature, the computational cost of this approach is controlled. Un-

fortunately, the recursive subdivision of the occluders drastically reduces the performances

23

Chapter 2. Rasterizing shadows

while the accuracy of the solution is certified only in very specific cases.

Shadow map filtering techniques limit the undersampling artifacts by softening the

shadow borders. Following this observation, the percentage closer soft shadow algorithm

[Fer05] simulates soft shadows by simply extending the percentage closer filtering algo-

rithm [RSC87]. It simulates the variation of the penumbra size by defining the filter kernel

width according to the distance from the light source to the occluders lying between the

emitter and the receiver. Due to its simplicity, this approach is widely used and extended

in real time applications. In order to improve its efficiency, one can filter only the shadow

border [Ura05]. Finally, better shadow quality is obtained by using non correlated Monte

Carlo sampling patterns [Ura05, Mit07].

Dong et al. [DAM+08] follow the same overall idea. In the same way, they approximate

the penumbra size variation by defining the filter kernel width from the average of the

distances from the light to the occluders. The main difference with the previous approach

relies on the shadow filtering technique: they use the convolution shadow maps [AMB+07]

rather than the percentage closer filtering. Despite real time performances, this algorithm

has to deal with the high memory consumption required by the convolution shadow maps.

The occlusion texture algorithm [ED06b] is based on a layered discretization of the

scene as seen from the light center point of view. In contrast to layered attenuation maps

[KM99], this algorithm directly generates the sliced representation of the environment in

one rendering pass [ED06a]. For a receiver point, it then approximates a visual pleasant

Vcoef , by filtering adaptively each occlusion texture lying between the light and the re-

ceiver. The filter kernel width is defined according to the distance from the light to the

receiver as well as the size of the light source. This method allows the real time rendering

of visual pleasant soft shadows. Nevertheless, due to the discrete sliced representation of

the scene it cannot handle properly near self shadowing. In addition, the discretization

leads to light leakages that have to be explicitly addressed for thin occluders.

2.3.2 Physically plausible soft shadows

In contrast to visually plausible soft shadows, physically plausible solutions are based on

the explicit evaluation of the Vcoef (equation 2.10) or on the direct lighting integration

(equation 2.6). According to the environment, they explicitly evaluate the area light

visibility rather than approximate a Vcoef from a specific visual heuristic.

Due to the complexity of the problematic and its computational requirement, few

algorithms target the interactive generation of physically plausible soft shadows. In this

section we present three investigations toward the interactive rasterization of realistic

soft shadows. The first class of algorithms precomputes the visibility information and

numerically solve the direct lighting at runtime. The second category extends the shadow

24

2.3. Soft shadows

map framework in order to evaluate a physically plausible Vcoef . The last one regroups

object-based techniques, i.e. algorithms that explicitly lie onto the underlying geometry

representation of the occluders.

Precomputed visibility

The on line evaluation of the visibility is particularly time consuming. As an alternative,

the visibility informations can be precomputed in order to reduce the runtime compu-

tational cost. Several approaches capture the whole radiance transfer for static scenes

illuminated by distant lights [SKS02, SLSS03, Leh04, NRH04]. The radiance informations

are then highly compressed and finally reconstructed in real time using graphics hard-

ware. Despite convincing global illumination results including shadows, dynamic scenes

are difficult to handle with such approaches since the visibility cannot be precomputed

anymore. Many algorithms are designed to address this drawback. In practice, these

propositions are often either too expensive in terms of memory requirement and compu-

tation time [RHCB05], or not well suited for all frequency shadows, local illumination,

etc. [ZHL+05, SM06].

As a straightforward alternative, one can pre-capture several shadow maps on a per-

object basis with respect to a set of directions [MSW04]. This discretized representation

is then used to solve the visibility queries at runtime. Based on the same overall idea, the

coherent shadow map algorithm [RGKM07] precomputes the direct visibility information

for rigid objects. In order to reduce the memory cost, it exploits the coherence of the

captured values to compress the resulting set of shadow maps. It finally uses this visibility

representation to define the visibility informations required by the numerical integration

of the direct lighting. This approach has to deal with strong drawbacks. The visibility

reconstruction is time consuming while, despite the compression of the visibility, the

memory requirement is still prohibitive. In addition, deformable meshes as well as common

light sources (dynamic point or spot lights) are not supported. Finally, even though the

objects can be animated, artifacts appear when their convex hull are intersecting.

Soft shadow mapping

A shadow map can be considered as a surjective discrete representation of the scene as

seen from the light viewpoint. In this representation, each shadow map texel stores the

distance from the light source of a quad parallel to the light image plane. This is the

clue behind the soft shadow mapping algorithm [ASK06, AHL+06, BCS06, GBP06]. This

algorithm evaluates the Vcoef by back projecting [DF94] the shadow map samples onto

the light plane. This back projection can be performed from the light point of view by

25

Chapter 2. Rasterizing shadows

explicitly separating the occluders from the receivers [AHL+06]. Despite its apparent

simplicity, this approach has to deal with undersampling and light leaking artifacts. In

addition, for each receiver the whole occluding samples are back projected onto the light.

Consequently, the performances are inversely proportional to the shadow map resolution.

Better results are obtained by evaluating the Vcoef from the camera viewpoint [GBP06].

Indeed, this avoids the explicit distinction between occluders and receivers and reduce the

soft shadow undersampling artifact. With this strategy, each receiver has to define the

shadow map region affecting its area light visibility. The shadow map samples lying into

this area are finally back projected onto the light plane in order to integrate the percentage

of visible light, i.e. its Vcoef . Thanks to a hierarchical organization of the shadow maps,

this approach limits the number of the back projected shadow map samples. Nevertheless,

the surjective nature of the shadow map leads to light leakages that must be addressed

with a gaps filling heuristic.

This latter back projection algorithm was widely extended to improve its efficiency

and its visual quality [GBP07, SS07, SS08, SS]. However, the inherent discretization of

the shadow map used to represent the scene, limits the overall accuracy of the proposed

solutions.

Object-based physically plausible soft shadows

As a direct extension of the shadow volumes, Akenine-Möller and Assarsson [AMA02]

introduce the penumbra wedge algorithm. Its implementation onto graphics hardware

[AAM03, ADMAM03] relies on two rendering passes. First, the hard shadows are com-

puted using shadow volumes and are used to initialized the Vcoef . Then, a penumbra

wedge is extruded from each silhouette edge detected during the shadow volume step.

This primitive conservatively includes the scene volume which area light visibility is influ-

enced by its associated edge. For each receiver lying into the penumbra wedge, its Vcoef is

then updated with respect to the percentage of light occluded by the corresponding edge.

In fact, this algorithm computes the Vcoef analytically . However, it relies on the

assumption that silhouette edges are not overlapping as seen from the light center. This

leads to penumbra overestimation artifacts when this constraint is not satisfied. In addi-

tion, while the silhouette edge detection from the light center is accurate for point light,

it does not remain correct when dealing with surfacic light sources.

Lately, Sintorn et al. sample the light visibility by rasterizing shadow primitives

from the light point of view [SEA08]. First they generate an alias free shadow map

[AL04] by storing for each shadow texel the list of visible receivers as seen from the light

viewpoint. For each triangle, they build a conservative primitive that includes the scene

region influenced by the shadow of the triangle. This primitive is then conservatively

26

2.4. Discussion

rasterized [HAMO05] from the light viewpoint into the alias free shadow map. For each

shadow map texels covered by the primitive, the algorithm tests which receivers effectively

lie into the shadows of the triangle. For these receivers it finally defines the occluded

light sample in order to numerically solve its light visibility. As a main advantage, this

approach provides an accurate evaluation of the visibility integral. In contrast to the

penumbra wedge approach, the shadow computations are performed per triangle rather

than per silhouette edge. This avoids the silhouette detection step but on the counter

part increases the soft shadow computation requirements. The per light computation

cost is furthermore linear to the number of alias free shadow maps used to capture the

light influence. Thus, handling omni-directional lights is time consuming. Finally, one

can note that the conservative rasterization increases the overall rendering cost. Due

to these performance overheads, this algorithm provides an interactive solution only in

simple situations (few directional lights, low geometric complexity, etc.).

2.4 Discussion

Despite many investigations very few algorithms generate robust shadows. Many favor ef-

ficiency rather than accuracy. While they can offer good performances [Ura05, DAM+08],

such approximations are not suitable for direct lighting simulation. Others precompute the

visibility in order to accelerate the runtime direct lighting evaluation [RGKM07]. However,

due to strong limitations, they are not well suited for general environments. Some others

target the explicit evaluation of the Vcoef . Despite convincing results [AAM03, GBP07],

they exhibit robustness issues and still rely on the Vcoef approximation of the direct light-

ing.

In the following we first define what should be a robust shadow algorithm. From these

observations and the previous analysis of existing solutions, we then discuss why we choose

the object-based framework as a starting point toward the robust shadow simulation.

2.4.1 Designing a robust shadow algorithm

To be widely used, realistic shadow algorithms must be independent of the underlying

environment. Thus, hand fixed scene dependent parameters have to be prohibited. In

addition it may have to pay attention to neither the light type nor the model representation

or shape.

In the same way, the desired accuracy of the solution has to be independent of the

scene: realistic soft shadows must be generated whatever the light positions, the object

relationship or the camera point of view. In other words, the algorithm must be robust.

27

Chapter 2. Rasterizing shadows

Nevertheless, exact soft shadows are not required all the time, in all situations. Some

applications prefer efficient solutions to accurate computations. Others use approxima-

tions as a fast overview of the accurate case. An unified shadow algorithm that can

evaluate both a fast approximation and an efficient accurate solution would thus be a

very attractive and powerful tool.

2.4.2 Image-based VS object-based framework

Due to its generality, the image-based framework seems to be a good starting point to-

ward a general purpose robust shadow algorithm. Indeed, image-based approaches lie on

the same background than the rasterization rendering algorithm. Thus, they naturally fit

to current graphics hardware and take benefit of its efficiency (texture access, filtering,

etc.). In addition, their performances are not explicitly influenced by the geometric com-

plexity of the scene or the underlying object representation. Nevertheless, the evaluation

of generic and artifact free image-based shadows is particularly difficult. Several investi-

gations specifically target shadow acne, undersampling artifacts or omni-directional light

sources. In fact, despite the apparent simplicity of image-based shadows, it turns out that

no practical general purpose solution avoids their initial pathological issues.

Due to their geometric nature, object-based frameworks rely on geometric constraints

[AMA03] and their performances are drastically influenced by the complexity of the mod-

els. Nevertheless, unlike image-based methods, their robust implementation does not

exhibit discretization artifacts (shadow acne, undersampling aliasing, shadow popping)

and does not require specific treatments for omni-directional lights. The basic reason for

preferring an object-based framework is that it is far less fragile than an image-based ap-

proach. This robustness property seems particularly attractive when targeting a general

and accurate solution.

The conventional wisdom in real time rendering is that object-based approaches are too

expensive, and that acceptable shadows can be achieved by using the simplest image-based

methods. Moreover, image-based shadows are considered more general than object-based

ones. However, there is little research to support this claim. While there has been many

works targeting the drawbacks of the shadow maps very few researches investigate the

limitations of object-based techniques. In our view, more researches are necessary before

judging of the capabilities of the object-based shadow framework.

2.4.3 Conclusion

We argue that object-based shadow approaches are well suited for the interactive evalu-

ation of physically plausible shadows. Due to their object-based nature, their accuracy

28

2.4. Discussion

rely on the explicit geometry of the meshes rather than an intermediary discrete data

structure. Thus, object-based algorithms have to pay attention to neither shadow un-

dersampling artifacts nor hand fixed discretization parameters. In practice, object-based

shadows are far more predictable than image-based shadows. For instance, the shadow

volumes generate pixel accurate hard shadows while the shadow maps have to deal with

aliasing and shadow acne. In fact, the object-based shadow framework provides a very

strong algorithmic background particularly well suited for the robust simulation of direct

shadows.

29

3

Penumbra wedge blending

In this chapter we first detail the penumbra wedge framework. This object-based algo-

rithm directly extends the shadow volume algorithm in order to compute realistic soft

shadows. It analytically evaluates a physically plausible Vcoef by assuming that the

penumbra of the occluders are not overlapping. The violation of this assumption leads to

Vcoef underestimation and thus to over shadowed regions.

In the second part of the chapter we explicitly address the penumbra overlapping

artifacts. The presented algorithm is based on a new blending heuristic that estimates

the overlapped error in order to propose a realistic penumbra blending that drastically

reduces the over shadowed artifacts.

The rest of the chapter is more practical. We detail our implementation of the penum-

bra wedge framework improved by our blending heuristic. We then present the visual

results of our blending process and its impact onto the performances. As a conclusion, we

discuss the overall limitations of the penumbra wedge algorithm as well as our improve-

ment on both theoretical and implementation point of view.

3.1 The penumbra wedge algorithm

Due to hardware limitations, the original penumbra wedge algorithm [AMA02] was based

on a combination of hardware and software rasterization. This implementation exhibits

some robustness issues. Its later formulation onto graphics hardware [AAM03] is more

practical. It allows real time performances and avoid the main drawbacks of its initial

formulation.

This section describes this latter implementation. We first give an overview of the

algorithm before describing its two main steps. We finally outline its main limitations.

31

Chapter 3. Penumbra wedge blending

3.1.1 Overview

Algorithm 1 render scene pwedge(world, view)

1: set up camera(view);
2: (color-buffer, Z-buffer) ⇐ draw ambient and emissive lighting(world);
3: for all light ∈ world do
4: compute vbuffer(world, light, V-buffer, Z-buffer);
5: color-buffer + = direct lighting(world, light, V-buffer);
6: end for

The hardware implementation of the penumbra wedge algorithm approximates the

rendering equation in three steps (algorithm 1). First, it initializes the color buffer from

the emissive and the indirect illumination of the scene (line 2). Then, for each light source,

it computes a visibility buffer (V-buffer) encoding for each view sample its associated Vcoef .

The direct lighting contribution of the light source is then attenuated according to the

V-buffer, and finally accumulated into the color buffer (line 5).

Algorithm 2 compute vbuffer(world, light, V-buffer, Z-buffer)

1: edge ⇐ detect silhouette edges(light, world);
2: V-buffer ⇐ render shadow volumes(edges, world, Z-buffer);
3: wedges ⇐ build wedges(edges);
4: render pwedges(wedges, light, V-buffer, Z-buffer);

The clue of this soft shadow algorithm is the computation of the V-buffer (algorithm 2).

This buffer is first initialized by the robust shadow volume rendering (line 2). Then a

penumbra wedge is extruded (line 3) from each silhouette edge previously detected (line 1).

The V-buffer is finally compensated by the rendering of the penumbra wedges (line 4).

The robustness of this algorithm relies on two major steps: the construction of the

penumbra wedge primitive and its rendering.

3.1.2 The penumbra wedge primitive

A penumbra wedge includes the penumbra volume of its associated silhouette edge. Com-

puting the exact penumbra region of an edge is however particularly time consuming.

Nevertheless, a robust soft shadow evaluation does not require a tight approximation of

the penumbra volume. In fact, the penumbra wedge defines a conservative bounding

volume of the ”edge penumbra influence”.

A penumbra wedge is composed of five planes (figure 3.1(a)). Each penumbra prim-

itive is extruded independently of the others. Its robust construction is performed as

follows. Considering a silhouette edge e defined by two vertexes v0 and v1. First, the

32

3.1. The penumbra wedge algorithm

Area light

Occluder
Silhouette edge

v0

v1

v'1

v'0=

Front plane

Left plane

Right plane

Back plane

(a)

Shadow volume

quadrilateral

Outer wedge

v'0 v'0
v'1v'1

Inner wedge

(b)

Figure 3.1: (a) The wedge planes. In practice, in addition of the front, back, right and
left planes, a plane caps the penumbra wedge. Due to the infinite/semi infinite projection
of the wedge, this plane is not illustrated here. (b) Explicit separation of the penumbra
wedge into an outer and an inner wedge.

algorithm defines the vertex that is closest to the center of the area light source lc. The

other vertex is moved toward lc until it is at the same distance of the light center than

the first vertex. This results in two vertexes v′0 and v′1. Note that this new edge is used

to ensure that the corresponding wedge contains the entire penumbra region of e. The

original silhouette edge is still associated to the penumbra wedge and it is used for the

penumbra computation.

The front and back planes of the penumbra wedge are defined by rotating in opposite

directions the shadow volume quadrilateral of e around the axis
−−→
v′0v
′
1 until they are tangent

to the light source. The left plane contains the vertex v′0 and it is rotated around the axis

perpendicular to the vector
−−→
v′0v
′
1 and the vector

−→
v′0lc until it becomes tangent to the light

source. Note that this axis is in fact the normal of the shadow volume quadrilateral. The

right plane is constructed similarly; it contains v′1 and it is rotated around the same axis

in the opposite direction until it is tangent to the light. The fifth plane is the back caped

of the penumbra wedge and it is required by the robust rendering of the penumbra wedge

(section 3.1.3).

We point out that each penumbra wedge is in fact split in two parts by the shadow vol-

ume quadrilateral (figure 3.1(b)). The outer and the inner wedges include the penumbra

region lying outside or inside the associated shadow volume quadrilateral, respectively.

This explicit distinction between the outer and the inner penumbra is the clue of the

efficient evaluation of the Vcoef (section 3.1.3).

The penumbra wedge extrusion can be performed with either an infinite or a semi

infinite projection of its vertexes. In order to avoid robustness issues, one have to prefer

the infinite projection. We refer to the appendix 3.B for a practical implementation of

33

Chapter 3. Penumbra wedge blending

such robust construction.

3.1.3 Rendering the penumbra wedge

The V-buffer is first initialized by the robust shadow volume algorithm. The penumbra

wedge rasterization generates the penumbra regions by modulating this hard shadow

result. The following algorithm (algorithm 3) describes this compensation step. Its basic

idea relies on the analytical integration for each visible receiver of the occluded light area

with respect to the silhouette edges.

Algorithm 3 render pwedge(wedges, light, V-buffer, Z-buffer)

1: for all half wedge ∈ wedges do
2: receivers ⇐ fail zbuffer visibility(Z-buffer, half wedge);
3: for all p ∈ receivers do
4: edge ⇐ half wedge.silh edge;
5: edgep ⇐ project(edge, light, p);
6: edgepc ⇐ clip(edgep, light);
7: occ ⇐ occluded percentage(edgepc , light);
8: if is outer wedge(half wedge) then
9: V-buffer[p] + = occ;

10: else
11: V-buffer[p] − = occ;
12: end if
13: end for
14: end for

Each half wedge is rendered independently (line 1). Its rendering is based on the

failure of the visibility test with respect to the Z-buffer of the scene (line 2) [EK02]. This

visibility strategy defines the surface points p potentially included into the half wedge

(line 3). For such receivers, the silhouette edge associated to the penumbra wedge (line 4)

is projected onto the light source as seen from p (line 5). This projected edge is then

clipped against the light border (line 6). The percentage of the light that is occluded by

the clipped edge is evaluated according to the light center (line 7). Finally this occluded

percentage is added or subtracted to the V-buffer whether the half wedge is either an

outer (line 9) or an inner wedge (line 11). The figure 3.2 illustrates this algorithm.

In summary, the V-buffer is initialized by the shadow volume stencil test. The result

represents the number of shadow volumes in which the receivers lies. The wedge rendering

finally compensates these values in order to generate the penumbra region. In fact, the

data stored into the V-buffer are not Vcoef s. The penumbra wedge algorithm assimilates

them as the complementary of Vcoef s, i.e. the percentage of the light that is occluded.

The Vcoef of the receivers is retrieved by computing the complementary of the V-buffer

34

3.1. The penumbra wedge algorithm

Light

center

Occluder

occlusion = 0% occlusion = 20%

13%

22%

15%Outer

edge

Outer

edge
Inner

edge

+ + - =

Initialization� Update�
Figure 3.2: Integration of the light occlusion percentage for a given receiver. The rectan-
gular light and the occluder is represented as seen from the receiver. The shadow volume
step first initializes the percentage of occlusion that is then updated by the penumbra
wedge integration rules.

clamped between zero and one. Due to the simplicity of this Vcoef derivation, it is however

common to define this intermediary data structure as a V-buffer.

3.1.4 Discussion and limitations

Despite the neatness of the analytical evaluation of the Vcoef , the penumbra wedge algo-

rithm has to deal with robustness issues.

