
Helsinki University of Technology
Publications in Telecommunications Software and Multimedia
Teknillisen korkeakoulun tietoliikenneohjelmistojen ja multimedian julkaisuja

Espoo 2006 TML-A13

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

Samuli Laine

AB TEKNILLINEN KORKEAKOULU
TEKNISKA HÖGSKOLAN
HELSINKI UNIVERSITY OF TECHNOLOGY
TECHNISCHE UNIVERSITÄT HELSINKI
UNIVERSITE DE TECHNOLOGIE D’HELSINKI

Helsinki University of Technology
Publications in Telecommunications Software and Multimedia
Teknillisen korkeakoulun tietoliikenneohjelmistojen ja multimedian julkaisuja

Espoo 2006 TML-A13

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

Samuli Laine

Dissertation for the degree of Doctor of Science in Technology to be presented with due permission of the

Department of Computer Science and Engineering, for public examination and debate in Auditorium T2

at Helsinki University of Technology (Espoo, Finland) on the 29th of September, 2006, at 12 noon.

Helsinki University of Technology
Department of Computer Science and Engineering
Telecommunications Software and Multimedia Laboratory

Teknillinen korkeakoulu
Tietotekniikan osasto
Tietoliikenneohjelmistojen ja multimedian laboratorio

Distribution:

Helsinki University of Technology

Telecommunications Software and Multimedia Laboratory

P.O.Box 5400

FIN-02015 HUT

Finland

Tel. +358-9-451 2870

Fax. +358-9-451 5014

http://www.tml.hut.fi/

Available in PDF format at http://lib.hut.fi/Diss/2006/isbn9512283581/

c© Samuli Laine

ISBN 951-22-8357-3 (printed version)

ISSN 1456-7911

ISBN 951-22-8358-1 (electronic version)

ISSN 1455-9722

Otamedia Oy

Espoo 2006

ABSTRACT

Author Samuli Laine
Title Efficient Physically-Based Shadow Algorithms

This research focuses on developing efficient algorithms for computing
shadows in computer-generated images. A distinctive feature of the shadow
algorithms presented in this thesis is that they produce correct, physically-
based results, instead of giving approximations whose quality is often hard
to ensure or evaluate.

Light sources that are modeled as points without any spatial extent pro-
duce hard shadows with sharp boundaries. Shadow mapping is a traditional
method for rendering such shadows. A shadow map is a depth buffer com-
puted from the scene, using a point light source as the viewpoint. The finite
resolution of the shadow map requires that its contents are resampled when
determining the shadows on visible surfaces. This causes various artifacts
such as incorrect self-shadowing and jagged shadow boundaries. A novel
method is presented that avoids the resampling step, and provides exact
shadows for every point visible in the image.

The shadow volume algorithm is another commonly used algorithm for
real-time rendering of hard shadows. This algorithm gives exact results and
does not suffer from any resampling problems, but it tends to consume a
lot of fillrate, which leads to performance problems. This thesis presents a
new technique for locally choosing between two previous shadow volume
algorithms with different performance characteristics. A simple criterion
for making the local choices is shown to yield better performance than using
either of the algorithms alone.

Light sources with nonzero spatial extent give rise to soft shadows with
smooth boundaries. A novel method is presented that transposes the clas-
sical processing order for soft shadow computation in offline rendering.
Instead of casting shadow rays, the algorithm first conceptually collects ev-
ery ray that would need to be cast, and then processes the shadow-casting
primitives one by one, hierarchically finding the rays that are blocked.

Another new soft shadow algorithm takes a different point of view into
computing the shadows. Only the silhouettes of the shadow casters are used
for determining the shadows, and an unintrusive execution model makes
the algorithm practical for production use in offline rendering.

The proposed techniques accelerate the computing of physically-based
shadows in real-time and offline rendering. These improvements make it
possible to use correct, physically-based shadows in a broad range of scenes
that previous methods cannot handle efficiently enough.

UDC 004.925, 004.383.5
Keywords computer graphics, shadow algorithms, soft shadows,

physically-based rendering

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 1

2 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

TIIVISTELMÄ

Tekijä Samuli Laine
Työn nimi Efficient Physically-Based Shadow Algorithms

Tämä tutkimus käsittelee tehokkaita algoritmeja varjojen laskemiseksi
tietokonegrafiikassa. Väitöskirjassa esitettyjen algoritmien keskeinen piirre
on niiden tuottamien varjojen fysikaalisesti perusteltavissa oleva oikeelli-
suus. Tämä erottaa ne approksimatiivisista algoritmeista, joiden tuottamien
varjojen laatua on usein vaikea arvioida tai taata.