The single light sample artifact

The penumbra wedge algorithm uses the silhouette edges of the occluders detected with

respect of a single point onto the light source, typically its center. While such detection is

accurate with point lights, it does not remain correct when dealing with area light sources.

Indeed, the silhouette may deffer by using different positions onto the light source. In fact,

the detection of the silhouette edges has to be performed according to the shape of the

area light [LAA+05]. Due to this single light sample simplification, occluding silhouette

edges are missed leading to light bleeding artifacts (figure 3.3).

The silhouette overlapping artifact

One of the main advantage of the penumbra wedge algorithm is that the construction

of the wedges as well as their rendering are independent. This independence relies on

the assumption that the silhouette edges are not overlapping as seen from the receivers.

Nevertheless, this assumption is seldom verified in practice. When silhouettes are over-

lapping, the overlapped occluded region is take into account several times (figure 3.4).

In such situation, the resulting Vcoef is underestimated resulting in over shadowed areas

(figure 3.5(a)).

35

Chapter 3. Penumbra wedge blending

(a) (b)

Figure 3.3: (a) Illustration of the single light sample artifact. (b) Ray-traced refer-
ence [mi].

Occluders

occlusion = 0%

+

Initialization� Update�
- =+

Overlapping
Outer

edge
Inner

edge

Outer

edge

38%
7%

24% 10%

occlusion = 55%

Figure 3.4: When occluders are overlapping as seen from the receiver, the overlapped
occluded region is counted several times. This results in an over estimation of the occlusion
percentage.

3.2 The penumbra wedge blending

The silhouette overlapping issue is the major drawback of the penumbra wedge framework.

This artifact occurs for every receivers lying in the shadow of multiple occluders. Such

situation is very common in real environments and one can exhibit over shadowed region

even on very simple scenes (figure 3.5).

In order to avoid the penumbra overlapping drawback, the integration of the Vcoef

must be performed with respect to the light area already occluded by previous silhouette

edges. This update strategy requires a global knowledge of all the silhouette edges that

affect the visibility of the receiver. Nevertheless, the efficiency of the penumbra wedges

relies on the locality of the computations and the independence between the occluders.

Using a global constraint would consequently reduce the overall performances.

In the following we present a new technique that blends the soft shadows cast by

several silhouette edges. In order to keep the local property of the penumbra wedge

36

3.2. The penumbra wedge blending

(a) (b)

(c) (d)

Figure 3.5: Penumbra blending comparison. (a) standard penumbra wedge algorithm
[AMA02], (b) penumbra blending by a probabilistic approach [AAM03], (c) our penumbra
blending heuristic, (d) reference image using 1024-sample shadows

computations, we propose a per receiver compact representation of the occluded part onto

the light source. We use this approximation to blend the penumbra wedge contribution

according to a new blending heuristic that drastically reduces the overlapping artifacts.

The proposed approach (algorithm 4) relies on two main steps: a per silhouette loop

visibility buffer evaluation (SV-buffer) (line 6), and its blending with the final V-buffer

(line 7). These buffers encode an approximation of the geometry that occludes the light

and the corresponding percentage of occlusion. In the following section, we define how

we compute the SV-buffer. Then, we describe the blending step of the SV-buffer into the

V-buffer.

37

Chapter 3. Penumbra wedge blending

Algorithm 4 compute enhanced vbuffer(world, light, V-buffer, Z-buffer)

1: silhouette loops ⇐ detect non overlapped silhouette loops(light, world);
2: for all loop ∈ silhouette loops do
3: edges ⇐ get edges(loop);
4: SV-buffer ⇐ render silhouette shadow volumes(edges, world, Z-buffer);
5: wedges ⇐ build wedges(edges);
6: render silhouette pwedges(wedges, light, SV-buffer, Z-buffer);
7: blend vbuffers(SV-buffer, V-buffer, light);
8: end for

3.2.1 The silhouette visibility buffer

The detection of the silhouette edges with respect to the light center leads to a set of

silhouette loops. We decompose them into silhouette loops that are not overlapping.

Consequently, the evaluation of the per silhouette loop visibility buffer (SV-buffer) does

not exhibit overlapping artifacts.

Algorithm 5 render silhouette pwedge(silh wedges, light, SV-buffer, Z-buffer)

1: for all half wedge ∈ silh wedges do
2: receivers ⇐ fail zbuffer visibility(Z-buffer, half wedge);
3: for all p ∈ receivers do
4: edge ⇐ half wedge.silh edge;
5: edgep ⇐ project(edge, light, p);
6: for all light part ∈ light do
7: edgepc ⇐ clip(edgep, light part);
8: occ ⇐ occluded percentage(edgepc , light);
9: brect ⇐ compute brect(edgepc , light);

10: if is outer wedge(half wedge) then
11: SV-buffer[p][light part].occ + = occ;
12: increase brect(brect, SV-buffer[p][light part].brect);
13: else
14: SV-buffer[p][light part].occ − = occ;
15: decrease brect(brect, SV-buffer[p][light part].brect);
16: end if
17: end for
18: end for
19: end for

The proposed evaluation of the SV-buffer is quite similar to the original V-buffer

computation [AAM03]. First, we initialize the SV-buffer by the hard shadows generated

from the shadow volume of the silhouette loop (algorithm 4 line 4). Then we compensate

it by the rendering of its associated wedges (algorithm 5). As with the original penumbra

wedges, for each half wedge (line 1), we define the potential receivers according to the

38

3.2. The penumbra wedge blending

failure of the Z-buffer visibility test (line 2). For such surface points p (line 3), we

retrieve the silhouette edge associated to the half wedge (line 4) that we project onto

the light source as seen from p (line 5). In contrast to the common wedge rendering,

the light source is subdivided into several parts with respect to the viewpoint of p. This

subdivision allows a better approximation of the occluding geometries. We choose to

split the light source by its center, in four parts with equal area. We treat, each light

part separately (line 6). We clip the projected edge against the border of the subdivided

region (line 7). Then, we compute its corresponding percentage of occlusion (line 8). We

also evaluate a bounding rectangle that includes the occluded part (line 9). Finally, we

update the SV-buffer according to the type of the half wedge (line 10). We compensate

the percentage of occlusion as defined by the penumbra wedge integration rules (line 11

and 14) while the bounding rectangle is used to adjust the approximation of the occluded

region into the light part (line 12 and 15). This algorithm is summarized in the figure 3.7.

Occluder

Max X

Max Y

Bounding

rectangle Occlusion

+ + -
10%

Light center

=

Figure 3.6: Per light part computation of the occluded light region as well as its associated
bounding rectangle.

3.2.2 The penumbra blending

The blending of the SV-buffer into the V-buffer is performed as follows (algorithm 6).

For the visible surface points (line 1), we treat each light part independently (line 2).

The percentage of occluded light saved into the SV-buffer is first accumulated with the

one stored into the V-buffer (line 7). In a second step, we compensate the potential

overlapping error. We define the intersection between the bounding rectangles of the

occluded area encoded in the two buffers (line 8). If the intersection area is not null

then there is a potential overlapping issue (line 9). We use an Effective Overlapped Area

Heuristic (EOAH) in order to approximate the overlapping error (line 10). This value

represents the percentage of occlusion that are overlapping. It is given by:

ε =
Av

Bv
· As

Bs
· β (3.1)

39

Chapter 3. Penumbra wedge blending

with ε the effective overlapped area, β the area of the intersection of the bounding rect-

angles, Ax the light occlusion area and Bx the area of the bounding rectangles. The

indexes s and v identify respectively the SV-buffer and the V-buffer. We subtract the ef-

fective overlapped area from the previously accumulated percentage of occlusion (line 11).

We finally combine the bounding rectangles to update the localization of the occluding

geometry (line 14), used as the input for the next blending computations.

Occlusion

10%

7%

V-buffer SV-buffer

+

Intersection

=
14%

V-buffer

� Blending � Update BRect

BRect

=3%

Occlusion =

10% + 7% - 3%

Figure 3.7: Per light part penumbra blending step.

Algorithm 6 blend vbuffers(SV-buffer, V-buffer, light)

Require: SV-buffer.length() == V-buffer.length();
1: for all p ∈ SV-buffer do
2: for all light part ∈ light do
3: occs ⇐ SV-buffer[p][light part].occ;
4: brects ⇐ SV-buffer[p][light part].brect;
5: occv ⇐ V-buffer[p][light part].occ;
6: brectv ⇐ V-buffer[p][light part].brect;
7: blended occ ⇐ occs + occv;
8: brecti ⇐ brect intersection(brects, brectv);
9: if area(brecti) 6= 0 then

10: overlapped occ ⇐ EOAH(occs, occv, brects, brectv, brecti, light);
11: blended occ -= overlapped occ;
12: end if
13: V-buffer[p][light part].occ ⇐ blended occ;
14: V-buffer[p][light part].brect ⇐ merge brect(brects, brectv);
15: end for
16: end for

40

3.3. Implementation

3.3 Implementation

This section presents an OpenGL [SA06] implementation of our blending algorithm. The

proposed algorithm targets common programmable graphics hardware and uses both ver-

tex (VP) [AAA+02] and fragment programs (FP) [BBC+02]. Since our algorithm extends

the penumbra wedges, we first investigate a robust and efficient implementation of this

object-based framework. Then we outline the penumbra wedge rendering strategy that we

are based on. We finally expose how our blending heuristic is implemented onto common

Graphic Processor Units (GPU).

Render Shadow Volume

Initialize Ambient + Z-Buffer

Color

Buffer

Z-Buffer

Build Shadow Volumes

(CPU)

SV-buffer
(copy from

stencil)

PWedge blending

Direct Illumination Color

Buffer

Geometry

Render PWedge

Build PWedges

(CPU)

SV-buffer

V-buffer

For each loop

Figure 3.8: Overview of our GPU implementation of the proposed penumbra wedge
blending algorithm.

3.3.1 The shadow volume framework

Our shadow volume implementation is based on its robust formulation, i.e. infinite pro-

jection and Z-fail stencil update strategy [Car00, EK02]. Because the silhouette edge

selection is CPU intensive, we use a half edge structure [Ket99] both accelerating the

edge selection and providing the connectivity of the silhouettes. Thanks to this explicit

connectivity, the shadow volume quadrilaterals of the silhouette loops are encoded as

41

Chapter 3. Penumbra wedge blending

triangle strips in order to optimize the post transform cache efficiency of the GPU. The

stripped quads are saved on GPU side using buffer objects [SA06]. Their infinite extrusion

is performed by a specific VP with respect to the homogeneous coordinate of the vertexes

(appendix 3.A).

We perform the Z-fail stencil update in one rendering pass by using the EXT_stencil_two_side

extension [Kil05]. Due to API limitations, we cannot explicitly access to the stencil buffer.

Thus, we use a specific render target in which we copy the stencil values.

3.3.2 The penumbra wedge framework

As the shadow volume algorithm, the penumbra wedge algorithm is based on the rendering

of non existing primitives. The penumbra wedges are extruded on the CPU with respect

to the silhouette edges previously detected. For attenuated lights, we reduce the fill rate

requirements with scissor and depth bound tests as defined during the shadow volume

rendering pass. We still reduce the fill rate consumption by using a set of specific Z-buffer

tests with respect to the half wedge type as well as their orientation. For front facing

wedges (figure 3.9 left), the back faces of their outer wedges are rasterized if they fail

the Z-buffer test while the front face of their associated inner wedges are rendered if they

pass the Z-buffer visibility test. This process is reversed for back facing wedges (figure 3.9

right).

Camera

Light

Camera

Outer wedge

Inner wedge

Inner wedge

Outer wedge

Light

Figure 3.9: Z-buffer visibility test used during the penumbra wedge rasterization. The
test is performed according to the orientation of the shadow volume quadrilateral with
respect to the camera. Left: front facing wedge; Right: back facing wedge.

The compensation of the V-buffer is particularly time consuming. We reduce the com-

putational cost by limiting the penumbra wedge evaluation step to a tight approximation

of the receivers effectively occluded by the associated edge. To do this, we compute the

42

3.3. Implementation

three outside bounding plane (i.e. left, right and front/back plane) of each half wedge

during the software penumbra wedge construction [Len05]. These planes are transformed

in screen space by a VP and sent to the FP used for the wedge shading. For each fragment

influenced by the wedge rendering, we access the Z-buffer of the scene in order to retrieve

the z screen space coordinate of the potential receiver. Note that the x and y screen

coordinates of the fragment is given by its position attribute. Thus, with respect to the

previous plane equations, we simply perform a quick screen space test to define whether

the surface point is outside the half wedge or not:

!!ARBfp1.0

OPTION NV_fragment_program2;

ATTRIB f_pos = fragment.position;

ATTRIB plane0 = fragment.attrib[0]; # outside planes in screen spaces

ATTRIB plane1 = fragment.attrib[1];

ATTRIB plane2 = fragment.attrib[2];

TEMP r0, r1;

texture[0] == Z-buffer

SWZ r0.xyw, fPos_sp, x, y, 0, 1; # r0 = fragment in screen space

TEX r0.z, fPos_sp, texture[0], RECT;

DP4.CC0 r1.x, r0, plane0;

DP4.CC0 r1.y, r0, plane1;

DP4.CC0 r1.z, r0, plane2;

RET (LT0.xyzz);

[...]

END

For the surface points p that effectively lie into the rendered half wedge, we have

to project its corresponding edge from p onto the light source. Firstly we clip the edge

to a local ”near plane” [Len05]. This is necessary for the silhouette edges that does

not lie entirely between the fragment and the light source (figure 3.10). These edges

are then projected and clipped onto the light source. Earlier implementations [AAM03,

ADMAM03] avoid the use of a local near plane by clipping the edges in three dimensions.

Nevertheless, by performing the clipping step after the edge projection we drastically

reduce the computational cost.

3.3.3 The silhouette visibility buffer evaluation

The proposed blending heuristic is based on the evaluation of the percentage of occlusion

and the bounding rectangle of the occluded region for a set of light parts. We thus simply

replace the last step of the penumbra wedge shading by our per light part computation.

43

Chapter 3. Penumbra wedge blending

Light

Occluder

Near clip plane

Silhouette edge

Clipped projected

edge

Figure 3.10: Local clipping of the silhouette edge.

We typically use four light parts. In order to simplify the explanation, in the following,

we only refer to the upper right part evaluation. The other light parts are treated by

symmetry.

In contrast to the penumbra wedge approach, we clip the edge against each light

part rather than the light borders. We use a conditional test [BW04] to save computation

time when the edge does not intersect the treated region. The occluded light percentage is

computed as described in the hardware implementation of the penumbra wedges [AAM03].

It is finally added or subtracted into the SV-buffer with respect to the wedge type.

The bounding rectangle of the occluded light area is evaluated by the same FP. Our

evaluation of the per light part bounding rectangle is dependent on the rendering order of

the half wedge type. Indeed, the outer wedges has to be treated uppermost to the inner

ones. This is not problematic since the wedge rendering is already batched with respect

to their type: inner or outer (section 3.3.2). Thus, we first treat all the outer wedges in

order to define an upper bounding rectangle of the occluded light region. The rendering

of the inner wedges finally adjusts the bounding rectangle according to the maximum in

X and Y of the occluding outer edges (figure 3.7).

In summary, for each visible surface point p, the per light part evaluation of the

SV-buffer requires the following parameters:

• the percentage of light that is occluded

• the top, bottom, left and right coordinates of the bounding rectangle

• the maximum in X and Y of the occluding edges

This results in seven parameters for a light part, i.e. twenty eight parameters for each

visible surface point. In order to reduce the memory consumption, we use a precision of

one byte per parameters. With such precision we can pack [BW04] the bounding rectangle

44

3.4. Results

attributes into one 32-bit scalar. The three others parameters are packed in another 32-

bit scalar. However, common render targets support at most four 32-bit channels, i.e.

Red, Green, Blue and Alpha (RGBA) format. We use the Multi Render Target (MRT)

capability of the GPU to write the required eight 32-scalars into two single precision

RGBA render targets.

3.3.4 Computing the penumbra blending

The blending of the SV-buffer with the V-buffer is straightforward. For each light part,

this consists in unpacking the values saved into the buffers and then performing the

blending operation presented in section 3.2.2. This blending step is performed by a

specific FP. It is evaluated by simply drawing a full screen quad. According to the

proposed algorithm 6 (line 9), we use a dynamic branching [BW04] to save computation

time when there is no potential overlapping error.

We point out that the V-buffer uses the same encoding than the SV-buffer excepted

for the X and Y parameters that are not saved into the V-buffer. Indeed, these outer

edge parameters are not required since no bounding rectangle adjustment is performed

on the V-buffer.

3.4 Results

In this section we analyze the performances of the penumbra wedge algorithm improved

by our blending stage. First, we give the memory cost of our blending strategy. We finally

analyze its penalty onto the performances.

3.4.1 Memory requirement

Due to the hardware limitations, we cannot regroup all the required render targets in

one render context. Indeed, in addition of the depth/stencil buffer, the targeted GPU

[NVi05] supports at most four render targets. Our implementation relies on two render

contexts. Each is encoded into a frame buffer object. The first one saves the color and

the depth/stencil buffer. The latter stores the four render targets require by the V-buffer

and the SV-buffer, and shares the depth/stencil buffer with the first render context.

The SV-buffer requires two RGBA 32-bit buffers. The V-buffer needs one RGBA

32-bit render target to encode the bounding rectangles of each light part. In addition

it uses one RGBA 8-bit buffer for the associated percentage of occlusion. Thus, with a

45

Chapter 3. Penumbra wedge blending

(a) PWedge (b) Our algorithm (c) Reference (d) (a) - (c) (e) (b) - (c)

Figure 3.11: A cube composed of 9 × 9 spheres. This scene illustrates the penumbra
blending generated by different soft shadow algorithms: the penumbra wedges, our method
and a reference image.

1024× 1024 frame buffer resolution, the memory cost of the shadow buffers is:

1024× 1024× 4 channels (3 buffers× 4 bytes+ 1 buffer × 1 byte) = 52MB

Nevertheless, the targeted GPUs does not support render contexts composed of render

targets with different encodings. As a consequence we have to use four RGBA 32-bit

buffers. With such format, the memory cost of the visibility render context reaches 64 MB.

3.4.2 Performances

The performances were measured on a Linux 64-bit workstation composed of twoOpterons

dual core 2Ghz with 4GB of memory. Our graphics system is based on two NVIDIA

7800GTX. We take benefit of the two GPUs by using the Scalable Link Interface (SLI)

technology [NVi05] configured in the Alternate Frame Rendering mode, i.e. the frames

are rendered alternatively on the two GPUs. We also bench our implementation with

only one graphics card in order to outline the influence of the graphics system.

The test scene is composed of a collection of spheres that we organize in order to exhibit

strong overlapping artifacts (figure 3.11). Each of them is discretized by 762 triangles. The

impact of the geometric complexity is evaluated by increasing progressively the number

of spheres. The figures 3.12 and 3.13 illustrates the results.

With very few triangles, the original penumbra wedge algorithm runs twice as fast as

our approach. However, when we use more polygons the penumbra wedge performances

decrease faster than our method. Indeed, we see that with 17, 526 triangles and the SLI

enabled, evaluating our blending heuristic increase the penumbra wedge rendering cost

by only 7%. This is due to the silhouette detection as well as the primitive extrusion

that are both performed onto the CPU. This bottleneck can be exhibited by comparing

the performances of the penumbra wedges with and without the SLI enabled. With only

3, 048 polygons, the SLI gain is already negligible. Our algorithm is more GPU intensive

46

3.5. Discussion

76
2

15
24

22
86

30
48

38
10

45
72

53
34

60
96

68
58

83
82

10
66

8
13

71
6

16
76

4
17

52
6

18
28

8
20

57
4

0

20

40

60

80

100

120

140

160

PWedge SLI
PWedge
PWedge blending SLI
PWedge blending

Poly count

F
ra

m
e

 r
a

te

Figure 3.12: Frame rate comparison between the penumbra wedge algorithm and the
proposed improvement.

and thus it takes a strong advantage of a SLI configuration. However, when we increase

the number of polygons over 17, 482 our algorithm becomes CPU limited and the SLI

gain is quasi-null.

3.5 Discussion

The proposed algorithm drastically improves the overall shadow quality of the penumbra

wedge approach (figure 3.11). It takes benefit of the robust penumbra wedge framework

to limit the costly soft shadow evaluation to the penumbra regions. Nevertheless, despite

convincing results (figure 3.14), we can observe several inherent limitations.

First, the obtained performances outline the main issue of object-based algorithms:

their efficiency is drastically influenced by the geometric complexity of the environment.

Following our initial implementation, the silhouette detection and the penumbra wedge

extrusion is CPU intensive. Interactive performances are thus obtained only on simple

scenes. Additional efforts has to be made in order to improve the efficiency of this step.

One can note that more recent graphics hardware supports geometry programs. Thanks

to this functionality we can expect better performances by performing the silhouette

detection and the shadow volume/penumbra wedge generation directly onto the GPU.

47

Chapter 3. Penumbra wedge blending

76
2

15
24

22
86

30
48

38
10

45
72

53
34

60
96

68
58

83
82

10
66

8
13

71
6

16
76

4
17

52
6

18
28

8
20

57
4

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00% SLI
No SLI

Poly count

R
e

la
tiv

e
 c

o
s

t

Figure 3.13: Relative cost of the penumbra wedge blending compare to the original
penumbra wedge algorithm.

Even though our blending heuristic improves the resulting shadow quality, we cannot

assume the correctness of the result. Our algorithm is based on an approximation of the

occluded light area. This approximation is of course insufficient when targeting realistic

shadows. We can improve the blending heuristic by using the center of gravity of the

occluded light part. This new information would allow a better approximation of the

position of the occluded region into the bounding rectangle. Nevertheless, the resulting

shadows would still lies on an approximative heuristic that could not pretend to accurate

solutions.

Finally, despite its intuitive use, computing a Vcoef inevitably leads to wrong shadows.

Indeed, the Vcoef formulation is based on an approximation of the direct lighting. In

fact, accurate direct shadow simulation should be evaluated according to the direct light

transport problematic. Thus, in the following chapter, we will explicitly focus on the

visibility problematic of the direct light transport in order to address the accuracy issues

of a Vcoef -based direct illumination.

3.A Infinite shadow volume extrusion

This ARBvp1.0 vertex program performs the infinite extrusion of the shadow volume
vertexes with respect to a point light.

48

3.B. Infinite penumbra wedge construction

Figure 3.14: Our algorithm applied on a scene composed of 6662 polygons. This scene
is based on the models and materials of Half-life2. Objects and textures copyright Valve
Corporation: used with permission.

!!ARBvp1.0

PARAM lpos = program.env[0]; # {light position.xyz, 0}

PARAM mvp[4] = {state.matrix.mvp};

ATTRIB vpos = vertex.position;

OUTPUT opos = result.position;

TEMP r0;

SUB r0, vpos, lpos;

MAD r0, r0.w, lpos, r0;

DP4 opos.x, r0, mvp[0];

DP4 opos.y, r0, mvp[1];

DP4 opos.z, r0, mvp[2];

DP4 opos.w, r0, mvp[3];

END

3.B Infinite penumbra wedge construction

The following C++ listing computes the vertexes of an infinite penumbra wedge from a given

silhouette edge with respect to a spherical light source. The class Vector3D and Vector4D

49

Chapter 3. Penumbra wedge blending

are internally defined. They overload the common per component vector operators as +,

-, *= , etc. Furthermore, one can simply cast a Vector4D object into a Vector3D one by

using the Vector3D& Vector4D::to_Vector3D(void) method. Finally, the constructor

Vector4D::Vector4D(const Vector3D& v, float w) creates a Vector4D instance from

the Vector3D v and the homogeneous value w.

class InfinitePWedge {
public:

void build from silhouette edge

(const Vector3D& v0, const Vector3D& v1,

const Vector3D& light pos, float light radius);

protected:

// Associated silhouette edge

Vector3D edge v0; 10

Vector3D edge v1;

// Homogeneous coordinates of the penumbra wedge vertexes

Vector4D wedge edge v0, wedge edge v1;

Vector4D wedge front v0, wedge front v1;

Vector4D wedge back v0, wedge back v1;

Vector4D wedge center v0, wedge center v1;

};

void

InfinitePWedge::build from silhouette edge 20

(const Vector3D& v0, const Vector3D& v1,

const Vector3D& light pos, float light radius) {

Vector3D light to v0, light to v1;

Vector3D axis x, axis y;

Vector3D tmp0, tmp1;

float sqr light to v0, sqr light to v1;

this−>edge v0 = v0;

this−>edge v1 = v1; 30

light to v0 = this−>edge v0 − light pos;

light to v1 = this−>edge v1 − light pos;

sqr light to v0 = dot product(light to v0, light to v0);

sqr light to v1 = dot product(light to v1, light to v1);

if(sqr light to v0 < sqr light to v1) {
light to v1 *= sqrtf(sqr light to v0 / sqr light to v1);

this−>wedge edge v1 = Vector4D(light to v1 + light pos, 1.f);

this−>wedge edge v0 = Vector4D(this−>edge v0, 1.f);

50

3.B. Infinite penumbra wedge construction

} else { 40

light to v0 *= sqrtf(sqr light to v1 / sqr light to v0);

this−>wedge edge v0 = Vector4D(light to v0 + light pos, 1.f);

this−>wedge edge v1 = Vector4D(this−>edge v1, 1.f);

}
axis x = (light to v1 − light to v0).normalize() * light radius;

axis y = (cross product(light to v1, axis x)).normalize() * light radius;

tmp0 = this−>wedge edge v0.to Vector3D() − light pos − axis x;

tmp1 = this−>wedge edge v1.to Vector3D() − light pos + axis x;

50

this−>wedge front v0 = Vector4D(tmp0 + axis y, 0.f);

this−>wedge front v1 = Vector4D(tmp1 + axis y, 0.f);

this−>wedge back v0 = Vector4D(tmp0 − axis y, 0.f);

this−>wedge back v1 = Vector4D(tmp1 − axis y, 0.f);

this−>wedge center v0 = Vector4D(tmp0, 0.f);

this−>wedge center v1 = Vector4D(tmp1, 0.f);

}

51

4

Accurate shadows by depth

complexity sampling

We present a new object-based soft shadow algorithm that targets the robust simulation

of the direct lighting. The proposed algorithm is based on a new efficient evaluation of

the number of occluders between two points, i.e. the depth complexity. We use the depth

complexity information in order to define which light samples are visible for each receiver

(i.e. with a depth complexity equal to zero). Then, we either modulate the direct lighting

or numerically simulate the direct illumination of the environment according to an user

controllable trade off between quality and performances.

Our algorithm combines the efficiency of the real time penumbra wedge framework

[AAM03] with the accuracy of the offline soft shadow volume approach [LAA+05, LLA06].

The soft shadow volumes generalize the penumbra wedges in order to compute accurate

offline soft shadows for planar lights. This algorithm uses the penumbra wedge framework

to define a list of edges that potentially affect the visibility of the planar light from the

receiver point p. For each p, the occluding edges are then projected onto the light source

as seen from p. A set of edge rules are then used to evaluate the depth complexity for

a set of light samples. Finally, to determine whether the samples with the lowest depth

complexity are occluded, a single shadow ray is cast to one of them. In our algorithm,

neither data structures storing silhouette edges for each p, nor explicit edge rules for

depth complexity computation, are necessary. In addition, our approach is not limited to

planar area light sources and does not lie onto any ray tracer.

We start in section 4.1 with a description of our new efficient depth complexity eval-

uation. Then we discuss about the different sampling strategies that we used in order

to reduce the variance of our depth complexity computation (section 4.2). Section 4.3

outlines how we use the depth complexity in order to compute soft shadows. Section 4.4

describes the GPU implementation of this new soft shadow algorithm. Finally, we present

53

Chapter 4. Accurate shadows by DCS

results in section 5.4 and we end with a discussion.

4.1 Local depth complexity computation

This section details our streamed evaluation of the depth complexity function. In con-

trast to previous approaches [LAA+05, LLA06], the proposed algorithm incrementally

computes the depth complexity without any explicit knowledge of the overall scene orga-

nization. In a first step, we compute the silhouette edges E from the entire environment as

seen from a light l. Then, we initialize the depth complexity between p and a set of light

samples from the pool of edges E (section 4.1.1). We finally update the depth complexity

of the receivers lying in the penumbra region of the silhouette edges E (section 4.1.2).

4.1.1 Depth complexity initialization

The depth complexity between p and a light sample s was originally defined as the number

of surfaces that a ray from p to s intersects. A depth complexity of n (n greater than

zero) means that n surfaces occlude s as seen from p. However, potential changes in

the visibility function can occur only on the silhouette edges. It is therefore sufficient to

track the occluding silhouette loops rather than the occluding surfaces. In consequence,

we reformulate the depth complexity function as the number of silhouette loops occluding

s from p.

This reinterpretation addresses a limitation of previous algorithms. Indeed, as ex-

plained by Laine et al. [LAA+05], each silhouette edge generates a local change in the

depth complexity function and the set of all silhouette edges represents its derivative.

Integrating over the local changes results in integrating the derivative of the depth com-

plexity function, and gives the depth complexity without the constant of integration. In

order to define this constant, Laine et al. cast a shadow ray towards the light sample

with the lowest depth complexity, thus limiting the performances on dynamic scenes.

However, the shadow volume algorithm computes for each visible point p the number of

occluding silhouette loops. Using the previous reformulation, this defines the constant

in the integration of the depth complexity function derivative. As a result we can avoid

the ray casting by initializing the constant of integration with the result of the shadow

volume step. This is in fact quite similar to the initialization step of the penumbra wedge

approach [AAM03].

4.1.2 Update of the depth complexity

54

4.1. Local depth complexity computation

Rectangular light

Samples

+1
+1

+1

Occluder Outer edge Inner edge

�

0

0
0

0

00

0

�

�
�

-1

�

�
�

� �

+1 �

Inner edge

�

�
�

� �

�

-1

�

�
�

� �

�

�

� Initialization � Update

Figure 4.1: Update of the depth complexity of a set of light samples seen from a point
p. Each occluding edge is projected from p onto the light source. The covered samples
are then incremented or decremented according to the wedge type (outer or inner).

Algorithm 7 update depth complexity(wedges, light)
1: for all half wedge ∈ wedges do
2: for all p in wedge do
3: edge ⇐ half wedge.silhouette edge;
4: edgep ⇐ project(edge, light, p);
5: edgepc ⇐ clip(edgep, light);
6: for i⇐ 0 to NBR LIGHT SAMPLES − 1 do
7: if p.sample[i] is covered by edgepc then
8: if is outer wedge(half wedge) then
9: p.sample[i].depth complexity + = 1;

10: else
11: p.sample[i].depth complexity − = 1;
12: end if
13: end if
14: end for
15: end for

16: end for

The depth complexity integration for opaque meshes is performed as in algorithm 7.

The depth complexity between a point p and a set of light samples is updated by process-

ing the silhouette edges which projection from p overlaps the light source (line 3). Due to

its linear nature, the integration can be performed separately for each projected edge and

it is independent for each light sample (line 6). Thus, we update the depth complexity

counter independently for each light sample as follows.

Following the penumbra wedge framework, the shadow volume quadrilateral splits

each wedge into two parts: the inner part and the outer part. In both cases, the edge is

projected onto the light source (line 4) to define the covered light samples (line 7). Their

corresponding depth complexity counters are then incremented (line 9) or decremented

(line 11) if the wedge is respectively outer or inner (figure 4.1). Since projected edges

are clipped (line 5), silhouette edges crossing the light border are also naturally handled

55

Chapter 4. Accurate shadows by DCS

(standard offline integrations require specific treatments here [LAA+05]).

4.1.3 The counter packing encoding

The depth complexity is evaluated with edges encoded as a streamed data set rather than

a common static list. Instead of iterating over the list of edges to globally compute the

depth complexity between a sample s and a point p, we progressively update it for each

edge that potentially affects the visibility. This avoids the use of a costly pre-computed

static space partitioning data structure referencing silhouette edges [LAA+05, LLA06].

For each visible point p we maintain a set of depth complexity counters corresponding

to the set of light samples. Therefore the number of available counters must be equal to

the number of light samples, and the precision available has to be sufficient to store the

maximum number of occluders.
�Counter 0

��������������� ���	 ���� ����

���� ���� ���� ���������������������

���������������� ���� ���� �������� ���� ��������

���	 ���� ��������

� � �Counter 1 Counter 2 Counter 3

Figure 4.2: Simultaneous update of four counters ∈ [0..255] packed in a four-byte
value. Left: operations on the packed representation; right: resulting value of the packed
counters.

However, common renderers can use render buffers with at most four values (red,

green, blue and alpha). In order to provide a sufficient number of counters being both

efficiently stored and updated, we pack several counters into a single value as illustrated

in the following example. Considering a value v encoded in a 32-bit unsigned integer. The

value v can store a single counter ranging from 0 to 232 − 1 or, for instance, four values

ranging from 0 to 255 in four consecutive bytes. This packed representation is particularly

well suited for a vectorized incrementation/decrementation. Indeed, assuming that the

resulting values do not overflow the domain of the counters, the addition of a four-byte

value with correctly positioned bits performs a vectorized update of the counters as shown

in figure 4.2.

We point out that the proposed counter packing representation is designed to address

the format limitation of current application programming interfaces [SA06, Mic08]. Soft-

ware renderers does not care about such issue since they are not limited to RGBA render

targets.

56

4.1. Local depth complexity computation

4.1.4 Advantages and drawbacks

The counter packing allows an efficient update of the depth complexity counters and in-

creases their quantity. However, only unsigned integers can be used. Even though depth

complexity cannot be negative, inner wedges can affect the depth complexity counters

before the outer wedges, resulting in temporary negative values. Thus, the depth com-

plexity update must be split in two batches, where outer wedges are treated before the

inner ones.

(a) Standard (b) Accurate (c) RT reference

Figure 4.3: Comparison of silhouette edge determination methods for soft shadows gener-
ation. Detecting the silhouette edges from the light center (a) leads to an under-estimated
penumbra while considering the whole surfacic light (b) avoids this single light sample
artifact and produces shadows identical to the ray-traced reference [mi] (c).

����

���	 ����

Light center

Area light
Silhouette edges

Figure 4.4: Left: detection of the silhouette edges from the light center. Right: detection
of the silhouette edges with respect to the whole area light.

Standard silhouette detection from the center of the light leads to single light sample

artifact (figure 4.3(a)). We avoid this using a more accurate approach (figure 4.3(b)).

Considering the planes of two triangles connected to an edge, the edge is a silhouette if

a part of the light source is in the positive side of one plane and in the negative side of

57

Chapter 4. Accurate shadows by DCS

the other [LAA+05]. Even though this detection is more accurate, it is also more time

consuming since it generates several silhouette loops where only one is produced by a

standard detection (figure 4.4).

Finally, the presented algorithm generalizes the penumbra wedge approach [AAM03]

and it can be easily integrated into the penumbra wedge framework.

4.2 Light sampling strategy

(a) 64 correlated (b) 64 decorrelated (c) 64 stratified

(d) 64 interleaved (e) 16 stratified (f) 16 interleaved

Figure 4.5: Comparison of the soft shadow quality according to the number of samples
and the sampling strategy. Shadows are generated with either 64 (a, b, c, d) or 16 (e,
f) samples using a correlated (a), decorrelated (b), decorrelated and stratified (c, e) or
interleaved sampling pattern (d, f).

The quality of the reconstructed visibility function between a point p and an extended

light source depends on both the number of samples and their distribution over the light

(figure 5.3). In this section we detail our sampling strategy and propose a method to

58

4.2. Light sampling strategy

dynamically adjust the balance between the precision of the depth complexity and the

number of samples.

4.2.1 Sample distribution

In order to reduce the variance of the depth complexity function evaluation for p, it is

necessary to distribute random samples onto the light source using an adapted probability

distribution function [PH04]. However, a fixed sampling pattern for all p may become

visible (figure 4.5(a)), even with several light samples. In order to alleviate this drawback,

one can vary the set of samples for each p by randomly rotating the initial sampling

pattern (figure 4.5(b)). In addition to this deccorelation, we reduce the variance by using

a stratified sampling strategy. (figures 4.5(c) and 4.5(e)).

4.2.2 Interleaved sampling

Correlated samples generate visible sampling patterns and their deccorelation generates

noise. Interleaved sampling [KH01] takes advantage of both distributions. The main idea

is that for neighbor points, a measured signal may produce the same result. Thus, the

signal for nearby points is sampled with an interleaved sampling distribution and finally

merged into a single sampling pattern. Segovia et al. [SIMP06] proposed a real time

interleaved sampling framework for deferred renderers. To conserve the coherence between

neighbor pixels, they split the rendered image into sub-buffers containing the pixels that

use the same distribution of samples. After sampling the desired signal, they gather the

sub-buffers and filter the result according to the normal and depth discontinuities.

This real time interleaved sampling formulation can be efficiently used in our frame-

work (figure 4.5(d) and 4.5(f)). However, our object-based algorithm works in a purely

forward manner. Thus, in order to avoid multiple rendering of shadow volumes and

wedges, we use neither the image splitting nor the gather step. In spite of the loss of

near points coherence, no drop of performance occurs since no coherent memory access is

required (section 4.4).

4.2.3 Adaptive distribution

The maximum depth complexity of the rendered scene depends on the scene complexity

and the viewpoint. While rendering a plain leads to a globally low depth complexity, a

forest rendering generates many occlusions. Given a fixed amount of available memory

for a visible point p, we propose a simple way to dynamically adjust the precision and

the number of packed depth complexity counters.

59

Chapter 4. Accurate shadows by DCS

The maximum depth complexity between the light samples and p is equal to the

maximum number of occluding silhouette loops. Thus, in a first step, we track the max-

imum integration constant mc resulting from the depth complexity initialization of the

current visible points. Then we use this value to define the counter packing encoding for

the current frame. As an illustration, consider the previous example where four bytes

are available for each visible point. With mc in [256, 65535], two counters of two-byte

(∈ [0, 65535]) can be packed without overflow, while mc in [128, 255] allows the use of

four counters of one byte (∈ [0, 255]).

4.3 Depth complexity for shadow computation

This section describes the computation of soft shadows by using the depth complexity

information. We first outline how an artifact free Vcoef can be derived from the depth

complexity (section 4.3.1). Targeting the robust simulation of direct shadows, we then

show how we use the depth complexity to numerically solve the direct lighting integral

(section 4.3.2). Finally, we describe an extension that handles the soft shadows cast by

occluders having a specific transmittance property (section 4.3.3).

4.3.1 From depth complexity to visibility coefficient

The depth complexity function returns the number of occluders between two points. Con-

sidering a light sample s and a surface point p, s is visible from p if its depth complexity

from p is equal to zero. Thus, a Vcoef for p can be simply computed from a set of N

samples uniformly distributed over a light l as:

Vcoef (l↔ p) = 1− 1

N

N−1∑
i=0

Sat (D (si,l ↔ p)) (4.1)

where D (si,l ↔ p) returns the depth complexity ∈ N between the ith light sample si,l and

p. Sat (x) is a saturating function that clamps x into [0, 1].

Area light sources such as a fire or a TV screen have a spatially varying luminance.

Using depth complexity, such textured light sources can be simply taken into account

during the Vcoef computation by multiplying the visibility query (i.e. the saturated depth

complexity) by the sample luminance L.

V rgb
coef (l↔ p) =

1

N

N−1∑
i=0

Lrgb
i,l − L

rgb
i,l · Sat (D (si,l ↔ p,)) (4.2)

60

4.3. Depth complexity for shadow computation

The sample luminance can be encoded with an arbitrary color space. However, since the

red, green, blue (RGB) representation is well suited for common rendering engines, we

define sample luminance and Vcoef as RGB values ∈ [0, 1]3. In addition, sample luminance

can vary over time. We take into account these animated textured lights by adding time

dependence to the luminance.