Pistemäiset valonlähteet tuottavat ns. kovia varjoja, joiden reunat ovat
teräviä. Varjokartta-algoritmi (shadow mapping) on perinteinen menetelmä
tämänkaltaisten varjojen piirtämiseen. Varjokartta on valonlähteestä katso-
en laskettu syvyyspuskuri. Koska varjokartan resoluutio on äärellinen, sen
uudelleennäytteistys varjokyselyvaiheessa aiheuttaa monenlaisia virheitä ku-
vaan, kuten pintojen virheellistä itsevarjostusta ja sahalaitaisia varjoreunoja.
Tässä työssä esitellään uusi menetelmä, joka välttää uudelleennäytteistysvai-
heen ja tuottaa siten tarkat varjot kaikkiin kuvassa näkyviin pisteisiin.

Varjotilavuusalgoritmi (shadow volumes) on toinen usein käytetty mene-
telmä kovien varjojen reaaliaikaiseen piirtämiseen. Se tuottaa tarkat varjot
ja välttää uudelleennäytteistyksestä aiheutuvat ongelmat, mutta vaatii paljon
laskentaresursseja, mikä puolestaan johtaa tehokkuusongelmiin. Tässä työs-
sä esitellään uusi tekniikka, joka valitsee kuva-avaruudessa paikallisesti kah-
den aikaisemman varjotilavuusmenetelmän käytön välillä. Kun valitaan ai-
na paikallisesti tehokkaammaksi arvioitu menetelmä, saavutetaan parempi
tehokkuus kuin käyttämällä kumpaakaan menetelmää yksinään.

Ei-pistemäiset valonlähteet tuottavat pehmeäreunaisia varjoja. Työssä
esitellään uusi algoritmi, joka kääntää perinteisen pehmeiden varjojen las-
kentamenetelmän järjestyksen päinvastaiseksi. Sen sijaan, että tarkastel-
taisiin yksittäisten varjosäteiden näkyvyyttä, algoritmi kokoaa ensin tiedon
kaikista tarvittavista varjosäteistä, minkä jälkeen varjostavat primitiivit käsi-
tellään yksitellen ja haetaan niiden peittämät varjosäteet.

Toinen esiteltävä pehmeiden varjojen laskenta-algoritmi laskee varjot
eri tavalla. Vain varjostavien kappaleiden siluetteja käytetään varjojen las-
kentaan, ja käytännöllinen laskentajärjestys mahdollistaa algoritmin helpon
soveltamisen osana käytännön kuvanlaskentajärjestelmiä.

Esitellyt tekniikat nopeuttavat fysikaalisesti oikeiden varjojen laskentaa
sekä reaaliaikaisissa että ei-reaaliaikaisissa sovelluksissa. Tämä mahdollistaa
tarkkojen, fysikaalisesti oikeiden varjojen käytön useissa tilanteissa, joissa
aiempien menetelmien tehokkuus ei ole riittävä.

UDC 004.925, 004.383.5
Avainsanat tietokonegrafiikka, varjoalgoritmit, pehmeät varjot,

fysiikkapohjainen kuvanlaskenta

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 3

4 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

Tiinalle,
Santerille ja
vauvalle

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 5

6 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

PREFACE

This research was carried out at the Telecommunications Software and
Multimedia Laboratory, Helsinki University of Technology, Espoo, during
2004–2006.

I want to express my gratitude to Prof. Lauri Savioja, the supervisor of
this thesis, for support and encouragement, and for giving me considerable
freedom in carrying out my research activities.

I also want to thank Dr. Timo Aila, the instructor of this thesis. Being
able to follow his dynamic and to-the-point way of doing science has been
a great asset to me, and collaborating with him has always been a pleasant
experience.

In addition, I would like to thank my other co-authors Ulf Assarsson,
Jaakko Lehtinen, and Tomas Akenine-Möller for fruitful collaboration, and
my colleagues Janne Kontkanen and Jussi Räsänen for insightful conver-
sations. Many thanks to the good people at Hybrid Graphics for selflessly
sharing their expertise back in the days when I entered the field of computer
graphics. Of those, I want to especially thank Ville Miettinen who showed
the importance of vigor, in addition to the usual rigor, when tackling tricky
problems.

Furthermore, I want to thank the pre-examiners of this thesis, Dr. Jukka
Arvo and Dr. Xavier Décoret, for positive feedback and constructive com-
ments.

I am grateful to the organizations that have supported this work finan-
cially: Tekes (The National Technology Agency), Anima Vitae, Bitboys,
Hybrid Graphics, Nokia, and Remedy Entertainment.

Finally, I am most deeply indebted to my family. Tiina, this work
would not have been possible without your love, support, and apparently
unlimited patience throughout my studies. Santeri, your endless curiosity
and cheerful attitude towards life always brighten up my day. Thank you
for reminding me of things that really matter.