4.3.2 Numerical integration of the direct lighting

Previously, the depth complexity function is used to compute a visibility coefficient of a

point p. The Vcoef is then used to modulate the direct illumination of p computed from

the center of the light. Hence, considering a set of j lights and its center position x, the

lighting according to a given point of view x′ is computed as:

L
(
p→ xi′

)
= Le

(
p→ x′

)
+ I

(
p→ x′

)
+

∑
j

Le (x→ p) fs
(
x→ p→ x′

)
Vcoef (j ↔ p)

cosθi

||x− p||2
(4.3)

Even though the visibility is evaluated for an area light source, the direct lighting is

still computed using point lights. In order to compute an accurate direct illumination for

extended light sources, we have to solve the direct lighting part of the rendering equation:

L
(
p→ x′

)
= Le

(
p→ x′

)
+ I

(
p→ x′

)
+

∫
M
Le (x→ p) fs

(
x→ p→ x′

)
V (x↔ p)

cosθocosθi

||x− p||2
dA (x) (4.4)

Note that the binary visibility V (x↔ p) can be very simply evaluated from the depth

complexity function as:

V (x↔ p) = H (D (x↔ p)) (4.5)

where H(x) is the Heaviside function that returns one if x is strictly positive and zero

otherwise. Thus, we can numerically solve the equation 4.4 using a set of N samples

uniformly distributed over each extended light source, and their corresponding depth

complexity:

L
(
p→ x′

)
= Le

(
p→ x′

)
+ I

(
p→ x′

)
+

∑
j

1

PjN

N−1∑
k=0

Le (xk,j → p) fs
(
xk,j → p→ x′

)
H (D (xk,j ↔ p))

cosθocosθi

||x− p||2

(4.6)

where xk,j is the kth sample of the light j and Pj the uniform probability for the samples of

the jth light source. This equation 4.6 naturally handles textured lights since the emitted

61

Chapter 4. Accurate shadows by DCS

radiance Le (xk,j → p) from the light samples is explicitly defined.

4.3.3 Handling semi opaque occluders

Our depth complexity algorithm is designed to generate shadows cast by fully opaque oc-

cluders. In this section, we propose an extension that handles the transmittance property

of the occluders.

The transmittance integration

Targeting meshes with a transmittance property, we separate opaque objects from semi

transparent meshes. The shadows from opaque objects are evaluated with our depth

complexity sampling algorithm (section 4.1). For the visible light samples (i.e. with a

depth complexity equal to zero), we then evaluate the amount of light that effectively

reaches the receiver with respect to the transmittance of the semi transparent occluders.

This computation is performed as follows.

In a first step, for each visible receiver p, we evaluate an initial percentage of transmit-

ted light (algorithm 8). To do that, we simply extends the Z-fail shadow volume strategy

in order to initialize both the transmittance and the depth complexity between the light

samples and the receivers. Indeed, we evaluate the constant of the depth complexity inte-

gration (lines 9 and 15) as well as the percentage of radiance that is transmitted (lines 12

and 19), with respect to the orientation of the rendered primitives (lines 7).

In a second step, we use the penumbra wedge framework to update the initial trans-

mittance (algorithm 9). This update step is very close to the algorithm 7. The main

difference is that we perform additional treatments to handle semi transparent occlud-

ers (lines 12 and 19). We modulate the transmitted light percentage (lines 14 and 21)

according to the type of the wedges (lines 9 and 16). The figure 4.6 summarizes this

transmittance integration process.

The transmitted direct lighting

Following the previous algorithm, we modulate the direct illumination of the scene by

using a Vcoef evaluated from the depth complexity D and the transmittance T :

V rgb
coef (l↔ p) =

1

N

N−1∑
i=0

T (si,l ↔ p)
(
Lrgb
i,l − L

rgb
i,l · Sat (D (si,l ↔ p,))

)
(4.7)

One the other hand, when targeting accurate direct lighting, we numerically solve the

direct illumination formulation as follow:

62

4.3. Depth complexity for shadow computation

Algorithm 8 initialization(sh volumes, camera, Z-buffer, stencil-buffer, trans-buffer)

1: clear(stencil-buffer, 0);
2: clear(trans-buffer, 1.f);
3: for all triangle ∈ sh volumes do
4: receivers ⇐ Z-fail(Z-buffer, triangle);
5: mesh ⇐ get associated mesh(triangle);
6: for all p ∈ receivers do
7: if is back facing(triangle, camera) then
8: if is opaque(mesh) then
9: stencil-buffer[p] + = 1;

10: else
11: transmittance ⇐ get transmitted percentage(mesh);
12: trans-buffer[p] ∗ = transmittance;
13: end if
14: else
15: if is opaque(mesh) then
16: stencil-buffer[p] − = 1;
17: else
18: transmittance ⇐ get transmitted percentage(mesh);
19: trans-buffer[p] / = transmittance;
20: end if
21: end if
22: end for

23: end for

63

Chapter 4. Accurate shadows by DCS

Algorithm 9 update DC and transmitted light(wedges, light)
1: for all half wedge ∈ wedges do
2: for all p in wedge do
3: edge ⇐ half wedge.silhouette edge;
4: edgep ⇐ project(edge, light, p);
5: edgepc ⇐ clip(edgep, light);
6: mesh ⇐ get associated mesh(half wedge);
7: for i⇐ 0 to NBR LIGHT SAMPLES − 1 do
8: if p.sample[i] is covered by edgepc then
9: if is outer wedge(half wedge) then

10: if is opaque(mesh) then
11: p.sample[i].depth complexity + = 1;
12: else
13: transmittance ⇐ get transmitted percentage(mesh);
14: p.sample[i].transmittance ∗ = transmittance;
15: end if
16: else
17: if is opaque(mesh) then
18: p.sample[i].depth complexity − = 1;
19: else
20: transmittance ⇐ get transmitted percentage(mesh);
21: p.sample[i].transmittance / = transmittance;
22: end if
23: end if
24: end if
25: end for
26: end for

27: end for

64

4.3. Depth complexity for shadow computation

Rectangular light

Samples

*0.5

Semi opaque occluders

Outer edge Inner edge

�

1.0

1.0
1.0

1.0

1.0
1.0

1.0

���

���

���

*0.5
/0.5���

���

���

���

���

*0.5

Outer edge

���

���

���
���

���

����

����
���

���

���

���

� Initialization � Update

*0.5
*0.5

/0.5

*0.5

*0.5*0.5

Figure 4.6: Transmittance update for a set of light samples as seen from a receiver p
and occluded by two triangles with a transmittance factor equal to 0.5. Each occluding
edge is projected from p onto the light source. The covered samples are then modulated
according to the wedge type (outer or inner).

L
(
p→ x′

)
= Le

(
p→ x′

)
+ I

(
p→ x′

)
+

∑
j

1

PjN

N−1∑
k=0

[
Le (xk,j → p) fs

(
xk,j → p→ x′

)
T (xk,j ↔ p)H (D (xk,j ↔ p))

cosθocosθi

||x− p||2

]
(4.8)

In both situations, the binary visibility between the light samples and the receivers is

retrieved with respect to the depth complexity. The radiance that effectively reaches the

surface points is then evaluated from the transmitted light percentage of the visible light

sample.

Analysis

The proposed transmittance evaluation is performed according to primitives extruded

from the silhouette edges; in other words, no explicit access to the occluding surfaces is

done. Thus, we keep the desirable independence property of the penumbra wedge frame-

work. However, this precludes the use of surfaces with spatially varying transmittance.

The transmitted light percentage cannot be evaluated with integer operations:. It

needs floating point capabilities. Even though GPU-based renderers support the floating

point representation, they can store at most four channels per pixel. The counter packing

representation addresses this limitation for the depth complexity integration by packing

several counters in one integer value. Nevertheless, this encoding cannot be used for the

transmittance evaluation due to its limitation to integer operations.

We propose an alternative transmittance evaluation that takes benefit of the counter

65

Chapter 4. Accurate shadows by DCS

packing formating. We replace the depth complexity function D (si,l ↔ p) (equation 4.2)

by a light attenuation function Dr (si,l ↔ p) computed by summing the occluders’ per-

centage of opaqueness. We approximate the floating point values by discretizing and map-

ping the transmittance domain into integers. This limits the precision of both counters

and opaqueness but allows the use of the counter packing formatting for the transmittance

evaluation. Functions D and Dr are equal for opaque occluders and in fact we do not

differentiate, instead denoting D and Dr as a real depth complexity function.

We point out that this alternative is an approximation producing accurate results

only when a single semi opaque surface occludes p. Indeed, the light contribution is

derived from the sum of opaqueness factors while it should rather be modulated by the

transmittance of all occluding surfaces. Nevertheless, this algorithm is designed in order

to address current graphics API limitations. For software renderers [SCS+08], our original

approach can be naturally used.

Shadow Volumes

Initialize Ambient + Z-Buffer
Color

Buffer

(RGB)

Z-Buffer

Detect Silhouettes
TFB

Color

Buffer

(Alpha)

Update Z-Complexity
(Penumbra Wedges)

Direct Illumination
Color

Buffer

(RGB)

DCS

Buffers

Geometry

Init Z-Complexity

�
�

�

�
�
�
�

�

	

�
�

Figure 4.7: Overview of our algorithm for GPU implementation of the proposed depth
complexity evaluation. All computations are performed on the GPU without transferring
data to main memory.

66

4.4. Implementation

4.4 Implementation

In this section, we present a GPU-intensive implementation of our algorithm. The pro-

posed rendering algorithm (algorithm 10) is developed for graphics hardware that supports

fragment programs (FP), vertex programs (VP) and geometry programs (GP). Figure 4.7

summarizes the GPU implementation and the render context organization, which we

elaborate in the following explanations.

Algorithm 10 render scene(world, view)
Require: Pre-computed samples pattern

set up camera(view);
(color-buffer, Z-buffer) ⇐ draw ambient lighting(world);
if Interleaved Sampling then

init discontinuity buffer();
end if
for all light ∈ world.lights do

clear shadow buffers();
edges ⇐ detect silhouette edges(light, world);
init depth complexity(edges);
if adaptive sampling then

define max depth complexity();
end if
wedgeso ⇐ build outer wedges(edges);
wedgesi ⇐ build inner wedges(edges);
DC-buffer ⇐ update depth complexity(wedgeso, wedgesi);
if V-buffer is used then

V-buffer ⇐ vcoef from depth complexity(DC-buffer);
if interleaved sampling then

filter vbuffer();
end if
color-buffer+ =draw modulated direct(light, world, V-buffer);

else
if interleaved sampling then

color-buffer+ =filter(direct illumination(light, world, DC-buffer));
else

color-buffer+ =direct illumination(light, world, DC-buffer);
end if

end if

end for

4.4.1 Sample distribution

Depending on the sampling strategy and light type we pre-compute, and store into tex-

tures, the corresponding 2D sample distribution (we assume that omni-directional light

67

Chapter 4. Accurate shadows by DCS

sources can be parametrized in 2D). In order to limit the memory requirements and the

number of texture accesses, we pack several 2D sample positions per texel. Since the

sample positions are computed in the normalized texture space, a precision of one byte

per coordinate does not introduce a significant error. This precision allows us to encode

two sample positions in a texture channel of four-byte. Hence, using four channels

(i.e. a RGBA texture), we obtain eight sample positions in one texture fetch. Note that

textured lights require the luminance of each sample. Thus, in addition to their packed

position, we pre-compute for these lights an N ×M 24-bit RGB texture that stores the

N sample luminances for M sets of correlated sample patterns.

4.4.2 Soft shadow volume framework

Silhouettes detection

In order to avoid the CPU bottleneck of object-based shadow algorithms, we perform

the silhouette detection onto the GPU using a specific GP. The detected silhouettes are

stored on the GPU in a Transform Feedback Buffer (TFB) [SA06]. Since writing to the

TFB is asynchronous, CPU computations such as scissor rectangle definition or depth

bounds evaluation [Len05] are performed in parallel. Note that according to the desired

quality and performance trade off, the silhouette determination can be computed with

either accurate or standard detection. The accurate detection is obviously more time

consuming while it is required only in specific situations. Thus, we prefer the common

silhouette detection, leaving the accurate one to unbiased solutions. Even though it is

easy to exacerbate the differences between the two methods, using standard detection

rarely leads to distinguishable visual issues in common environments.

Shadow volumes

Silhouette edges are then used in the shadow volume pass to define the initial value of the

depth complexity function. We perform silhouette edge extrusion with a GP. In order to

avoid a costly access to the stencil buffer, the Z-fail stencil test [Car00] is performed in a

single pass in a simple FP. The resulting value is then cumulatively blended in the alpha

channel of the color buffer:

face.x = fragment is front-facing ? 1 : -1

ATTRIB face = fragment.facing;

ATTRIB fPos = fragment.position;

TEMP r0;

texture[0] == zBuffer

TEX r0.x, fPos, texture[0], RECT;

68

4.4. Implementation

SGE r0.x, fPos.z, r0.x;

MUL result.color.w, r0.x, -face.x;

For a robust Z-fail stencil update, the shadow volumes have to be capped. Thus, we use

a specific GP to compute the shadow volumes capping in an additional geometric pass.

Wedges

In order to reduce memory consumption, wedges are robustly extruded to infinity during

the depth complexity evaluation, rather than being pre-computed and stored. We perform

this construction with a GP. However, the performance of a GP is influenced by the

number of generated data. Thus, the number of required vertexes is minimized using a

single triangle strip per wedge and only ten vertexes per half-wedge. Figure 4.8 illustrates

this generation of wedges. Also, common fill-rate optimizations and fragment rejection

are used during the wedge rendering (scissor test, depth bound tests, etc.)

���� ���� ����

���	 ���� ����

0

1

2

3

4 5

Silhouette edge

Half-wedge

0

4

1 3

20

4 5

3 2

Triangle strip:

0413024532

Figure 4.8: Triangle strip used for the half-wedge generation. This strip implicitly
defines coherent normals for each face. Therefore, common optimizations based on the
face orientations can be used [Len05].

4.4.3 The depth complexity sampling step

Counter packing representation

Since reading and writing in the same buffer is prohibited, we use the blending operations

of the GPU to perform the counter updates. Unfortunately, even though the targeted

GPUs support integers, their blending is not yet supported. This avoids a naive GPU

implementation of the depth complexity update. On the one hand, the counter packing

corresponds to a base decomposition where each base factor encodes the value of a counter

with a precision up to the base−1 e.g. two counters c0 and c1 ∈ [0 · ·255] packed in a two-

byte value k is decomposed in base 256 as k = c0 ∗2560 + c1 ∗2561. On the other hand the

simple precision floating point values are supported for both buffer format and blending

69

Chapter 4. Accurate shadows by DCS

���� ���� ����

���	 ���� ����

Silhouette

edge: e

Light

Samples

V

V0

1

c

V .bits1
� � � � V .bits0

� � � �

&~

e .bitsc
� � � �

V1
V0

& =

M � � � �

ce
p

p

p

Figure 4.9: Determination of the samples covered by the projected clipped edge epc . A
cube map encodes the covered samples from the origin to vx (x ∈ {0, 1}) while a 2D
texture stores the samples covered by the epc line. The effective covered samples are then
simply defined by a logical combination of the fetched bitfields.

operations. With this representation, one can count up to 224 − 1 without missing an

integer value. This value can be expressed in the following base decomposition:

224 − 1 = 255 ∗
(
2560 + 2561 + 2562

)
(4.9)

= 63 ∗
(
640 + 641 + 642 + 643

)
(4.10)

= 15 ∗
(
160 + 161 + 162 + 163 + 164 + 165

)
(4.11)

= 7 ∗
(
80 + 81 + 82 + 83 + 84 + 85 + 86 + 87

)
(4.12)

Thus, we use the floating point representation and the base decompositions exposed

in equations 4.9, 4.10, 4.11 and 4.12, to pack the depth complexity counters.

Depth complexity initialization

In order to simplify the explanations, we present the depth complexity initialization with

a fixed Base 64 (B64) counter packing representation (equation 4.10). However, its gen-

eralization to the other encodings is straightforward. A B64 counter packing provides

sixteen depth complexity counters per 128-bits RGBA buffer. We then use Multi Render

Target (MRT) to increase the number of counters. Even tough the targeted GPUs support

up to eight MRT, we limit the memory bandwidth and its consumption by using at most

four MRTs (i.e. 64 counters). The depth complexity initialization of the 64 counters is

then very simply performed via an FP as:

ATTRIB fPos = fragment.position;

TEMP r0;

texture[0].w == stencil value

266305 == 64^0 + 64^1 + 64^2 + 64^3

TEX r0.w, fPos, texture[0], RECT;

70

4.4. Implementation

MUL r0.w, r0.w, 266305;

MOV result.color[0], r0.w;

MOV result.color[1], r0.w;

MOV result.color[2], r0.w;

MOV result.color[3], r0.w;

(a) (b) (c)

Figure 4.10: (a) Illustration of the artifacts introduced by a discretization of the back
projected edges and the corresponding covered samples in a 1024 × 1024 4D texture (16
MB). (b) Our discretization using a 64 × 64 × 6 cube map and a 512 × 512 2D texture
(4.375 MB). (c) Determination of the covered samples without discretization.

Depth complexity update

One of the main challenge we face while updating the depth complexity is efficiently

determining samples covered by the projected clipped edge. Despite having access to

eight sample positions in one texture fetch, a naive search leads to a complexity in O (N)

where N is the number of samples. We therefore propose an efficient discrete approach

to find the covered samples. A pre-computed 4D texture [AAM03] uses large amount of

memory and produces discretization artifacts (figure 4.10(a)), while the Hough transform,

as in [ED07], requires that we either approximate, or pre-compute, the unsupported arc-

cosine function. This leads to either additional texture fetches or heavy computation.

Hence, we propose a new discrete representation (figures 4.9 and 4.17(b)).

First, covered samples lying in a sector defined by the origin and vector vx (x ∈
{0, 1}) are encoded in a bit field and stored in a cube map. Then, a 2D texture indexed

by the orthogonal projection of the light center onto the line epc stores the bit field of

samples covered by this line. The final bit mask M is then simply defined as M =

v1.bits & (∼ v0.bits) & epc .bits. Finally, we iterate through the bits of M to update the

corresponding counters. Despite the use of integer operations, which are less efficient than

71

Chapter 4. Accurate shadows by DCS

floating point, this method requires only three texture fetches and a logical combination

to define all the covered samples.

Note that this discretization is robust even though the light center passes through the

line epc . Indeed, in this case, the effective covered samples are just defined by the cube

map and so the 2D texture has to store a field of bits set at one.

4.4.4 Evaluating the direct illumination

Finally, the depth complexities associated with a fragment are used to solve either the

equation 4.6 or to compute the corresponding Vcoef (equation 4.2). The first approach

merges the direct illumination computation with the visibility queries while the second

performs an additional step to compute the Vcoef used to modulate the direct lighting.

The resulting lighting contribution is then cumulatively blended. Note that in both cases,

the interleaved sampling strategy requires an additional filtering step combining the in-

terleaved sampling patterns [SIMP06].

4.5 Results

In this section we analyze both the memory consumption and the performances of our

implementation onto graphics hardware of the depth complexity algorithm.

4.5.1 Memory cost

Table 4.1 shows the memory used by data structures in our implementation. We do not

apply any texture compression in order to present significant memory cost without the

influence of a specific/subjective compression method. In addition, we reserve 5MB of

memory for the silhouettes Transform Feedback Buffer, allowing us to store up to 655, 360

silhouette edges.

The memory requirement of our algorithm is independent of the scene complexity and

depends only on the algorithm parametrization and the light types of the scene. Using only

one depth complexity buffer (DC-buffer) for direct illumination without textured light and

covered samples discretization requires only (a)+(b)+(e)+(f)+(k) ≈ 32MB of memory.

On the other hand, computing an image modulated by the V-buffer, with ten textured

lights, four DC-buffers, an interleaved sampling strategy and the discrete covered samples

representation requires (a)+(b)+(c)+10∗ (d)+(e)+(f)+(g)+(h)+(i)+(j)+4∗ (k) ≈
105.575MB of memory. However, this memory requirement is not a limitation on current

high-end GPUs.

72

4.5. Results

Format Memory cost

(a) Silhouettes TFB 1,310,720 × 32F 5MB
(b) Samples position 64 samples packed in RGBA 32F 128B
(c) Edge LUT (5122 + 6 ∗ 642) ∗ RGBA 32F 4.375MB
(d) Per light LUT 64× 64 RGB 8UB 12KB
(e) Color + Stencil buffer RGBA 16F 8MB
(f) Z-buffer DEPTH COMPONENT24 3MB
(g) V-buffer RGB 8UB 3MB
(h) Discontinuity buffer Alpha 8UB 1MB
(i) Temp filtered buffer RGBA 8UB 4MB
(j) Deferred buffer RGB 32F 12MB
(k) DC-buffer(s) RGBA 32F 16MB

Table 4.1: Detailed memory costs of our algorithm implementation with a 10242 image
resolution. An edge LUT (c) stores our discreet covered samples representation while a
per light LUT (d) stores the luminance texture lookup defined per textured light. The
V-buffer (g) is not used when the equation 4.6 is solved. Finally, discontinuity (h),
temp filtered (i) and deferred (j) buffers are only necessary with an interleaved sampling
strategy.

4.5.2 Performance analysis

We present the performances of our algorithm on a complete 1024×1024 image rendering.

Indirect lighting is approximated with an irradiance map [RH01] and the Blinn BRDF

[Bli77] is used for the materials’ appearance. Our renderer is based on the OpenGL API

and all the shaders are written in the pseudo assembly language of the NV_gpu_program4

extension [Bro06]. The results are measured on a 64-bits Linux workstation with a

CoreTM 2 Duo 2.4Ghz, 4GB of DDR2 800Mhz and a Geforce GTX−280. Our bench-

marks measure the global rendering time (figure 4.11) and the cost of the different steps

(figure 4.12) on three test scenes (figure 4.14, 4.15 and 4.16) with varying algorithm

parametrization. To stress our approach, the light sources are not attenuated and so they

do not take advantage of per-light scissor and depth bound optimizations. In addition,

we do not perform any culling optimization. Finally, we use a counter packing represen-

tation where each DC-buffer stores 16 depth complexity counters with a precision up to

63 (equation 4.9).

Figure 4.11 illustrates that the Depth Complexity Sampling with 16 samples (DCS16)

is approximately 3 times faster than using 64 samples (DCS64). This performance im-

provement is explained by the limitation on memory bandwidth and texture fetches, in

addition of the reduction in working load of the raster operation unit. To reduce the

noise of the shadows computed with 16 depth complexity counters, the interleaved sam-

73

Chapter 4. Accurate shadows by DCS

pling strategy can be used with a negligible performance cost (DCSi16). Approximating

shadows for semi-opaque occluders (t-DCS64) is less than 4% slower than the common

depth complexity sampling. Note that compared to a direct lighting modulated by a

V-buffer, solving the equation 4.6 (DLS64) leads to a performance drop between 7% and

10%, except for the game scene, where the rendering time is 64% slower than using a

V-buffer. This result is explained by the effectiveness of the V-buffer on low-polygon

scenes. Indeed, in these scenes the simple direct lighting computation step is very fast,

since very few triangles have to be transformed. However, solving the equation 4.6 is more

computationally intensive and results in a more important performance gap between the

two direct lighting approaches than on a high-polygon scene (figure 4.12). Finally, we

observe in figure 4.12 that our discrete covered samples representation (Discrete DCS64)

improves performances by a percentage between 39% and 63% with respect to a naive

search of the covered samples.

Japan1

Japan2

Kitchen

Doom3

0 200 400 600 800 1000 1200 1400

1149.43

884.96

800

117.65

1190.48

917.43

833.33

120.48

1234.57

970.87

862.07

192.68

438.6

307.69

253.16

38.02

444.44

311.53

255.75

39.82

292.4

182.48

115.74

20.58

DCS64
t-DCS64
DCS64+DLS64
DCS16
DCSi16
Pwedge

Figure 4.11: Rendering time in milliseconds for a 10242 image. Japan1: 4 lights, 592, 047
polygons; Japan2: Japan1 scene with a reduced number of polygons (293, 272 triangles);
Kitchen: 2 lights, 179, 383 polygons; Doom3: 2 lights, 22, 451 polygons.

4.6 Discussion

The presented depth complexity sampling algorithm allows the generation of fast and

accurate shadows. However, since it uses the soft shadow volume framework, it handles

only polygonal models and is submitted to fill rate bottleneck. Furthermore, the splitting

74

4.6. Discussion

Indirect

Shadow Volume

DCS64

Discrete DCS64

DCS16

Direct Sampling 64

Direct V_coef

0 200 400 600 800 1000 1200

8

80

999

612

306

128

29

1.3

3.1

106

39.4

85.88

84.7

1.84

Japan
Doom3

Figure 4.12: Time in milliseconds of the rendering steps according to the algorithm
parametrization. Image resolution: 10242; Japan: 4 lights, 592, 047 polygons; Doom3: 2
lights, 22, 451 polygons.

of wedges in inner and outer parts generates aliasing due to precision errors. Nevertheless,

our approach is orthogonal to the previous object-based methods and thus it may take

advantage of all their current and future improvements.

Due to its sampling nature, and despite the use of our adaptive sample distribution,

the proposed algorithm is still exposed to the sub-sampling artifacts. Nevertheless, since

we use a Monte Carlo sample distribution, averaging the result of several runs would give

a solution that would be statistically very close to the exact solution. One can therefore

imagine a progressive rendering or a multi-GPU system where each picture is computed

according to different distributions and then averaged in the final image.

The adaptive sampling algorithm defines the format of the counters for a given point

of view. Note that this encoding can be locally defined per pixel rather than globally set

for the current rendered image. A simple idea is to track the number of wedges bounding

each pixel.

The lack of integer support in the blending stage limits both the precision of the

counters and the efficiency of memory usage. In addition, despite the use of an adaptive

sampling strategy, the counter packing robustness is still compromised by an eventual

overflow error. These issues are due to subjective limitations of common graphics APIs

[Mic08, SA06] that support only a specific set of render target formats. The current

evolution toward a software graphics programming model [NVi08, SCS+08] will avoid

such arbitrary limitations.

75

Chapter 4. Accurate shadows by DCS

4.7 Conclusion

We have presented the depth complexity sampling soft shadow algorithm. It addresses

the limitations of both the penumbra wedge approach [AAM03] (figure 4.13) and the

offline soft shadow volume methods [LAA+05, LLA06]. Depending on the desired trade

off between performance and quality, the resulting shadows are either very close to, or as

accurate as, a ray-traced reference. Thus, it is well suited to many domains ranging from

quality sensitive to performance critical applications.

The proposed implementation solved the direct lighting problematic onto the GPU,

only. No a-priori knowledge about the mesh properties (animation, deformation, etc.)

is required and no intermediary CPU ↔ GPU transfer is performed. Thus, in contrast

to common object-based frameworks, this implementation is totally independent of the

underlying scene. In fact, it is a black box that provides the visibility information between

a set of light samples and the visible receivers. Finally, thanks to the efficiency and the

functionalities of the targeted graphics hardware, we demonstrate that despite its object-

based nature, this algorithm can efficiently deal with complex animated models lit by a

complex direct illumination (figure 5.12).

(a) PWedge (b) DCS (c) RT

Figure 4.13: Comparison of the shadows generated by the penumbra wedge algorithm (a),
our Depth Complexity Sampling (b) and a Ray-Traced reference [mi] (c). In addition of
the overlapping penumbrae artifact, the penumbra wedge algorithm produces an incorrect
lighting due to the single light sample direct lighting computation.

76

4.7. Conclusion

Figure 4.14: Japan test scene.

Figure 4.15: Kitchen test scene.

77

Chapter 4. Accurate shadows by DCS

Figure 4.16: Doom3 test scene.

78

4.7. Conclusion

Figure 4.17: High quality shadows produced by our algorithm.

79

5

Soft textured shadow volumes

Object-based algorithms are well suited for the robust simulation of direct shadows. How-

ever, they exhibit an important drawback: they can only deal efficiently with triangle

based geometries having a constant transmittance factor. Thus, unlike image-based shad-

ows, object-based algorithms cannot handle perforated triangles. Such geometry is widely

used in real time and offline applications in order to define highly perforated and thin

objects with few triangles and alpha textures encoding their binary opacity (e.g. a wire

fence).

As a first step, Hasselgren and Akenine-Möller [HAM07] propose an extension of the

shadow volumes computing pixel exact hard shadows cast by triangles with a spatially

varying transmittance (including perforated triangles). Eventually, this technique could

also produce a coarse approximation of soft shadows by pre-filtering the transmittance

texture.

This chapter addresses the next step. We propose a general algorithm computing

robust and accurate soft shadows for triangles with a spatially varying transmittance

denoted as S-triangles. We also show how this technique can be included into object-based

soft shadow frameworks, and we present an efficient and practical GPU implementation

with binary transmittance textures (a texel is fully transparent or full occluder). In

general, the use of perforated triangles allows a significant reduction of the geometric

overhead. Our approach takes benefit of this property since our soft shadow computation

is accelerated by a factor varying between 25 and 35 when compared with object-based

soft shadows generated from an equivalent geometry represented by meshes.

In section 5.1 we detail our algorithm. In order to provide an unified and robust

shadow framework, we show in section 5.2 how our approach can be naturally and easily

integrated into object-based soft shadow algorithms. Section 5.3 describes our GPU

implementation. Finally, we present our results in section 5.4 and we conclude with a

discussion and directions for future work.

81

Chapter 5. Soft textured shadow volumes

5.1 Soft textured shadow volumes

In this section we present our algorithm that allows the generation of accurate soft shadows

cast by S-triangles (section 5.1.1). In practice, this boils down to the computation of the

influence of S-triangles on the visibility between the receivers and the area light source.

The proposed approach merges the properties of both soft [AAM03, FBP08] and tex-

tured [HAM07] shadow volumes: it extrudes conservative volumes from S-triangles in

order to define their soft shadow influence. We thus call our technique Soft Textured

Shadow Volumes (STSV).

5.1.1 The algorithm

Targeting objects with spatially varying transmittance, we divide the occluding geome-

tries into two sets of triangles. The shadows from opaque triangles are evaluated in a

conventional way (using any soft shadow algorithm) while S-triangles are treated sepa-

rately using the algorithm 11.

Algorithm 11 STSV(Triangles T , Light l)
Require: samples distributed onto the light source

1: clear light sample buffer(l.LS buffer);
2: for all t ∈ T do
3: stsvt ⇐ build soft textured shadow volume(t, l);
4: for all visible points p ∈ stsvt do
5: for all light samples s as seen by p do
6: tmp⇐ texture access(t, t.tex transmittance, s, p);
7: update light sample(l.LS buffer[p][s], tmp);
8: end for
9: end for

10: end for

For a light l, a light sample buffer (LS buffer) stores the information necessary to

derive the visibility interaction between a visible point p and a set of light samples. We

point out that the visible points p are already defined (for instance using a first rendering

pass initializing the Z-buffer). For each S-triangle t (line 2), we extrude a Soft Textured

Shadow Volume (STSV) (line 3 and section 5.1.2). The STSV conservatively includes the

region in which light visibility is influenced by t. For all p lying in the STSV (line 4

and section 5.1.3), we finally update the LS buffer according to the influence of t on the

visibility between p (section 5.1.4) and a set of light samples (line 6, 7 and section 5.1.5).

Note that we do not explicitly define the information stored into the LS buffer yet.

Indeed, the LS buffer can encode any data allowing the computation of the visibility

interactions. For instance, the LS buffer could store the percentage of light intensity

82

5.1. Soft textured shadow volumes

attenuated by the S-triangles lying between any visible point p and a set of light samples

s.

5.1.2 Soft textured shadow volume extrusion

We define the shadow influence of the S-triangle t by extruding a volume that conserva-

tively includes both the umbra and the penumbra regions of t (figure 5.1). We use the

robust Z-fail strategy [Car00, EK02] to rasterize the resulting primitive and thus we have

to close the Soft Textured Shadow Volume with front and back caps.

Light

S-triangle tExtruded

outer-quads

Front cap t'

n1

n 1�n 2

n 0�n 1

n 2�n 0

n0

n2

Figure 5.1: Construction of the Soft Textured Shadow Volume. We first extrude the
penumbra wedge outer-quads from the front cap triangle edges (left). Then we close the
volume by connecting the adjacent outer-quads (right).

For a robust construction that fully encloses the shadow region of t, we define which

vertex of t is the closest to the light center [AAM03]. Then, we move the others towards

the light center until the distance is the same for all the vertexes. The resulting vertexes

describe a new triangle t′ that defines the front cap of the STSV. For each edge of t′

we extrude the outer-quad of its corresponding penumbra wedge primitive (figure 5.1

left). At this step we connect these quads in order to build a closed volume defining an

upper bound of the shadow region of t′ (figure 5.1 right). This is done by first evaluating

the cross product of the normals of two adjacent outer-quads to define the direction of

their intersection. Then, we extrude the vertex belonging to t′ and shared by the quads

along this direction. Finally, we define the back cap triangle of the STSV with the set of

extruded vertexes.

5.1.3 Points into soft textured shadow volume

A given point p lies inside a STSV if it is on the same side of the four STSV planes

(figure 5.2 left). This test is done efficiently using the interpolation algorithm of [HAM07].

83

Chapter 5. Soft textured shadow volumes

In order to introduce notations and the technical background, we briefly present this

algorithm.

Front cap

Extruded planes

c

q

Camera
S-triangle t

Visible scene pointSTSV point
n

u(q-c)

p

�������� u(q-c)u(q-c)��
p

Figure 5.2: Z-fail rasterization of an extruded STSV plane defining if the visible surface
point p is in the inside side of the plane (equation 5.1).

Each STSV plane P is defined by its implicit equation P (v) := n · v + d = 0

where n is the plane normal, d the orthogonal distance from the origin to the plane and

v a point in space. A visible point p is inside the STSV if P (p) < 0 for all STSV

planes. In order to avoid per p time consuming computations, the implicit equation is

reformulated as follows:

P (p) = n · p + d

= n · (c+ u (q − c)) + d

= (n · c+ d) + u (n · (q − c)) (5.1)

where c is the camera position, q the projection of p onto P with respect to c, and u the

linear interpolation parameter that defines p according to q and c (figure 5.2 right). Using

this formulation the scalar (n · c + d) is constant for each P and it is then computed

per STSV plane. The scalar (n · (q − c)) is first computed per STSV vertex with q

being the vertex position and then retrieved for any q onto the STSV plane by interpola-

tion. This interpolation is efficiently performed by rasterization. The point q coordinates

are also given by the rasterization and u is computed as u = (p.z − c.z) / (q.z − c.z).

Once efficiently implemented [HAM07], the evaluation of P (p) only requires two multi-

plications and one addition per visible point p.

5.1.4 Accessing the transmittance texture

The access to the transmittance texture of the occluding triangle t can be performed by

shooting a ray from p to a light sample. The barycentric coordinates of the ray↔triangle

84

5.1. Soft textured shadow volumes

intersection [Bad90, MT97] is then used to interpolate the texture coordinates of t and

access the transmittance value.

However, in the context of hard shadow computation, a more efficient approach has

been proposed [HAM07]. This technique is called texture projection and it is summarized

as follows.

Texture projection

Given a S-triangle t, its normal n, its world space vertex coordinates v0, v1, v2, their

associated textured coordinates t0, t1, t2 and the orthogonal distance k from the point

light to t. The surface points p included into the hard textured shadow volume of t, are

transformed into the homogeneous texture space as follows:

p′h =

T︷ ︸︸ ︷
S ·K ·M ·p

= T · (c+ u (q − c))

= (T · c) + u (T · (q − c)) (5.2)

where M is a transformation matrix from the world to the homogeneous triangle space

having the point light as origin,

M =


−−→v0v1.x −−→v0v2.x −k ∗ n.x
−−→v0v1.y −−→v0v2.y −k ∗ n.y
−−→v0v1.z −−→v0v2.z −k ∗ n.z


−1

(5.3)

K is the matrix that translates the first triangle vertex to the origin, defining the homo-

geneous barycentric space,

K =

1 0 − (M · v0) .x
0 1 − (M · v0) .y
0 0 1

 (5.4)

and S is the transformation from the homogeneous barycentric space to the homogeneous

texture space.

S =


−−→
t0t1.x

−−→
t0t2.x t0.x

−−→
t0t1.y

−−→
t0t2.y t0.y

0 0 1

 (5.5)

Equation 5.2 does not perform any projection. It evaluates an affine transformation of

p into p′h. Thus, the position (T · (q − c)) is computed per hard textured shadow

volume vertex and then interpolated across the surface. In addition, the position (T · c)

85

Chapter 5. Soft textured shadow volumes

is evaluated per S-triangle since it is constant for the triangle t. The texture transmittance

coordinate p′ of a point p is finally retrieved by first evaluating the equation 5.2 according

to the per p parameter u, and then performing the projection:

p′ =
1

p′h.z

(
p′h.x

p′h.y

)
(5.6)

Transmittance sampling

The use of an area light requires the access to the set of transmittance values affecting

the direct lighting of a point p. When sampled, an area light can be considered as a set of

point lights. Thus, for each light sample, the equation 5.2 could be directly used in order

to access the transmittance texture of a S-triangle. However, the per S-triangle position

(T · c) and the per STSV vertex position (T · (q − c)) must be computed per

light sample. This would be particularly inefficient in terms of number of parameters to

compute and to transmit when sampling the transmittance of the S-triangle.

Instead, we reduce the per light sample computations by reversing the texture projec-

tion problematic: we project each light sample onto the triangle plane as seen by p rather

than projecting p from the light samples onto t. Let denote as e the orthogonal distance

from p to t. We retrieve the texture transmittance value affecting the visibility of p and

s by computing the homogeneous texture transmittance coordinates s′h as follows:

s′h = S ·
J︷ ︸︸ ︷

W ·M ′ ·s (5.7)

where M ′ is the transformation from the world to an homogeneous triangle space,

M ′ =


−−→v0v1.x −−→v0v2.x −n.x
−−→v0v1.y −−→v0v2.y −n.y
−−→v0v1.z −−→v0v2.z −n.z


−1

(5.8)

W is the matrix setting p as the projective center and performing the transformation

into the homogeneous barycentric space of the S-triangle,

W =

1 0 − (M ′ · (v0 − p)) .x/e

0 1 − (M ′ · (v0 − p)) .y/e

0 0 1

 (5.9)

and S is the transformation from the homogeneous barycentric triangle space to the

homogeneous texture space (equation 5.5). In a first step, we evaluate the S and M ′

86

5.2. Unified object-based soft shadow framework

matrices per S-triangle since they are constant for a triangle. Then, for each visible point

p lying into the STSV, we compute its corresponding transformation W . We multiply

the W and M ′ matrices to define the transformation J from world space to homogeneous

barycentric coordinates (equation 5.7). Due to the conservative nature of the STSV,

some light samples as seen by p may not be occluded by t. Let s∗h = J · s. A light

sample s is occluded if (s∗h.x > 0), (s∗h.y > 0) and (s∗h.z − s∗h.x − s∗h.y > 0). We

transform the homogeneous barycentric coordinates s∗h of the occluded light samples into

homogeneous texture coordinates s′h by applying the matrix S. We finally retrieve the

texture transmittance position s′ by simply performing the projection:

s′ =
1

s′h.z

(
s′h.x

s′h.y

)
(5.10)

Even though several computations are performed for each visible point p, the use of the

equation 5.7 is still more efficient than a ray-traced approach to access the transmittance

texture (appendix 5.A). Indeed, the matrix J is computed once for a given p (whatever

the number of light samples). Thus, the computations of s∗h only requires 9 MUL and

6 ADD and for the occluded light samples, the evaluation of the texture transmittance

coordinates is obtained with 6 MUL, 4 ADD and 2 DIV.

5.1.5 Light sampling strategy

In order to compute the visibility interaction between a visible point p and an extended

light source accurately, it is necessary to distribute the light samples using an adapted

probability distribution function [PH04]. Following the depth complexity sampling al-

gorithm (chapter 4) we avoid visible sampling patterns by using decorrelated sampling

strategy, i.e. a sample set is generated independently for each visible point p according

to a specific sample distribution. A good sample distribution is given by the stratified

sampling approach (figure 5.8(b)). However, better results are obtained with more so-

phisticated methods such as the Poisson disk [Coo86] (figure 5.3(c) and 5.3(e)) or the

low discrepancy [Nie92] (figure 5.3(d)) sampling strategy. Finally, any of these sample

distributions can be combined with the interleaved sampling strategy [KH01, SIMP06]

(figure 5.3(f)) in order to reduce the decorrelation noise.

5.2 Unified object-based soft shadow framework

Theoretically our STSV approach can be used for the generation of soft shadows from

both standard meshes and S-triangles. However, it requires unnecessary computations for

87

Chapter 5. Soft textured shadow volumes

(a) 16 uniform (b) 16 stratified (c) 16 poisson disk

(d) 64 low discr. (e) 64 poisson disk (f) 64i poisson disk

Figure 5.3: Impact of the sampling strategy on the shadow quality. Shadows are generated
with either 16 (a, b, c) or 64 (d, e, f) decorrelated light samples using a uniform (a),
stratified (b), low-discrepancy (d) or Poisson disk (c, e) sampling strategy. Any of these
sampling techniques can be combined with any interleaved sampling pattern. For instance,
figure (f) illustrates shadows generated with a 4 × 4 interleaved sampling pattern of 64
samples distributed with the Poisson disk strategy.

triangles without a transmittance property and conventional object-based approaches are

far more efficient. Thus, we show how our STSV algorithm can be naturally integrated

in object-based soft shadow frameworks.