Otaniemi, Espoo, 29th August 2006

Samuli Laine

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 7

8 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

TABLE OF CONTENTS

Abstract 1

Tiivistelmä 3

Preface 7

Table of Contents 9

List of Publications 11

List of Abbreviations 13

1 Introduction 15
1.1 Scope of This Thesis . 17
1.2 Exact Hard Shadows . 18

Restrictions posed by current GPU architectures 19
1.3 Physically-Based Soft Shadows 19

Efficient solving of visibility relations 20
1.4 Organization of the Thesis 20

2 Mathematical Background for Physically-Based Soft Shadows 21
2.1 Terminology . 21
2.2 Physically-Based Soft Shadows 22
2.3 Some Remarks on Importance Sampling 24

3 Related Research 27
3.1 Shadow Maps . 27

The resampling problem of shadow maps 27
Irregular shadow maps . 29

3.2 Shadow Volumes . 29
Optimizations for shadow volumes 31

3.3 Ray Casting . 31
3.4 Miscellaneous Hard Shadow Algorithms 32
3.5 Approximative Soft Shadow Algorithms 33
3.6 Physically-Based Soft Shadow Algorithms 35

4 Shadow Algorithms 37
4.1 Alias-Free Shadow Maps 37
4.2 Hierarchical Penumbra Casting 37
4.3 Split-Plane Shadow Volumes 39
4.4 Soft Shadow Volumes for Ray Tracing 40

Improved spatial acceleration structure 42
4.5 Applicability of hierarchical methods 43

5 Main Results of the Thesis and Contributions of the Author 45

Bibliography 47

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 9

10 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

LIST OF PUBLICATIONS

This thesis summarizes the following articles and publications, referred to
as [P1]–[P5]:

[P1] T. Aila and S. Laine. Alias-Free Shadow Maps. In Rendering
Techniques 2004 (Eurographics Symposium on Rendering), pages
161–166. Eurographics Association, 2004.

[P2] S. Laine and T. Aila. Hierarchical Penumbra Casting. Computer
Graphics Forum, 24(3):313–322, 2005.

[P3] S. Laine. Split-Plane Shadow Volumes. In Graphics Hardware 2005
(Eurographics Symposium Proceedings), pages 23–32. Eurographics
Association, 2005.

[P4] S. Laine, T. Aila, U. Assarsson, J. Lehtinen and T. Akenine-Möller.
Soft Shadow Volumes for Ray Tracing. ACM Transactions on Graph-
ics, 24(3):1156–1165, 2005.

[P5] J. Lehtinen, S. Laine and T. Aila. An Improved Physically-Based
Soft Shadow Volume Algorithm. Computer Graphics Forum, 25(3):
303–312, 2006.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 11

12 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

LIST OF ABBREVIATIONS

2D Two-dimensional
3D Three-dimensional
AFSM Alias-free shadow maps [P1]
CPU Central processing unit
GPU Graphics processing unit
HPC Hierarchical penumbra casting [P2]
SPSV Split-plane shadow volumes [P3]
SSV Soft shadow volumes [P4, P5]

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 13

14 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

1 INTRODUCTION

The topic of this thesis is computing realistic shadows in computer graphics.
It is a well-known fact that shadows are an important feature in computer-
generated images, as they increase the perceived level of realism and also
convey information about spatial relationships between objects. An example
of the latter feature is illustrated in Figure 1.1.

When rendering an image, we need to compute the shadows at some
number of 3D points, which we will call receiver points throughout this
thesis. Figure 1.2 illustrates a low-resolution image of a simple scene, where
one receiver point is deposited at surface points that are visible through the
centers of pixels. The 2D points on the image are distributed into a uniform
lattice, since that is the shape of the pixel grid, but their respective 3D
positions are not uniformly distributed.

To limit the scope of this thesis, we will consider only shadows of direct
illumination, i.e. light that arrives at receiver points directly from the light
sources. In particular, we shall not consider so-called global illumination
effects where multiple scattering events are allowed for a single light path.
These two illumination models are illustrated in Figure 1.3. It is often
beneficial to solve global and direct illumination separately, since efficient
solution methods are considerably different in each case.

A receiver point is in shadow when the flow of light from a light source
to the receiver point is completely or partially obstructed. We differentiate
between two types of shadows that result from using different types of light
sources. Hard shadows appear when the light source is modeled as a point
without any spatial extent. For this kind of light source, any given receiver
point is either in full shadow or not in shadow at all, which yields a sharp
shadow boundary (Figure 1.4a). Point light sources do not exist in physical
world, but in computer graphics they can be used as approximations for
small light sources.