Most S-triangles with spatial varying transmittance are used to represent perforated

triangles, i.e. the transmittance texture encodes its spatially varying binary opacity

(fence, branch, grass, etc.). Indeed, such representation is naturally and efficiently in-

tegrated in real time renderers. Even though the STSV algorithm performs with any

transmittance values, our implementations thus focus on perforated triangles.

88

5.2. Unified object-based soft shadow framework

(a) PWedge+STSV (b) DCS+STSV (c) RT

Figure 5.4: Comparison between the shadows computed by the Penumbra Wedge+Soft
Textured Shadow Volume algorithm (a), the Depth Complexity Sampling+Soft Textured
Shadow Volume technique (b) and a Ray Traced reference [mi] computed onto the fences
represented by meshes (c).

5.2.1 Penumbra wedge

This section describes how we combine the penumbra wedges [AAM03] (chapter 3) with

our STSV algorithm. For common meshes, a Vcoef is computed per visible point p,

using the penumbra wedge algorithm. The shadows cast by perforated triangles are then

evaluated with the STSV approach (algorithm 11). For each visible point p, the light

sample buffer (LS buffer) stores a bit mask where each bit encodes the visibility between

p and a light sample. The LS buffer is computed as follows. For a given perforated

triangle t, we have to compute a bit mask for each point p lying into its extruded STSV.

For each of these p, the value of each bit is derived from the transmittance value affecting

its light sample visibility (equation 5.7). Then, we perform a logical OR of the resulting bit

mask with the corresponding mask stored in the LS buffer. When all perforated triangles

are treated, we evaluate the per p STSV Vcoef with the bit mask of the LS buffer. We add

this Vcoef with the one computed during the penumbra wedge pass in order to evaluate

the final Vcoef used to modulate the direct illumination.

In the case of overlapping S-triangles, the STSV Vcoef does not exhibit the under-

estimation artifact. However, the inherent shadow overlapping artifact of the penumbra

wedges still occurs when perforated triangles overlap common meshes (figure 5.4(a)).

5.2.2 Depth complexity sampling

The integration of the STSV algorithm into our Depth Complexity Sampling (DCS) frame-

work is straightforward (figure 5.4(b)). For common occluders, the DCS algorithm eval-

uates the depth complexity between each visible point p and the light samples. Then,

89

Chapter 5. Soft textured shadow volumes

the STSV algorithm updates the depth complexity for the visible points p as follows.

First, for each p lying into the STSV of a perforated triangle t, the equation 5.7 allows us

to retrieve the transmittance values affecting its visibility from the set of light samples.

Then the depth complexity counter of the corresponding light sample s is incremented

if the retrieved transmittance value indicates that s is occluded by t. After the depth

complexity evaluation we finally perform the direct lighting step as proposed in the DCS

framework, i.e. by numerically solving the direct illumination or by modulating the direct

lighting with a Vcoef (chapter 4).

5.3 Implementation

In this section we detail the GPU implementation of our Soft Textured Shadow Volume

algorithm. We propose an algorithm (algorithm 12) targeting the generation of graphics

processors that takes benefit of Vertex Programs (VP), Geometry Programs (GP) and

Fragment Programs (FP).

Algorithm 12 render scene(Scene w, RenderView v)
Require: Pre-computed sample pattern

1: set up camera(v);
2: (color-buffer, Z-buffer) ⇐ draw ambient lighting(w);
3: for all l ∈ w.lights do
4: clear shadow buffers();
5: trio ⇐ w.get opaque triangles();
6: trip ⇐ w.get perforated triangles();
7: if Depth Complexity Sampling then
8: DCS(trio, l);
9: STSV DCS(trip, l);

10: color buffer + = DCS direct lighting(w, l);
11: else
12: PWedge(trio, l);
13: STSV bitmask(trip, l);
14: add v coef();
15: color buffer + = PWedge direct lighting(w, l);
16: end if

17: end for

As in the shadow volume algorithm [Cro77], we first render the scene to compute an

approximation of the indirect illumination and to initialize the Z-buffer (line 2). Then

we separate common occluders from perforated triangles to perform the direct lighting

passes (lines 5 and 6). Full opaque meshes are treated with object-based soft shadow

algorithms (lines 8 and 12) while we generate the shadows cast by perforated triangles

with our STSV algorithm (lines 9 and 13).

90

5.3. Implementation

5.3.1 Sample distribution

Depending on the light type and the sampling strategy (section 5.1.5), we store in a

texture a set of pre-computed light samples. We reduce the memory consumption and the

number of texture fetches using the data representation of the sample positions described

in the Depth Complexity Sampling algorithm of the previous chapter (section 4.4.1).

The decorrelated sample distributions are generated by randomly rotating per pixel the

pre-computed sample positions. According to the desired performance/quality ratio, we

propose to distribute either 16 or 64 samples onto the light sources. Note that any number

of samples can be chosen with respect to hardware limitations. The low discrepancy

sample distribution is based on the (0, 2)-sequence while for the Poisson disk sampling

strategy we experimentally fix the minimum distance constraint to 0.2456139 or 0.1076681

for respectively 16 or 64 samples.

5.3.2 Soft textured shadow volume extrusion

The Soft Textured Shadow Volume of each perforated triangle is robustly extruded onto

the GPU with a geometry program implementing the procedure presented in section 5.1.2.

In this GP, we compute the per STSV vertex parameters required by the interpolation

algorithm (section 5.1.3). In order to ensure their correct interpolation we perform a

semi infinite extrusion of the STSV rather than an infinite extrusion. We also transmit

per STSV vertex, the constants computed per S-triangle: the per STSV plane scalar

(n · c + d) in equation 5.1 and the matrices S and M ′ in equation 5.7.

Light

2

0
1

3

4

5

3

4
5

0
2

3

0
2

4

3452304120

S-triangle t

Soft Textured

Shadow Volume

triangle strip:

1

Figure 5.5: Triangle strip used for the Soft Textured Shadow Volume extrusion. The
resulting extruded volume is capped and it implicitly defines a coherent normal orientation
required for its robust Z-fail rendering [EK02].

Our STSV construction (section 5.1.2) minimizes the number of generated vertexes

rather than build a tight bounding volume of the shadow cast by the S-triangle. This

reduces both the computational complexity of its generation and the geometric amplifica-

tion bottleneck of the geometry processors. The STSV is in fact a wedge that we generate

91

Chapter 5. Soft textured shadow volumes

with a GP as described in the DCS framework (chapter 4 section 4.4.2). The figure 5.5

summarizes this construction.

After its extrusion, the STSV is sent to the rasterization stage where it is rendered

according to the failure of the Z-buffer visibility test.

5.3.3 Transmittance sampling

For each fragment q resulting from the rasterization of the STSV, we retrieve its corre-

sponding visible scene point p from the Z-buffer. In order to know if p is included into

the STSV, we evaluate equation 5.1 for each STSV plane. Then for each light sample s,

the equation 5.7 allows us to retrieve the texture transmittance value affecting its visibil-

ity from p (appendix 5.A). We use these transmittance values to compute the visibility

properties according to the chosen implementation (penumbra wedge or DCS). In both

cases the fix Raster OPeration stage (ROP) updates the light sample buffer with respect

to these visibility informations.

5.3.4 Direct illumination

On the one hand, in the STSV+penumbra wedge algorithm, we have to add the penumbra

wedge and the STSV Vcoefs. The resulting Vcoef is evaluated for each pixel in a single full

screen quad rendering pass. In this pass, we efficiently compute the STSV Vcoef in a FP

(appendix 5.B). This Vcoef is then added to the penumbra wedge Vcoef by the blending

stage. Finally, in an additional rendering pass we modulate the direct lighting as in the

penumbra wedge algorithm.

On the other hand, the STSV+DCS algorithm does not require any specific treatment

for the direct lighting computation. Indeed, the light sample buffer (LS buffer) is in fact a

depth complexity buffer as defined in the DCS algorithm. Thus, either the computation of

the Vcoef modulating the direct lighting or the numerical integration of the direct illumi-

nation is directly evaluated by the DCS algorithm without any STSV specific treatment

(we refer to the chapter 4 for additional details).

5.4 Results

5.4.1 Memory consumption

The treatment of S-triangles by our STSV algorithm requires neither pre-computed pa-

rameters nor additional per mesh texture. Indeed, the Soft Textured Shadow Volumes

92

5.4. Results

are generated ”on the fly” by the GPU while the transmittance textures are already as-

sociated to the S-triangles for their appearance. Thus, the memory consumption of our

algorithm is independent of the geometric complexity of the scene.

When it is included in the penumbra wedge framework, the STSV algorithm requires

both a set of pre-computed light samples and a light sample buffer storing the visibility

bit mask. Thus, for a 1024 × 1024 frame buffer and 64 samples distributed onto the

light source, the memory cost of the STSV implementation is:

LS buffer︷ ︸︸ ︷
10242 × 64× 1bit+

precomputed sample pattern︷ ︸︸ ︷
64× 16bits ≈ 8MB

Note that the STSV algorithm does not require any specific memory allocation when

it is included in the DCS framework. Indeed, the precomputed light samples are shared

with those of the DCS and the light sample buffer is a reference to the depth complexity

buffer.

5.4.2 Performances

The performances have been measured on a 64 bits Linux workstation with a CoreTM 2

Duo 3Ghz and 4GB of DDR2 at 800Mhz . The graphics hardware is a GeForce GTX280.

Our implementation is based on the OpenGL API and the shaders are written using

the pseudo assembly presented in the NV_gpu_program4 extension. Our work targets

direct soft shadow generation and the indirect lighting is orthogonally evaluated with any

existing technique. Here, it is approximated using an irradiance map [RH01] and a screen

space local ambient occlusion [SA07]. Finally, we use the Blinn BRDF [Bli77] for the

materials’ appearance.

Our benchmarks are based on three test scenes (figure 5.9, 5.10 and 5.11). We first

compute the average rendering time with respect to a camera path defined for each scene

(figure 5.6). We then evaluate the cost of the different rendering steps for a representative

frame chosen into each camera path (figure 5.7). In order to avoid ”biased” results, each

frame is rendered from scratch, in a purely forward manner, without frustum culling,

precomputed visibility set or scissor/depth bound test.

The HL2 scene (figure 5.11) is composed of 4, 002 perforated triangles casting large

visible shadows. In such situation, the rendering time is computationally bounded by the

Soft Textured Shadow Volume evaluation (from 50% to 75% of the whole rendering time).

For instance, 70% of the rendering time is consume by the STSV when we numerically

solve the direct lighting integral with 64 samples per light source. On the other hand,

in the high poly-count factory scene (figure 5.9), highly detailed and thin geometries are

represented with few S-triangles (14 perforated triangles). Thus, even though they cast

93

Chapter 5. Soft textured shadow volumes

HL2 1024²

HL2 DVD

Factory 1024²

Factory DVD

Greece 1024²

Greece DVD

0 500 1000 1500 2000 2500 3000 3500

284.09

181.82

236.41

159.74

1666.67

1075.27

175.44

113.64

300.3

193.8

1298.7

793.65

469.48

281.69

709.22

427.35

3333.33

2040.82

PWedge+STSV64
(DCS+STSV)16
(DCS+STSV)64

Figure 5.6: Rendering time in milliseconds on our three test scenes. The shadows are
computed with our Soft Texture Shadow Volume algorithm (STSV) combined with either
the Penumbra Wedge (PWedge) or the Depth Complexity Sampling (DCS) approach. The
performances are reported for two image resolution: 1024 × 1024 or 720 × 576 (DVD).

large visible shadows, their computational cost is negligible (between 2% and 6% of the

overall rendering time). The Greece scene (figure 5.10) is composed of 26, 150 S-triangles

(two per leaf of the plants) and it is thus far more aggressive for our algorithm. However, in

contrast to common wisdom and despite the horsepower required by the STSV evaluation,

our object-based framework can generate robust direct soft shadows on this complex fully

dynamic environment in about a second ((DCS+STSV)16).

5.5 Conclusion and discussion

We have presented the Soft Textured Shadow Volume algorithm. This algorithm addresses

one of the main issues of the object-based shadow generation: the accurate computation

of soft shadows cast by triangles with a spatial varying transmittance. In this section, we

analyze its main advantages and discuss future improvements.

We have demonstrated that our approach can be naturally integrated into common

object-based soft shadow algorithms. This provides efficient object-based frameworks

computing soft shadows on fully animated scenes. Thanks to its object-based nature,

our algorithm does not deal with shadow discretization aliasing nor shadow popping.

In addition, it handles omni-directional area lights without any additional performance

94

5.5. Conclusion and discussion

Indirect

Direct MC64

Direct v_coef

PWedge

DCS64

DCS16

STSV64 PWedge

STSV64

STSV16

0 100 200 300 400 500 600 700 800 900

1.4

33

1.5

14.6

73.5

32.5

146

245

67.5

12.7

61.75

12.1

58.25

207

80.32

9

13.35

2.68

17

84

17

265

573

167

601

781

228

HL2
Factory
Greece

Figure 5.7: Time in milliseconds of the rendering steps for an image resolution of 1024 ×
1024. The numbers nearby the acronyms give the number of per light samples used for
each pixel. The direct lighting can be either attenuated with a Vcoef or numerically solved
by Monte Carlo sampling with the DCS framework (Direct MC64). Excepted for our
indirect lighting pass (that is independent of the number of lights), the given times are
the average of the per light computation times.

penalty or specific treatment.

Common object-based techniques extrude primitives only at the silhouette edges of

the occluders whereas our STSV algorithm generates a STSV for each triangle. This

could be seen as a bottleneck. However, perforated triangles are used as an alternative

representation for detailed geometries (leafs, fence, etc.) and the generation of an anal-

ogous shadow quality cast by an explicit mesh representation would require much more

horsepower (figure 5.8).

Also, perforated triangles are useful in a wide range of applications such as sprite/billboards

[DDSD03, PMDS06, Ris07] or distant objects in a LOD hierarchy. The STSV algorithm

is an efficient object-based approach allowing the generation of robust soft shadows on

such representations.

We build the Soft Textured Shadow Volume according to the orientation of the cor-

responding S-triangle as seen from the light center. This leads to the well known single

light sample artifact when the two sides of the triangle are lit by the area light. Indeed,

in this situation, each side of the triangle has to cast a shadow since it occludes a part of

the light. Nevertheless, this artifact can be very simply corrected by extruding a STSV

for each side of the S-triangle when this case occurs.

95

Chapter 5. Soft textured shadow volumes

(a) STSV (b) DCS

Figure 5.8: Comparison between the shadows cast by a fence represented by perforated tri-
angles (2 perforated triangles, STSV: 90FPS) (a) and by its corresponding mesh (233, 358
triangles, DCS16: 3.3FPS) (b).

In order to get a fair performance/quality ratio, we distribute at most 64 light samples

with sampling strategies that drastically reduce the variance. We have empirically set this

maximum number of samples while the real limitation is given by the hardware constraints

of the implementation. Nevertheless, thanks to the Monte-Carlo sampling nature of the

STSV algorithm, the average of several runs would lead to a result statistically very close

to the exact solution.

96

5.5. Conclusion and discussion

Figure 5.9: Representative frame of the factory test scene (582, 510 triangles, 14 perfo-
rated triangles and 4 omni-directional lights).

Figure 5.10: Representative frame of the Greece test scene (1, 396, 078 triangles, 26, 150
perforated triangles and 3 omni-directional lights).

97

Chapter 5. Soft textured shadow volumes

Figure 5.11: Representative frame of the HL2 test scene (84, 712 triangles, 4, 002 perfo-
rated triangles and 2 omni-directional light).

5.A Transmittance value

NV_gpu_program4 fragment program sub-routine. Retrieves the transmittance value of

the perforated triangle affecting the visibility of the light sample s_pos as seen by the

treated pixel.

texture[0].w = transmittance texture of the STSV

get transmittance value:

DP3.CC0 r0.x, J row0, s pos; #r0.xyz=s∗h =

J︷ ︸︸ ︷
W ·M ′·s

DP3.CC0 r0.y, J row1, s pos;

DP3 r0.z, J row2, s pos;

MOV transm.w, 0;

ADD r1.z, r0.x, r0.y; #r1.z=s∗h.z−s∗h.x−s∗h.y
SUB.CC0 r1.z, r0.z, r1.z;

RET (LT.xyzz); #if(s∗h.z−s∗h.x−s∗h.y <0 ||
s∗h.xy<0) return;

DP3 r1.x, S row0, r0; #r1.xy,r0.z=s′h =S ·s∗h
DP3 r1.y, S row1, r0;

DIV r0.xy, r1, r0.z; #r0.xy= s′=s′h.xy / s′h.z

TXL transm.w, r0, texture[0], 2D;

RET;

98

5.B. Vcoef from visibility bit mask

5.B Vcoef from visibility bit mask

NV_gpu_program4 fragment program. Fast vectorized and parallel bit count routine.

Compute the Vcoef from the bit mask visibility of a set of 64 uniformly distributed light

samples.

texture[0] = RGBA16UI bit mask texture

ATTRIB f pos = fragment.position;

TEX.U bitmask, f pos, texture[0], RECT;

AND.U r0, bitmask, 0x5555;

SHR.U bitmask, bitmask, 1;

AND.U bitmask, bitmask, 0x5555;

ADD.U bitmask, r0, bitmask;

AND.U r0, bitmask, 0x3333;

SHR.U bitmask, bitmask, 2;

AND.U bitmask, bitmask, 0x3333;

ADD.U bitmask, r0, bitmask;

AND.U r0, bitmask, 0x0F0F;

SHR.U bitmask, bitmask, 4;

AND.U bitmask, bitmask, 0x0F0F;

ADD.U bitmask, r0, bitmask;

AND.U r0, bitmask, 0x00FF;

SHR.U bitmask, bitmask, 8;

AND.U bitmask, bitmask, 0x00FF;

ADD.U bitmask, r0, bitmask;

I2F bitmask, bitmask;

DP4 v coef, bitmask, 0.015625; # 0.015625 = 1/64

99

Chapter 5. Soft textured shadow volumes

Figure 5.12: Illustration of shadows cast by perforated triangles (fences) using our soft
textured shadow volume algorithm.

100

6

Conclusion

This chapter concludes this dissertation by discussing our technical choices (section 6.1)

and summarizing our main results (section 6.2 and 6.3). We finally discuss future works

on the accurate direct lighting simulation (section 6.4).

6.1 Rasterizing accurate soft shadows

In this thesis we have first outlined that the rasterization of robust shadows is a widely

studied and challenging problem. We have observed that very few algorithms target

the robust simulation of direct shadows. Several algorithms approximate shadows by

modulating the direct lighting with a Vcoef . Following the explicit formulation of the

direct lighting, we have pointed out that the use of a Vcoef leads to approximative results.

In practice this rough solution may be well suited when targeting real time applications.

Unfortunately, popular Vcoef -based shadows exhibit strong inherent limitations that can

be addressed with several concurrent techniques. In fact, no general purpose shadow

algorithm exists, neither for the generation of fast approximative shadows nor for a robust

direct lighting simulation. In other words, computing direct shadows efficiently remains

an open problem.

Despite its initial ”weakness”, the object-based shadow framework provides a very

strong algorithmic background [EK02, AAM03]. In spite of geometric constraints and

performance bottlenecks, we have outlined that object-based shadows seem to be a right

direction to go when designing robust shadow algorithms.

101

Chapter 6. Conclusion

6.2 The penumbra wedge blending

Starting from the previous observations we have first investigated the object-based penum-

bra wedge algorithm. This approach computes very convincing soft shadows by analyt-

ically evaluating the percentage of light that is occluded. It is however based on the

assumption that penumbrae are not overlapping. This leads to over shadowed artifacts

when such assumption is not satisfied.

We have proposed an extension to the penumbra wedge framework that adds a penum-

bra blending stage in order to reduce the overlapping artifacts. We evaluated the penum-

bra wedge algorithm independently for each silhouette loop that are not overlapping. We

also defined for each visible receiver an approximation of the shape of the occluders. We

finally used these informations to blend the shadow contribution of each silhouette loop

according to a proposed blending heuristic.

We have presented an implementation of the penumbra wedge framework improved by

our blending stage. We have used common programmable graphics hardware that at this

time did not support the generation of geometric primitives. Thus, following common

object-based frameworks, we performed the shadow volume and the penumbra wedge

construction on the CPU side while the GPU was used to efficiently evaluate the shadow

contribution.

On the resulting shadows, our penumbra blending stage drastically reduces the penum-

bra overlapping artifacts. However, the obtained performances outline the popular limita-

tion of the object-based approaches: their efficiency is greatly influenced by the geometric

complexity of the scene. Such performances are essentially due to the silhouette detection

and the primitive generation both performed onto the CPU. In our view, this bottleneck

is not pathological. Better performances would be achieved with a careful implementa-

tion using software multi threading or graphics hardware. The core of the proposed soft

shadow evaluation is far more problematic than this initial performances. Indeed, despite

convincing shadows, we could not guarantee the correctness of the solution.

6.3 Robust unified object-based framework

The second contribution of this dissertation concerns a new object-based shadow frame-

work that addresses the previous limitations.

6.3.1 The depth complexity sampling

We have proposed an approach that merges the efficiency of the real time penumbra

wedges with the accuracy of its offline generalization [LAA+05]. The presented algorithm

102

6.3. Robust unified object-based framework

evaluates the number of occluders, i.e. the depth complexity, lying between the emitter

and the receiver. First, we use the penumbra wedge framework to define which silhouette

edges affect the depth complexity between the area light and a visible receiver p. Then

we update the depth complexity between p and a set of light samples according to each

silhouette edge. Unlike offline depth complexity approaches [LAA+05, LLA06], all our

computations are performed locally. We thus avoid the use of a global data structure that

would increase the computation time and the memory consumption.

Due to its sampling nature, the quality of the proposed depth complexity evaluation

depends on both the number of samples and their distribution over the light. We have

thus investigated several sampling strategies in order to obtain a good accuracy with few

samples. We have also proposed a method dynamically adjusting the balance between

the precision of the depth complexity and the number of samples.

Then, we have described how we use the depth complexity to generate soft shadows.

First, we derive an artifact free Vcoef from the depth complexity informations. This

formulation provides a fast convincing approximation of the direct illumination. Targeting

the robust simulation of direct shadows, we then use the depth complexity to solve the

visibility queries in the direct lighting integral. This allows us to numerically solve the

direct illumination with an accuracy depending on the light sampling strategy. Finally,

we have presented an extension of our initial method that computes shadows cast by semi

opaque occluders.

We have then presented a GPU intensive implementation of this object-based soft

shadow algorithm. All the computations are performed onto graphics hardware, includ-

ing silhouette detection and primitive generation. According to the desired trade off

between performances and quality, the resulting shadows are computed either with re-

spect to a Vcoef or by numerically solving the direct illumination. We have described the

implementation details that address the current hardware limitations and optimize the

efficiency of our algorithm. As previously expected, this fully GPU implementation ad-

dresses the main performance bottlenecks of object-based shadows. Thus, complex fully

animated environments can be efficiently handled by our object-based shadow algorithm.

6.3.2 Soft textured shadow volumes

We have studied the generation of soft shadows cast by occluders with a spatial varying

transmittance. In real time rendering, this representation is mainly used to represent

highly detailed and thin objects with few triangles and a transmittance texture encoding

their binary opacity (e.g. a fence). Object-based soft shadow frameworks do not naturally

handle such perforated triangles. We have presented an algorithm addressing this strong

limitation.

103

Chapter 6. Conclusion

Following object-based shadow approaches, the proposed algorithm is based on the

extrusion of a volume that conservatively includes the scene region lying in the shadow of

the occluder. We have detailed the construction of such volume. Then, we have described

how we compute shadows by sampling the visibility with respect to the area light and the

varying transmittance of the occluding triangle.

We have shown that this algorithm can be efficiently integrated into object-based

frameworks. We first detail its integration into the original penumbra wedge approach.

We show that our soft textured shadow volume evaluation does not exhibit penumbra

overlapping errors. However, the inherent shadow overlapping artifact of the penumbra

wedges still occurs when perforated triangles overlap common meshes.

We have outlined that using the soft textured shadow volumes with the depth complex-

ity sampling framework avoids the previous drawbacks. We have presented this straight-

forward combination. Following the depth complexity sampling algorithm, we are able

to either evaluate an artifact free Vcoef or numerically solve the direct lighting for both

opaque meshes and perforated triangles. In fact, this object-based framework answers

the problematic of this dissertation: it provides an efficient robust soft shadow framework

that naturally handles dynamic environments.

6.4 Conclusion and future works

In this dissertation we focus on a specific problematic of computer graphics. Our inves-

tigation targets the robust shadow generation or more generally the simulation of direct

illumination for dynamic environments. We illustrates that object-based approaches can

provide a fast and robust solution for this problematic.

The strength of the presented framework relies on its capability to define the reciprocal

visibility between any visible receiver and the light samples. Thanks to this information

some global problematics could be now investigated in rasterization. For instance, we

have defined the sampling strategy according to the importance of the light. Better real

time glossy highlight could be achieved by distributing the samples with respect to the

importance of both the light and the bidirectional scattering distribution function [VG95].

The depth complexity sampling framework would be used to finally define the visibility

between the receiver and its associated samples.

We outline that the unbiased direct lighting evaluation requires the detection of the

silhouette edges with respect to the shape of the light. Such brute force approach drasti-

cally increases both the computation time and the fill-rate requirements. One can expect

better performances by proposing new silhouette detection techniques that address this

performance bottleneck.

104

6.4. Conclusion and future works

We have pointed out that unlike image-based approaches, object-based shadow al-

gorithms do not have to deal with magnification artifacts. However, as any rendering

technique, the viewport discretization is still prone to image aliasing. This cannot be

naively corrected by a multi-sampling approach since the shadow has to be evaluated for

each sub-pixel sample. Thus, the shadow computation must be super-sampled. A more

efficient solution would consist in combining a conservative rasterization [HAMO05] and

a judicious anti-aliasing algorithm that super-samples the shadow only where the aliasing

occurs.

More generally, it seems particularly interesting to propose a software implementation

of our framework. This would avoid several current limitations of graphics API and would

propose attractive perspectives. One can argue that the resulting performances would be

quite poor. Even though the efficiency would inevitably decrease, we think that the

performances would be acceptable. In fact, today, very few parts of the graphics pipeline

are hardware accelerated. While it is common to define a hardware implementation as

an implementation onto graphics hardware, the evolution towards a fully programmable

graphics pipeline [SCS+08] is breaking down this misconception. Thus, we think that

one can already develop an efficient software rasterizer onto current graphics hardware

[NVi08] in order to propose a fully programmable pipeline without API constraints.

Finally, from a more general point of view, the presented results illustrate the efficiency

of the rasterization for the direct illumination simulation. Despite promising perspectives

it is still difficult to define the right direction to go for realistic real time renderers. On the

one hand, the rasterization is robust, extremely fast for local effects and it efficiently deals

with dynamic scenes. In addition, this thesis has illustrated that it can be also efficiently

used for the robust simulation of direct shadows/illumination. On the other hand, we

observe impressive improvements towards real time ray tracing. Ray tracers naturally

handle global effects and thus these recent performance improvements open attractive

real time perspectives. For instance, it seems particularly interesting to propose an hybrid

real time renderer combining the efficiency of the rasterization with the generality of a

ray tracer.

105

Bibliography

[AAA+02] Kurt Akeley, Allen Akin, Ben Ashbaugh, Bob Beretta, John Carmack, Matt

Craighead, Ken Dyke, Steve Glanville, Michael Gold, Evan Hart, Mark Kil-

gard, Bill Licea-Kane, Barthold Lichtenbelt, Erik Lindholm, Benj Lipchak,

Bill Mark, James McCombe, Jeremy Morris, Brian Paul, Bimal Poddar,

Thomas Roell, Jeremy Sandmel, Jon Paul Schelter, Geoff Stahl, John Stauf-

fer, and Nick Triantos. OpenGL extension: ARB vertex program. http:

//www.opengl.org/registry/specs/ARB/vertex_program.txt, 2002.

[AAM03] Ulf Assarsson and Tomas Akenine-Möller. A geometry-based soft shadow

volume algorithm using graphics hardware. ACM Transactions on Graphics,

22(3):511–520, 2003.

[AAM04] Timo Aila and Tomas Akenine-Möller. A hierarchical shadow volume al-

gorithm. In Proc. SIGGRAPH/EUROGRAPHICS conference on Graphics

hardware, pages 15–23. ACM Press, 2004.

[ADMAM03] Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas Akenine-

Möller. An optimized soft shadow volume algorithm with real-time perfor-

mance. In Proc. SIGGRAPH/EUROGRAPHICS Conference on Graphics

hardware, pages 33–40. Eurographics, 2003.

[AHL+06] Lionel Atty, Nicolas Holzschuch, Marc Lapierre, Jean-Marc Hasenfratz,

Chuck Hansen, and François Sillion. Soft shadow maps: Efficient sam-

pling of light source visibility. Computer Graphics Forum, 25(4):725–741,

2006.

[AHT04] Jukka Arvo, Mika Hirvikorpi, and Joonas Tyystjárvi. Approximate soft

shadows with an image-space flood-fill algorithm. Computer Graphics Fo-

rum, Proc. EUROGRAPHICS, 23(3):271–280, 2004.

[AL04] Timo Aila and Samuli Laine. Alias-free shadow maps. In Proc. EG Sym-

posium on Rendering, pages 161–166. Eurographics, 2004.

107

http://www.opengl.org/registry/specs/ARB/vertex_program.txt
http://www.opengl.org/registry/specs/ARB/vertex_program.txt

Bibliography

[AMA02] Tomas Akenine-Möller and Ulf Assarsson. Approximate soft shadows on

arbitrary surfaces using penumbra wedges. In Proc. EG Workshop on Ren-

dering Techniques, pages 297–306. Eurographics, 2002.

[AMA03] Thomas Akenine-Möller and Ulf Assarsson. On the degree of vertices in a

shadow volume silhouette. Journal of Graphics Tools, 8(4):21–24, 2003.

[AMB+07] Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter Seidel, and

Jan Kautz. Convolution shadow maps. In Proc. EG Symposium on Ren-

dering, volume 18, pages 51–60. Eurographics, 2007.

[AMS+08] Thomas Annen, Tom Mertens, Hans-Peter Seidel, Eddy Flerackers, and

Jan Kautz. Exponential shadow maps. In Proc. of Graphics Interface,

volume 34, pages 155–161, 2008.

[ARHM00] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laurent Moll.

Efficient image-based methods for rendering soft shadows. In Proc. SIG-

GRAPH, pages 375–384. ACM Press, 2000.

[Arv04] Jukka Arvo. Tiled shadow maps. Computer Graphics Forum, 00:240–247,

2004.

[ASK06] Barnabás Aszódi and László Szirmay-Kalos. Real-time soft shadows with

shadow accumulation. In EUROGRAPHICS short papers, 2006.

[Bad90] Didier Badouel. An efficient ray-polygon intersection. Graphics gems, pages

390–393, 1990.

[BAS02] Stefan Brabec, Thomas Annen, and Hans-Peter Seidel. Shadow mapping

for hemispherical and omnidirectional light sources. Computer Graphics

International, pages 397–408, 2002.

[BB84] L.S. Brotman and N.I. Badler. Generating soft shadows with a depth buffer

algorithm. Computer Graphics Application, 4(10):5–12, 1984.

[BBC+02] Bob Beretta, Pat Brown, Matt Craighead, Cass Everitt, Evan Hart,

Jon Leech, Bill Licea-Kane, Bimal Poddar, Jeremy Sandmel, Jon Paul

Schelter, Avinash Seetharamaiah, and Nick Triantos. OpenGL extension:

ARB fragment program. http://www.opengl.org/registry/specs/ARB/

fragment_program.txt, 2002.

108

http://www.opengl.org/registry/specs/ARB/fragment_program.txt
http://www.opengl.org/registry/specs/ARB/fragment_program.txt

[BCS06] Louis Bavoil, Steven P. Callahan, and Claudio T. Silva. Robust soft shadow

mapping with depth peeling. Technical Report UUSCI-2006-028, University

of Utah, 2006.

[Ber86] Philippe Bergeron. A general version of crow’s shadow volumes. Computer

Graphics Application, 6(9):17–28, 1986.

[BJ] H. Batagelo and I. Junior. Realtime shadow generation using bsp trees and

stencil buffers. In Proc. SIGRAPI, volume 12, pages 93–102.

[Bli77] James F. Blinn. Models of light reflection for computer synthesized pictures.

In Proc. SIGGRAPH, pages 192–198. ACM Press, 1977.

[Bro06] Pat Brown. OpenGL extension: NV gpu program4. http://www.opengl.

org/registry/specs/NV/gpu_program4.txt, 2006.

[BS99] Bill Bilodeau and Mike Songy. Real time shadows. Creative Labs sponsored

Game developer Conference, unpublished slides, May 1999.

[BS02] Stefan Brabec and Hans-Peter Seidel. Single sample soft shadows using

depth maps. In Proc. Graphics Interface, pages 219–228, 2002.

[BW04] Pat Brown and Eric Werness. OpenGL extension: NV fragment program2.

http://www.opengl.org/registry/specs/NV/fragment_program2.txt,

2004.

[Car00] John Carmack. An email from john carmack to mark kilgard outlining z-fail

algorithm - http://developer.nvidia.com/attach/6832. Id-Software,

2000.

[CD03] Eric Chan and Frédo Durand. Rendering fake soft shadows with smoothies.

In Proc. EG Workshop on Rendering Techniques, pages 208–218. Euro-

graphics, 2003.

[CG04] Hamilton Chong and Steven J. Gortler. A lixel for every pixel. In Proc.

EG Symposium on Rendering, pages 167–172. Eurographics, 2004.

[Coo86] Robert L. Cook. Stochastic sampling in computer graphics. ACM Trans.

Graph., 5(1):51–72, 1986.

[Cro77] Franklin C. Crow. Shadow algorithms for computer graphics. In Proc.

SIGGRAPH, pages 242–248. ACM Press, 1977.

109

http://www.opengl.org/registry/specs/NV/gpu_program4.txt
http://www.opengl.org/registry/specs/NV/gpu_program4.txt
http://www.opengl.org/registry/specs/NV/fragment_program2.txt
http://developer.nvidia.com/attach/6832

Bibliography

[DAM+08] Zhao Dong, Thomas Annen, Tom Mertens, Philippe Bekaert, Hans-Peter

Seidel, and Jan Kautz. Real-time, all-frequency shadows in dynamic scenes.

ACM Transactions on Graphics, Proc. SIGGRAPH, 0(0):to appear, 2008.

[DDSD03] Xavier Décoret, Frédo Durand, François X. Sillion, and Julie Dorsey. Bill-

board clouds for extreme model simplification. In Proc. SIGGRAPH, pages

689–696. ACM Press, 2003.

[DF94] George Drettakis and Eugene Fiume. A fast shadow algorithm for area

light sources using backprojection. Computer Graphics Forum, 28:223–230,

1994.

[Die01] Sim Dietrich. Shadow techniques. NVIDIA Cooperation, Game

Developer Conference, slides, http://developer.nvidia.com/object/

gdc2001_shadow_techniques.htm, 2001.

[DL06] William Donnelly and Andrew Lauritzen. Variance shadow maps. In SIG-

GRAPH Symposium on Interactive 3D Graphics and Games, pages 161–

165. ACM Press, 2006.

[ED06a] Elmar Eisemann and Xavier Décoret. Fast scene voxelization and appli-

cations. In ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games, pages 71–78. ACM SIGGRAPH, 2006.

[ED06b] Elmar Eisemann and Xavier Décoret. Plausible image based soft shadows

using occlusion textures. In Proc. SIGRAPI, pages 155–162. IEEE Com-

puter Society, 2006.

[ED07] Elmar Eisemann and Xavier Décoret. Visibility sampling on gpu and appli-

cations. Computer Graphics Forum, Proc. EUROGRAPHICS, 26(3):535–

544, 2007.

[EK02] C. Everitt and M. Kilgard. Practical and robust stenciled shadow volumes

for hardware-accelerated rendering. Technical report, NVIDIA Coopera-

tion, 2002.

[Eng07] Wolfgang Engel. ShaderX5 - Advanced Rendering Techniques, chapter Cas-

caded Shadow Maps, pages 197–206. Charles River Media, 2007.

[FBP06] Vincent Forest, Löıc Barthe, and Mathias Paulin. Realistic soft shadows

by penumbra-wedges blending. In Proc. SIGGRAPH/EUROGRAPHICS

conference on Graphics hardware, pages 39–48. Eurographics, 2006.

110

http://developer.nvidia.com/object/gdc2001_shadow_techniques.htm
http://developer.nvidia.com/object/gdc2001_shadow_techniques.htm

[FBP08] Vincent Forest, Löıc Barthe, and Mathias Paulin. Accurate shadows by

depth complexity sampling. Computer Graphics Forum, Proc. EURO-

GRAPHICS, 27(2):663–674, 2008.

[FBP09] Vincent Forest, Löıc Barthe, and Mathias Paulin. Soft textured shadow

volume. Submitted to EUROGRAPHICS, 2009.

[Fer05] Randima Fernando. Percentage-closer soft shadows. In SIGGRAPH

Sketches, page 35. ACM Press, 2005.

[FF88] Alain Fournier and Donald Fussell. On the power of the frame buffer. ACM

Transactions on Graphics, 7(2):103–128, 1988.

[FFBG01] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P.

Greenberg. Adaptive shadow maps. In Proc. SIGGRAPH, pages 387–390.

ACM Press, 2001.

[FGH+85] Henry Fuchs, Jack Goldfeather, Jeff P. Hultquist, Susan Spach, John D.

Austin, Jr. Frederick P. Brooks, John G. Eyles, and John Poulton. Fast

spheres, shadows, textures, transparencies, and imgage enhancements in

pixel-planes. In Proc. SIGGRAPH, pages 111–120. ACM Press, 1985.

[FZSXL06] Zhang-hang Fan Z, Hanqiu Sun, Leilei Xu, and Lee Kit Lun. Parallel-split

shadow maps for large-scale virtual environments. In Proc. of the Virtual

reality continuum and its applications, pages 311–318. ACM press, 2006.

[GBP06] Gael Guennebaud, Löıc Barthe, and Mathias Paulin. Real-time soft shadow

mapping by backprojection. In Proc. EG Symposium on Rendering, pages

227–234, http://www.eg.org/, 2006. Eurographics.

[GBP07] Gael Guennebaud, Löıc Barthe, and Mathias Paulin. High-quality adaptive

soft shadow mapping. Computer Graphics Forum, Proc. EUROGRAPH-

ICS, 26(3):525–533, 2007.

[Hai01] Eric Haines. Soft planar shadows using plateaus. Journal of Graphics Tools,

6(1):19–27, 2001.

[HAM07] Jon Hasselgren and Thomas Akenine-Möller. Textured shadow volumes.

Journal of Graphics Tools, 12(4):59–72, 2007.

111

Bibliography

[HAMO05] Jon Hasselgren, Tomas Akenine-Möller, and Lennart Ohlsson. GPU Gems

2 - Programming Techniques for High-Performance Graphics and General-

Purpose Computation, chapter Conservative Rasterization, pages 677–694.

Addison Wesley, 2005.

[HBS00] Wolfgang Heidrich, Stefan Brabec, and Hans-Peter Seidel. Soft shadow

maps for linear lights. In Proc. EG Workshop on Rendering Techniques,

pages 269–280. Eurographics, 2000.

[Hec89] Paul Heckbert. Fundamentals of texture mapping and image warping. Mas-

ter’s thesis, 1989.

[Hei91] Tim Heidmann. Real shadows, real time. Iris Universe, 18:28–31, 1991.

[Her97] Michael Herf. Efficient generation of soft shadow textures. Technical Report

CMU-CS-97-138, Carnegie Mellon University, 1997.

[HH97] Paul S. Heckbert and Michael Herf. Simulating soft shadows with graphics

hardware. Technical Report CMU-CS-97-104, Jan. 1997.

[HHLH05] Samuel Hornus, Jared Hoberock, Sylvain Lefebvre, and John Hart. Zp+:

correct z-pass stencil shadows. In I3D ’05: Proceedings of the 2005 sym-

posium on Interactive 3D graphics and games, pages 195–202. ACM Press,

2005.

[HLHS03] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François

Sillion. A survey of real-time soft shadows algorithms. In State-of-the-Art

Report, Proc. EUROGRAPHICS. Eurographics, 2003.

[JMB04] Gregory S. Johnson, William R. Mark, and Christopher A. Burns. The

irregular z-buffer and its application to shadow mapping. Technical report,

University of Texas, Austin, 2004.