If the light source has some kind of spatial extent, being e.g. a line seg-
ment, a polygon, or a volumetric entity, the receiver points may be not only
completely shadowed or completely lit, but also partially shadowed. Partial
shadowing occurs when light from some portion of the light source flows to
a receiver point without being occluded, while light coming from the rest

(a) (b) (c)

Figure 1.1: The canonical example that illustrates the importance of shad-
ows as spatial cues. (a) and (b) show obviously distinct geometrical situa-
tions. Note that only the location of shadows differ in these figures. (c) In
absence of shadows, these two configurations would look identical.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 15

Figure 1.2: Receiver points in a simple low-resolution image where no
antialiasing has been used. Every pixel specifies a 3D receiver point, except
when the center of the pixel does not map to any surface in the scene. Note
that even though the receiver points are uniformly distributed in the image
plane, their distribution in 3D may be highly irregular. In this image, hard
shadows have been computed from a point light source.

(a) direct illumination (b) global illumination

Figure 1.3: Direct versus global illumination. (a) The shadow algorithms
presented in this thesis consider only direct illumination paths, two of which
are shown in the figure. Each path scatters exactly once off a visible surface.
(b) Global illumination paths may scatter multiple times in the scene before
reaching the viewer. A single global illumination path with two scattering
events is shown.

(a) hard shadow (b) soft shadow

Figure 1.4: Hard shadows versus soft shadows. (a) The light source is
modeled as a point with no spatial extent. Consequently, every point on
the bottom surface is either completely shadowed or completely lit, yielding
sharp shadow boundaries. (b) The light source is modeled as a polygon.
Now a point on the bottom surface may also be partially shadowed, giving
rise to a soft shadow boundary.

16 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

AFSM HPC, SSVOffline
rendering

Hard shadows Soft shadows

SPSVReal-time
rendering

Figure 1.5: Classification of the algorithms presented in this thesis.

of the light source is blocked. This yields smooth shadow boundaries, i.e.
soft shadows (Figure 1.4b). It has been shown [58] that the smoothness of
shadows is an essential ingredient in realistic images, and hard shadows are
perceived as artificial and unrealistic. Since one-dimensional light sources
are scarcely used in practice, we will from now on assume that any non-
point light source has nonzero surface area. These kind of light sources are
commonly called area light sources, and we shall adopt this term in this
thesis as well.

1.1 Scope of This Thesis

This thesis concentrates on the computation of hard and soft shadows of
direct illumination. The novel algorithms presented have been designed
to improve the performance of shadow computation over previous meth-
ods. The improvements have been achieved by formulating the shadow
computation process in various different ways, and then constructing algo-
rithms that exploit hierarchical methods for performing the computation
efficiently.

This thesis is based on five publications [P1–P5] that propose new,
efficient algorithms for shadow computation. Table 1.1 summarizes the
names of the algorithms that are introduced in the publications, as well as
the abbreviations that will be used for referring to them.

Figure 1.5 shows the classification of the algorithms. Three of the
algorithms (AFSM, HPC and SSV) are designed to be used in offline
rendering, and they are based entirely on software solutions. On the other
hand, the SPSV algorithm is based on a proposed GPU extension which
would allow the algorithm to accelerate the rendering of hard shadows. Both
SPSV and AFSM algorithms are designed for computing hard shadows only,
while HPC and SSV are soft shadow algorithms.

Algorithm Abbreviation Publications

Alias-free shadow maps AFSM [P1]
Hierarchical penumbra casting HPC [P2]
Split-plane shadow volumes SPSV [P3]
Soft shadow volumes SSV [P4, P5]

Table 1.1: List of the algorithms presented in this thesis, the abbreviations
used, and the publications in which they have appeared.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 17

p

l

p

L

li

(a) point light source (b) area light source

Figure 1.6: Visibility relations. (a) For a point light source, we need to
compute the status of one visibility relation per receiver point and light
source. In this case, the status of the relation shown is VISIBLE, as there is
free line of sight between receiver point p and light source l. (b) An area
light source L is represented by a number of point-like samples li, where i
is the index of the light sample. If there are M such light samples, we need
to solve the status of M visibility relations for each receiver point. In this
figure, five visibility relations are shown, two that are blocked and three that
are visible. In practice, dozens or hundreds of light samples are required
for obtaining noise-free shadows.

1.2 Exact Hard Shadows

A desirable property for a shadow algorithm, as for any other algorithm, is
that the computed results are correct. With hard shadows, this means that
whether a receiver point is in shadow or not is determined exactly. With
standard shadow mapping [75], this is unfortunately impossible, since the
discretization of the shadow map prevents us from getting exact answers
for arbitrary receiver points. Shadow volumes [26, 40], on the other hand,
produce exact results, but tend to consume a lot of GPU resources. Shadow
maps and shadow volumes will be discussed in further detail in Chapter 3.