[Kaj86] James T. Kajiya. The rendering equation. In Proc. SIGGRAPH, pages

143–150. ACM Press, 1986.

[Ket99] Lutz Kettner. Using generic programming for designing a data structure for

polyhedral surfaces. Computational Geometry: Theory and Applications,

13(1):65–90, 1999.

[KH01] Alexander Keller and Wolfgang Heidrich. Interleaved sampling. In Proceed-

ings of the 12th Eurographics Workshop on Rendering Techniques, pages

269–276. Eurographics, 2001.

112

[Kil05] Mark J. Kilgard. OpenGL extension: EXT stencil two side. http://www.

opengl.org/registry/specs/EXT/stencil_two_side.txt, 2005.

[KM99] Brett Keating and Nelson Max. Shadow penumbras for complex objects by

depth-dependent filtering of multi-layer depth images. In Proceedings of the

10th Eurographics Workshop on Rendering, pages 205–220. Springer-Verlag,

1999.

[KN01] Tae-Yong Kim and Ulrich Neumann. Opacity shadow maps. In Proc. EG

Workshop on Rendering Techniques, pages 177–182, 2001.

[Koz04] Simon Kozlov. GPU Gems - Programming Techniques, Tips, and Tricks for

Real-Time Graphics, chapter Perspective Shadow Maps: Care and Feeling,

pages 217–244. Addison Wesley, 2004.

[LAA+05] Samuli Laine, Timo Aila, Ulf Assarsson, Jaakko Lehtinen, and Tomas

Akenine-Möller. Soft shadow volumes for ray tracing. volume 24, pages

1156–1165. ACM Press, 2005.

[Lai05] Samuli Laine. Split-plane shadow volumes. In Proc. SIG-

GRAPH/EUROGRAPHICS conference on Graphics hardware, pages 23–

32. Eurographics, 2005.

[Lau07] Andrew Lauritzen. GPU Gems 3, chapter Summed-Area Variance Shadow

Maps, pages 157–182. Addison Wesley, 2007.

[Leh04] Jaakko Lehtinen. Foundations of precomputed radiance transfer. Master’s

thesis, 2004.

[Len02] Eric Lengyel. The mechanics of robust stencil shadows. Gamasutra web-

site, http://www.gamasutra.com/features/20021011/lengyel_01.htm,

2002.

[Len05] Eric Lengyel. Advanced stencil shadow and penumbra wedge rendering.

Game developer Conference, slides, www.terathon.com/gdc_lengyel.ppt,

2005.

[LGMM07] Brandon Lloyd, Naga K. Govindaraju, Steven E. Molnar, and Dinesh

Manocha. Practical logarithmic rasterization for low-error shadow maps.

In Proc. SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 17–24, 2007.

113

http://www.opengl.org/registry/specs/EXT/stencil_two_side.txt
http://www.opengl.org/registry/specs/EXT/stencil_two_side.txt
http://www.gamasutra.com/features/20021011/lengyel_01.htm
www.terathon.com/gdc_lengyel.ppt

Bibliography

[LGT+06] Brandon Lloyd, Naga K. Govindaraju, David Tuft, Steve Molnar, and Di-

nesh Manocha. Practical logarithmic shadow maps. In ACM SIGGRAPH

Sketches, page 103. ACM Press, 2006.

[LLA06] Jaakko Lehtinen, Samuli Laine, and Timo Aila. An improved physically-

based soft shadow volume algorithm. Computer Graphics Forum, Proc.

EUROGRAPHICS, 25(3):303–312, 2006.

[Llo07] D. Brandon Lloyd. Logarithmic perspective shadow maps. PhD thesis,

Chapel Hill, NC, USA, 2007. Adviser-Dinesh Manocha.

[LM08] Andrew Lauritzen and Michael McCool. Layered variance shadow maps.

In Proc. of Graphics Interface, pages 139–146, 2008.

[LTYM06] Brandon Lloyd, David Tuft, Sung-eui Yoon, and Dinesh Manocha. Warping

and partitioning for low error shadow maps. In Proc. EG Symposium on

Rendering, pages 215–226. Eurographics, 2006.

[LV00] Tom Lokovic and Eric Veach. Deep shadow maps. In Proc. SIGGRAPH,

pages 385–392. ACM Press, 2000.

[LWGM04] Brandon Lloyd, Jeremy Wendt, Naga Govindaraju, and Dinesh Manocha.

Cc shadow volumes. In SIGGRAPH Sketches, page 146. ACM Press, 2004.

[McC00] Michael D. McCool. Shadow volume reconstruction from depth maps. ACM

Transactions on Graphics, 19(1):1–26, 2000.

[MHE+03] M. McGuire, J. Hughes, K. Egan, M Killgard, and C. Everitt. Fast, prat-

ictical and robust shadows. Technical report, NVIDIA Cooperation, 2003.

[mi] mental images. mental ray renderer. http://www.mentalimages.com/

products/mental-ray.html.

[Mic08] Microsoft. Direct3D 9. SDK documentation - http://msdn.microsoft.

com/en-us/library/bb219837%28VS.85%29.aspx, 2008.

[Mit07] Martin Mittring. Finding next gen: Cryengine 2. In SIGGRAPH courses,

pages 97–121. ACM Press, 2007.

[MSW04] Chunhui Mei, Jiaoying Shi, and Fuli Wu. Rendering with spherical radiance

transport maps”. Computer Graphics Forum, 23(3):281–290, 2004.

114

http://www.mentalimages.com/products/mental-ray.html
http://www.mentalimages.com/products/mental-ray.html
http://msdn.microsoft.com/en-us/library/bb219837%28VS.85%29.aspx
http://msdn.microsoft.com/en-us/library/bb219837%28VS.85%29.aspx

[MT97] Tomas Möller and Ben Trumbore. Fast, minimum storage ray-triangle in-

tersection. Journal of Graphics Tools, 2(1):21–28, 1997.

[MT04] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and continuity with trape-

zoidal shadow maps. In Proc. EG Symposium on Rendering, pages 153–160.

Eurographics, 2004.

[Nie92] Harald Niederreiter. Random number generation and quasi-Monte Carlo

methods. Society for Industrial and Applied Mathematics, Philadelphia,

PA, USA, 1992.

[NRH04] Ren Ng, Ravi Ramamoorthi, and Pat Hanrahan. Triple product wavelet

integrals for all-frequency relighting. In Proc. SIGGRAPH, pages 477–487.

ACM Press, 2004.

[NVi05] NVidia. NVidia GPU Programming Guide. http://developer.download.

nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf,

2005.

[NVi08] NVidia. NVIDIA CUDA, Compute Unified Device Architecture. Pro-

gramming guide Version 2.0 - http://developer.download.nvidia.com/

compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf,

2008.

[PH04] Matt Pharr and Greg Humphreys. Physically Based Rendering: From The-

ory to Practice, chapter Monte Carlo Integration I: Basic Concepts, pages

631–660. Morgan Kaufmann, 2004.

[PMDS06] Voicu Popescu, Chunhui Mei, Jordan Dauble, and Elisha Sacks. Reflected-

scene impostors for realistic reflections at interactive rates. Computer

Graphics Forum, Proc. EUROGRAPHICS, 25(3):313–322, 2006.

[PSS98] Steven Parker, Peter Shirley, and Brian Smits. Single sample soft shadows.

Technical Report UUCS-98-019, 1998.

[RGKM07] Tobias Ritschel, Thorsten Grosch, Jan Kautz, and Stefan Muller. Interac-

tive illumination with coherent shadow maps. In Proc. EG Symposium on

Rendering, volume 18, pages 61–72. Eurographics, 2007.

[RH01] Ravi Ramamoorthi and Pat Hanrahan. An efficient representation for ir-

radiance environment maps. In Proc. SIGGRAPH, pages 497–500. ACM

Press, 2001.

115

http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
http://developer.download.nvidia.com/GPU_Programming_Guide/GPU_Programming_Guide.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf
http://developer.download.nvidia.com/compute/cuda/2.0-Beta2/docs/Programming_Guide_2.0beta2.pdf

Bibliography

[RHCB05] Zhong Ren, Wei Hua, Lu Chen, and Hujun Bao. Intersection fields for

interactive global illumination. The Visual Computer, 21(8-10):569–578,

2005.

[Ris07] Eric Risser. GPU Gems 3, chapter True Imposters, pages 481–490. Addison

Wesley, 2007.

[RSC87] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering

antialiased shadows with depth maps. In Proc. SIGGRAPH, volume 21,

pages 283–291. ACM Press, 1987.

[RT06] Guodong Rong and Tiow-Seng Tan. Utilizing jump flooding in image-

based soft shadows. In In Proc. Symposium on Virtual Reality Software

and Technology, pages 173–180. ACM, 2006.

[RWS+06] Zhong Ren, Rui Wang, John Snyder, Kun Zhou, Xinguo Liu, Bo Sun, Peter-

Pike Sloan, Hujun Bao, Qunsheng Peng, and Baining Guo. Real-time soft

shadows in dynamic scenes using spherical harmonic exponentiation. ACM

Transactions on Graphics, 25(3):977–986, 2006.

[SA06] Mark Segal and Kurt Akeley. The OpenGL R© Graphics System: A Specifica-

tion. http://www.opengl.org/registry/doc/glspec21.20061201.pdf,

2006.

[SA07] Perumaal Shanmugam and Okan Arikan. Hardware accelerated ambient

occlusion techniques on gpus. In SIGGRAPH Symposium on Interactive

3D Graphics and Games, pages 73–80. ACM Press, 2007.

[Sal08] Marco Salvi. ShaderX6 - Advanced Rendering Techniques, chapter Ren-

dering Filtered Shadows with Exponental Shadow Maps, pages 257–274.

Charles River Media, 2008.

[SCS+08] Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,

Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert

Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.

Larrabee: a many-core x86 architecture for visual computing. ACM Trans-

actions on Graphics, Proc. SIGGRAPH, 27:1–15, 2008.

[SD02] Marc Stamminger and George Drettakis. Perspective shadow maps. In

Proc. SIGGRAPH, pages 557–562. ACM Press, 2002.

116

http://www.opengl.org/registry/doc/glspec21.20061201.pdf

[SEA08] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson. Sample based visibility

for soft shadows using alias-free shadow maps. In Proc. EG Symposium on

Rendering, page to appear. Eurographics, 2008.

[SIMP06] Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard

Péroche. Non-interleaved deferred shading of interleaved sample patterns.

In Proc. SIGGRAPH/EUROGRAPHICS conference on Graphics hardware,

pages 53–60. Eurographics, 2006.

[SKS02] Peter-Pike Sloan, Jan Kautz, and John Snyder. Precomputed radiance

transfer for real-time rendering in dynamic, low-frequency lighting environ-

ments. ACM Transactions on Graphics, 21(3):527–536, 2002.

[SKvW+92] Mark Segal, Carl Korobkin, Rolf van Widenfelt, Jim Foran, and Paul Hae-

berli. Fast shadows and lighting effects using texture mapping. Proc. SIG-

GRAPH, 26(2):249–252, 1992.

[SLSS03] Peter-Pike Sloan, Xinguo Liu, Heung-Yeung Shum, and John Snyder. Bi-

scale radiance transfer. In Proc. SIGGRAPH, pages 370–375. ACM Press,

2003.

[SM06] Weifeng Sun and Amar Mukherjee. Generalized wavelet product integral

for rendering dynamic glossy objects. In Proc. SIGGRAPH, pages 955–966.

ACM Press, 2006.

[SN08] John Snyder and Derek Nowrouzezahrai. Fast soft self-shadowing on dy-

namic height fileds. In Proc. EG Symposium on Rendering, page to appear.

Eurographics, 2008.

[SS] Michael Schwarz and Marc Stamminger. Quality scalability of soft shadow

mapping. In Proc. of Graphics Interface.

[SS98] Cyril Soler and François Sillion. Fast calculation of soft shadow textures

using convolution. In Proc. SIGGRAPH, pages 321–332. ACM Press, 1998.

[SS07] Michael Schwarz and Marc Stamminger. Bitmask soft shadow. Computer

Graphics Forum, Proc. EUROGRAPHICS, 26(3):515–524, 2007.

[SS08] Michael Schwarz and Marc Stamminger. Microquad soft shadow mapping

revisited. In EUROGRAPHICS short papers, pages 295–298, 2008.

117

Bibliography

[TQJN99] Katsumi Tadamura, Xueying Qin, Guofang Jiao, and Eihachiro Nakamae.

Rendering optimal solar shadows using plural sunlight depth buffers. Com-

puter Graphics International, pages 166–173, 1999.

[Ura05] Yury Uralsky. GPU Gems 2 - Programming Techniques for High-

Performance Graphics and General-Purpose Computation, chapter Efficient

Soft-Edged Shadows Using Pixel Shader Branching, pages 269–282. Addi-

son Wesley, 2005.

[VG95] Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-

niques for monte carlo rendering. In Proc. SIGGRAPH, pages 419–428.

ACM Press, 1995.

[WH03] Chris Wyman and Charles Hansen. Penumbra maps: approximate soft

shadows in real-time. In Proc. EG Workshop on Rendering Techniques,

pages 202–207. Eurographics, 2003.

[Wil78] Lance Williams. Casting curved shadows on curved surfaces. In Proc.

SIGGRAPH, pages 270–274. ACM Press, 1978.

[Wil83] Lance Williams. Pyramidal parametrics. Proc. SIGGRAPH, 17(3):1–11,

1983.

[WSP04] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light space

perspective shadow maps. In Proc. EG Symposium on Rendering, pages

143–151. Eurographics, 2004.

[YTD02] Zhengming Ying, Min Tang, and Jinxiang Dong. Soft shadow maps for

area light by area approximation. In In Proc. Pacific Graphics, page 442,

Washington, DC, USA, 2002. IEEE Computer Society.

[ZHL+05] Kun Zhou, Yaohua Hu, Stephen Lin, Baining Guo, and Heung-Yeung Shum.

Precomputed shadow fields for dynamic scenes. ACM Transactions on

Graphics, 24(3):1196–1201, 2005.

[ZSN07] Fan Zhang, Hanqiu Sun, and Oskari Nyman. GPU Gems 3, chapter Parallel-

Split Shadow Maps on Programmable GPUs, pages 203–238. Addison Wes-

ley, 2007.

118

Abstract

Direct shadow algorithms generate shadows by simulating the direct lighting interaction

in a virtual environment. The main challenge with the accurate direct shadow problematic

is its computational cost. In this dissertation, we develop a new robust object-based

shadow framework that provides realistic shadows at interactive frame rate on dynamic

scenes. Our contributions include new robust object-based soft shadow algorithms and

efficient interactive implementations.

We start, by formalizing the direct shadow problematic. Following the light transport

problematic, we first formalize what are robust direct shadows. We then study existing

interactive direct shadow techniques and outline that the real time direct shadow simu-

lation remains an open problem. We show that even the so called physically plausible

soft shadow algorithms still rely on approximations. Nevertheless we exhibit that, despite

their geometric constraints, object-based approaches seems well suited when targeting

accurate solutions.

Starting from the previous analyze, we investigate the existing object-based shadow

framework and discuss about its robustness issues. We propose a new technique that

drastically improve the resulting shadow quality by improving this framework with a

penumbra blending stage. We present a practical implementation of this approach. From

the obtained results, we outline that, despite desirable properties, the inherent theoret-

ical and implementation limitations reduce the overall quality and performances of the

proposed algorithm.

We then present a new object-based soft shadow algorithm. It merges the efficiency

of the real time object-based shadows with the accuracy of its offline generalization. The

proposed algorithm lies onto a new local evaluation of the number of occluders between two

points (i.e. the depth complexity). We describe how we use this algorithm to sample the

depth complexity between any visible receiver and the light source. From this information,

we compute shadows by either modulate the direct lighting or numerically solve the direct

illumination with an accuracy depending on the light sampling strategy. We then propose

an extension of our algorithm in order to handle shadows cast by semi opaque occluders.

We finally present an efficient implementation of this framework that demonstrates that

object-based shadows can be efficiently used on complex dynamic environments.

In real time rendering, it is common to represent highly detailed objects with few trian-

119

gles and transmittance textures that encode their binary opacity. Object-based techniques

do not handle such perforated triangles. Due to their nature, they can only evaluate the

shadows cast by models whose their shape is explicitly defined by geometric primitives.

We describe a new robust object-based algorithm that addresses this main limitation.

We outline that this method can be efficiently combine with object-based frameworks

in order to evaluate approximative shadows or simulate the direct illumination for both

common meshes and perforated triangles. The proposed implementation shows that such

combination provides a very strong and efficient direct lighting framework, well suited to

many domains ranging from quality sensitive to performance critical applications.

120

	1 Introduction
	1.1 The direct lighting problem
	1.1.1 Why efficient robust direct shadows are important
	1.1.2 Assumptions about the direct shadow models

	1.2 Computing shadows
	1.2.1 Hard and soft shadows
	1.2.2 Image-based and object-based shadow algorithms

	1.3 Summary of contributions
	1.3.1 Penumbra wedge blending
	1.3.2 Depth complexity sampling
	1.3.3 Soft textured shadow volumes

	1.4 Thesis organization

	2 Rasterizing shadows
	2.1 The shadow problematic
	2.1.1 The light transport equation
	2.1.2 The direct illumination formulation
	2.1.3 The problematic of rasterizing shadows

	2.2 Hard shadows
	2.2.1 The shadow volumes
	2.2.2 The shadow maps

	2.3 Soft shadows
	2.3.1 Visually plausible soft shadows
	2.3.2 Physically plausible soft shadows

	2.4 Discussion
	2.4.1 Designing a robust shadow algorithm
	2.4.2 Image-based VS object-based framework
	2.4.3 Conclusion

	3 Penumbra wedge blending
	3.1 The penumbra wedge algorithm
	3.1.1 Overview
	3.1.2 The penumbra wedge primitive
	3.1.3 Rendering the penumbra wedge
	3.1.4 Discussion and limitations

	3.2 The penumbra wedge blending
	3.2.1 The silhouette visibility buffer
	3.2.2 The penumbra blending

	3.3 Implementation
	3.3.1 The shadow volume framework
	3.3.2 The penumbra wedge framework
	3.3.3 The silhouette visibility buffer evaluation
	3.3.4 Computing the penumbra blending

	3.4 Results
	3.4.1 Memory requirement
	3.4.2 Performances

	3.5 Discussion
	3.A Infinite shadow volume extrusion
	3.B Infinite penumbra wedge construction

	4 Accurate shadows by depth complexity sampling
	4.1 Local depth complexity computation
	4.1.1 Depth complexity initialization
	4.1.2 Update of the depth complexity
	4.1.3 The counter packing encoding
	4.1.4 Advantages and drawbacks

	4.2 Light sampling strategy
	4.2.1 Sample distribution
	4.2.2 Interleaved sampling
	4.2.3 Adaptive distribution

	4.3 Depth complexity for shadow computation
	4.3.1 From depth complexity to visibility coefficient
	4.3.2 Numerical integration of the direct lighting
	4.3.3 Handling semi opaque occluders

	4.4 Implementation
	4.4.1 Sample distribution
	4.4.2 Soft shadow volume framework
	4.4.3 The depth complexity sampling step
	4.4.4 Evaluating the direct illumination

	4.5 Results
	4.5.1 Memory cost
	4.5.2 Performance analysis

	4.6 Discussion
	4.7 Conclusion

	5 Soft textured shadow volumes
	5.1 Soft textured shadow volumes
	5.1.1 The algorithm
	5.1.2 Soft textured shadow volume extrusion
	5.1.3 Points into soft textured shadow volume
	5.1.4 Accessing the transmittance texture
	5.1.5 Light sampling strategy

	5.2 Unified object-based soft shadow framework
	5.2.1 Penumbra wedge
	5.2.2 Depth complexity sampling

	5.3 Implementation
	5.3.1 Sample distribution
	5.3.2 Soft textured shadow volume extrusion
	5.3.3 Transmittance sampling
	5.3.4 Direct illumination

	5.4 Results
	5.4.1 Memory consumption
	5.4.2 Performances

	5.5 Conclusion and discussion
	5.A Transmittance value
	5.B Vcoef from visibility bit mask

	6 Conclusion
	6.1 Rasterizing accurate soft shadows
	6.2 The penumbra wedge blending
	6.3 Robust unified object-based framework
	6.3.1 The depth complexity sampling
	6.3.2 Soft textured shadow volumes

	6.4 Conclusion and future works

	Bibliography
	Abstract