To consider the process of computing the shadows for an entire image,
we now introduce the concept of visibility relation. Each visibility relation
is defined by two 3D points, one that is a receiver point, and one that
lies on the light source. The status of a visibility relation may be either
BLOCKED or VISIBLE, depending on whether some surface in the scene
blocks the visibility between the endpoints or not, respectively. Here, we
shall not consider the possibility of a single visibility relation being partially
blocked due to e.g. semi-transparent surfaces, but require that every visibility
relation has only two possible statuses. The possibility of supporting partially
blocking surfaces is discussed separately in the publications.

Let us consider a single point light source and a single receiver point.
To calculate whether the receiver point is illuminated by the light source,
we need to evaluate the status of a visibility relation between the two points
(Figure 1.6a). If the status is BLOCKED, there is a surface that blocks the
visibility from the light source to the receiver point, and consequently also
blocks the flow of light, resulting in a shadow. On the other hand, if the
status of the visibility relation is VISIBLE, there is free line of sight between
the points, and therefore light from the light source can reach the receiver
point, yielding no shadow. Thus, for N receiver points and a single point

18 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

light source, there are exactly N visibility relations that need to be solved
for computing all shadows in the scene.

Restrictions posed by current GPU architectures
For real-time applications, the current structure of the available GPUs
mostly dictates the nature of the algorithms that can be run efficiently. The
most limiting factor in hardware-based shadow computation is that usually
no global knowledge of all geometry in the scene can be made available
efficiently. This renders many algorithms such as casting shadow rays [6, 74]
impossible to be implemented efficiently on hardware.

The AFSM algorithm [P1] in this thesis modifies the shadow mapping
algorithm [75] so that it is able to produce exact shadows, but with the cost
that it cannot run entirely on current hardware. Since shadow maps are
also heavily used in offline production rendering, the CPU-based algorithm
is still widely applicable in practice.

Developments in GPU architectures may enable running AFSM en-
tirely on hardware in the future, which would make it a possible real-time
algorithm for computing hard shadows. Recently, a multi-pass hardware
implementation of the AFSM algorithm has been proposed by Arvo [10].
Unfortunately, the implementation requires reading a single value from the
GPU to CPU, which currently limits its framerate below real-time applica-
tions.

To reduce the inefficiency in shadow volume rendering, the SPSV
algorithm [P3] employs a hierarchical approach that avoids much of un-
necessary pixel processing in the GPU. It also cannot be run efficiently on
current GPUs, but only relatively minor extensions to the hardware would
be required.

1.3 Physically-Based Soft Shadows

With soft shadows, it is generally not possible to require correct results, since
the appearance of a receiver point, as seen from the camera, depends on a
complicated integral that does not necessarily have a closed-form solution.
This issue will be discussed further in Chapter 2. Instead of attempting to
evaluate the integrals analytically, Monte Carlo integration techniques are
needed for obtaining an estimate of the value of the integral.

We define a physically-based soft shadow algorithm as one that can be
used for obtaining an unbiased estimate of the appearance of a receiver
point. In other words, the estimated appearance must converge towards the
correct result as the accuracy of the computation is increased. In contrast to
physically-based algorithms, there are numerous approximative soft shadow
algorithms that do not give unbiased results but instead approximate the
shadows by e.g. blurring the shadow boundaries.

To perform Monte Carlo integration, area light sources must be repre-
sented using a number of point-like light samples in order to compute the
potential partial shadowing, as illustrated in Figure 1.6b. If the light source
is sampled using M light samples and there are N receiver points in the
image, a total of N ×M visibility relations need to be solved. Obviously,
this requires much more computation than with hard shadows, where N

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 19

visibility relations were sufficient.

Efficient solving of visibility relations
The central question of physically-based shadow algorithms is how to solve
the status of the visibility relations in an efficient manner. The simplest
solution is to consider every visibility relation separately, but this easily leads
to prohibitively long execution times. For a moderate-resolution image with,
say, one million pixels, and a single area light source represented using 200
light samples, there are already two hundred million visibility relations to
be solved.

The crucial idea in modern soft shadow algorithms is to exploit the
coherence in the status of nearby visibility relations. Light samples that are
packed closely together tend to contribute to the resulting image mostly in
a similar fashion, and consequently, nearby receiver points are usually illu-
minated by approximately the same set of light samples. Of the algorithms
included in this thesis, the SSV algorithm [P4, P5] exploits the coherence
between nearby light samples and neighboring triangles, and the HPC al-
gorithm [P2] takes advantage of the coherence in both light samples and
receiver points, while processing each triangle separately.

1.4 Organization of the Thesis

The rest of this thesis is organized as follows. Chapter 2 formulates a mathe-
matical framework for computing physically-based shadows, and Chapter 3
gives an overview of related research on shadow algorithms. Chapter 4
presents the new contributions to physically-based shadow computation.
Finally, Chapter 5 summarizes the main results of the thesis and the au-
thor’s contributions.

20 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

2 MATHEMATICAL BACKGROUND FOR PHYSICALLY-BASED SOFT SHADOWS

In this chapter, we will present the mathematical foundations behind
physically-based soft shadow computation. As was stated in Chapter 1,
we define a physically-based soft shadow algorithm as one whose results
converge towards the correct solution as the accuracy of the computation
is increased. While this might appear to be a natural requirement for any
algorithm, it is not satisfied by most of the previously presented soft shadow
algorithms.

We first introduce a number of key terms and their definitions, and
then analyze how physically-based soft shadows are computed for direct
illumination from area light sources.

2.1 Terminology

Receiver points
When computing shadows, we have a set of points where we are interested
in knowing the shadows. These are the receiver points, denoted ri, where
i is an index. The receiver points are typically determined by tracing rays
from the camera through the pixels of the image. Rasterization can also
be used. Multiple receiver points may be needed for each pixel if e.g.
antialiasing is performed.

Light samples
Since we use Monte Carlo methods for estimating the appearance of the
receiver points, which includes evaluating the visibility between the receiver
points and the light sources, we need to represent the light sources as a
set of light samples, denoted lj , where j is an index. The light samples
are distributed on the surfaces of the light sources using some suitable
distribution. The number of light samples to be used is a quality parameter:
approximating a light source with too few samples results in visible noise, but
as the number of samples increases, the amplitude of the noise decreases,
and the appearance of the shadows converges to the correct solution.

Visibility function
Given the assumption that objects always block rays of light either com-
pletely or not at all, visibility between two points is a binary function. We
may formalize it as follows: given two 3D points pa and pb, we define func-
tion V(pa, pb) so that V(pa, pb) = 1 if no surfaces intersect the line segment
pa → pb, excluding the endpoints, and V(pa, pb) = 0 if at least one surface
intersects the line segment. We also define V(pa, pb) = 1 when pa = pb.
For treating partially transparent surfaces, the visibility function would need
to assume values other than 0 and 1, and such cases are discussed separately
in the publications.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 21

Visibility relations
Given receiver points ri and light samples lj , the shadow computation task
can be stated as determining V(ri, lj) for every i, j pair. A single i, j pair
defines one visibility relation, and if there are N receiver points and M light
samples, there are N×M visibility relations in total. The status of a visibility
relation may be either VISIBLE or BLOCKED, corresponding to whether
V(ri, lj) = 1 or V(ri, lj) = 0, respectively. For some algorithms, the light
samples must remain stationary throughout the computation, whereas some
algorithms allow positioning the light samples separately for each receiver
point.

2.2 Physically-Based Soft Shadows

Soft shadows appear when the light source is not considered to be a point,
but as an object or surface with nonzero area. Here, we omit the rare (but
existing [57]) case of light sources that are shaped as line segments or other
one-dimensional curves, as they are not used in practice, and extending the
analysis to such cases is trivial. In their most general form, area light sources
are objects that emit light, although most often simple planar and polygonal
light sources are used. It should be noted that even a volumetric light source
can be expressed using only its bounding surface as a light source, assuming
that no shadow caster or shadow-receiving surface is located inside the
bounding surface.

Soft shadows are fundamentally more difficult to compute than hard
shadows, since the visibility of an area light source to a point being shaded
cannot be expressed simply as 0 or 1. As it will turn out, a scalar value that can
assume values between 0 and 1 does not suffice either. We start developing
the equation for shadow computation from the classical rendering equation
first formulated by Kajiya in 1986 [45]. The rendering equation governs the
light transport when full global illumination is taken into account. Using
slightly more modern notation than what was used in the original paper,
we write the rendering equation as follows:

u(p→ ωout) = e(p→ ωout) +∫
Ωp

fr(p, ωin → ωout)u(p← ωin)bnp · ωinc dωin . (2.1)

Here, u(p → ωout) denotes the total radiance flowing from point p into
outgoing direction ωout , and e(p → ωout) is the radiance emitted from
point p towards ωout . Unless p is on a surface of a light source, the emission
term e(p→ ωout) is zero. The integral is taken over the hemisphere Ωp that
is directed towards the normal vector np at p. Function fr(p, ωin → ωout)
is the BRDF [53] of the surface at p, and it tells how big portion of incident
light coming from direction ωin to point p is reflected towards outgoing
direction ωout .1 Expression b·c, commonly used in computer graphics
texts, denotes the “clamp-to-zero” function max(·, 0).

1The BRDF (bidirectional reflectance distribution function) of a surface depends on its
material, and there are many models for expressing it in analytical forms. Tabulated BRDFs
that are measured from real materials are also becoming popular. We will not discuss BRDFs
further in this thesis, and merely note their vital role in creating realistic images.

22 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

As can be seen, the radiance function u appears both on the left hand
side of the equation and also inside the integral, making this a so-called
Fredholm equation of the second kind. Since our goal here is to compute
direct illumination only, we must replace the radiance function u inside the
integral by emission function e, which greatly simplifies the situation.

In addition, we make a somewhat surprising twist at this point, and re-
move the emission term e(p→ ωout) outside the integral. This makes the
light sources invisible entities that emit light while being invisible to the
camera. This is often desirable, and many commercial graphics packages
allow treating area light sources exactly this way. The invisibility of light
sources gives the artists freedom to e.g. place additional light sources be-
tween the camera and the objects visible in the scene, which is impossible
in physical world without showing the light sources in the image. If, on the
other hand, it is desirable to see the light sources in the image, it is always
possible to present the corresponding surfaces twice, once as a light source,
and once as plain geometry that may have an emissive material, but that
does not act as a light source. We thus get the following equation:

u(p→ ωout) =
∫

Ωp

fr(p, ωin → ωout)e(p← ωin)bnp · ωinc dωin . (2.2)

Applying this integral directly when computing soft shadows from direct
illumination would be impractical. This is mainly because e(p ← ωin)
inside the integral is zero unless a light source is visible from p in direction
ωin . We may recast this equation into an area-based formulation [29]
by a change of integration variable. Assuming no participating media,
the incoming radiance at p from direction ωin is the same as outgoing
radiance from point l in direction−ωin , where l is a point on a light source
visible from p in direction ωin . This allows us to state that e(p← ωin) =
e(l→ −ωin). The differential solid angle dωin can be expressed in terms
of differential area as follows [29]:

dωin = bnl · −ωinc
dA

|l − p|2
. (2.3)

Because of the visibility criterion, we must now multiply the kernel of the
integral by the visibility function V(p, l) to take potential occlusion into
account. This yields the following equation, where we integrate over the
surface L of a light source:

u(p→ ωout) =
∫

L

fr(p, ωin → ωout)e(l→ −ωin)×

V(p, l)
bnp · ωincbnl · −ωinc

|l − p|2
dAl.

(2.4)

It is important to note that ωin now depends on the integration variable l
and is not constant. Dissecting the equation, we see that there are three
functions inside the integral: BRDF, emission function and visibility func-
tion. Furthermore, there are factors that account for the geometry of the
situation: bnp · ωinc converts the cross-sectional flow from the direction of
ωin to flow per surface area at p, and bnl · −ωinc does the same in reverse

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 23

direction at the surface of the light source. Attenuation factor 1/|l − p|2
accounts for the distance between p and l.

Solving the integral in Equation 2.4 analytically is possible for certain
types of BRDFs and visibility functions, but even in these situations, it
is much easier to solve the integral using Monte Carlo sampling instead.
Integral over an arbitrary function can be approximated by constructing a
number of uniform-density sampling points in the domain of integration,
and averaging the values of the function in these locations:∫

D

f(x) dx ≈ 1
M

M−1∑
j=0

f(xj), (2.5)

where xj (0 ≤ j < M) are the sampling points placed in the domain D
that we integrate over. If we generate M uniform-density samples lj on the
surface of the light source, we can thus approximate Equation 2.4 with the
following sum:

u(p→ ωout) ≈
1
M

M−1∑
j=0

[
fr(p, ωin → ωout)e(lj → −ωin)×

V(p, lj)
bnp · ωincbnlj · −ωinc

|lj − p|2
]
.

(2.6)

In this formulation, computation is easy since we sample all the difficult
functions in discrete points only. As sample count M is increased, the
approximation converges to the correct result, and if M is too small, the
approximation errors result in visible noise in the shadows. A typical value
for M would be around 200 in situations where a single, reasonably small
light source illuminates the scene, provided that the light samples lj are
generated using a good low-discrepancy distribution.

The most difficult part in applying Equation 2.6 is computing the values
of the visibility function V(p, lj), as it depends on the entire scene, in
contrast to BRDF and emission functions that are purely local in nature.
The classical method used in stochastic ray tracing [25] is to cast a separate
shadow ray for each lj , which inevitably gives linear performance with
respect to the number of light samples M , regardless of the computational
complexity of casting a single shadow ray. Modern approaches attempt to
solve V(p, lj) for multiple j at once, and possible for multiple p also. This
applies to the soft shadow algorithms presented in this thesis as well.

2.3 Some Remarks on Importance Sampling

When the integrand in Equation 2.4 is not constant over the domain of
integration, it is generally beneficial to distribute the light samples non-
uniformly on the surface of the light source in order to reduce the variance
in the estimated value of the integral. This technique is commonly called
importance sampling [64] in computer graphics. Any distribution of light
samples can be used for producing non-biased results, provided that the
contributions from the individual light samples are appropriately normal-
ized according to the probability density function (PDF) from which the
sampling points are drawn.

24 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

Theoretically, the optimal distribution would be obtained by using the
integrand as the probability density function, but for normalization purposes
we would need to know its integral, which is of course the unknown quantity
being estimated. The Metropolis algorithm, brought to computer graphics
by Veach [72], automatically samples the integrand according to the correct
PDF by mutating the sampling point using application-specific strategies. A
drawback is that each sample must be evaluated before generating the next
one, which prevents exploiting the coherence between sampling points.

Instead of attempting to use the integrand directly as the PDF, we may
use a PDF that can be assumed to mimic the overall behavior of the function
being integrated over. One possibility would be using e.g. the product of
the BRDF, emission and geometry terms, and thus leave only the visibility
function to be sampled. The optimal distribution of light samples generally
varies between receiver points, and re-computing the distributions for each
receiver point may be too costly. In addition, some soft shadow algorithms
do not support using different light sample distributions for every receiver
point. Of the algorithms presented in this thesis, the SSV algorithm [P4]
allows using different light sample distributions for each receiver point,
whereas the HPC algorithm [P2] requires the distribution to remain fixed.
Even if the light sample distribution needs to be fixed, we may construct
it by importance sampling the emission function, which is useful if the
emission is not constant over the surface of the light source.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 25

26 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

3 RELATED RESEARCH

In this section, we review previous work on shadow algorithms. Our main
focus is on exact and physically-based shadow algorithms that approximate
the visibility only by sampling, thereby guaranteeing the convergence to-
wards correct result as the number of samples is increased. Approximative
soft shadow algorithms will be discussed only quite briefly, as they do not
fall into the scope of this thesis, and comprehensive surveys are available
elsewhere (e.g. [37, 9]).

We first examine the shadow map algorithm [75] and shadow vol-
umes [26] and their extensions and variants. Other hard shadow algorithms
are then discussed briefly. After this, we investigate the various approxima-
tions used in approximative soft shadow algorithms, and briefly discuss such
algorithms that resemble the physically-based algorithms presented in this
thesis. Finally, we review previous work on physically-based soft shadow
computation.

3.1 Shadow Maps

The use of shadow maps [75] is a common method for real-time hard shadow
rendering, and it is also often used in offline production rendering due to its
versatility and simplicity. A shadow map is an intermediate data structure,
essentially a depth buffer, that is constructed by rendering the scene using
the point light source as the viewpoint. After the shadow map has been
constructed, it can be used for answering shadow queries for arbitrary points
in the scene.

To determine if a world-space point pW is in shadow, it is transformed
into the image space of the shadow map, and the depth of transformed point
pT is compared against the value stored in the shadow map. If the depth of
the point is greater than the value stored in the map, the point is in shadow,
since there is a surface closer to the light source, i.e. between point p and
the light source. Arvo and Aila [11] present a simple technique for avoiding
the shadow map lookups for world-space points that get projected outside
the shadow map.

Shadow mapping is an approximative shadow algorithm because of the
discretization of the intermediate data structure, i.e. the shadow map. In
theory, hard shadows computed using shadow maps converge towards the
correct result if the resolution of the shadow map is allowed to increase
without bounds. Unfortunately, no finite resolution can guarantee correct
shadows.

The resampling problem of shadow maps
The finite resolution of the shadow map introduces a fundamental problem
in performing the shadow queries. This property was called the resolu-
tion mismatch problem in Aila’s PhD thesis [2], although the problem
stems more directly from the resampling of the shadow map instead of the
resolution alone. With a finite-resolution shadow map, the transformed

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 27

(a) (b) (c)

Figure 3.1: A 2D analogue of the discretization in shadow mapping. A
directional light is illuminating the scene from the left, and the horizontal
lines separate the pixels in a 1D shadow map. The position of the viewer
is unimportant. (a) The depth values are evaluated at the centers of pixels.
Based on the depth values, the darkened region seems to be in shadow.
(b) The surface points that are in shadow are highlighted with thick lines.
Because no bias is used, a lot of incorrect self-shadowing can be seen on
illuminated surfaces. (c) With suitable bias, the shadows are effectively
pushed away from the shadow casters, yielding mostly correct shadows in
this case. Note that with more acutely sloped surfaces, a larger bias would
be needed.

world-space query points do not land at the centers of the pixels in the
shadow map, where the depth is correct. Instead, the depth value read from
the shadow map is generally something else than the actual depth at the
query point, which gives rise to various artifacts.

Even a simple planar surface may end up shadowing itself, if the depth
values fetched from the shadow map are used as-is. This kind of self-
shadowing is sometimes called “surface acne”, and it shows up as dis-
tracting patterns of false shadows (Figures 3.1a and 3.1b). The originally
proposed [75] and still most commonly used way to fight this problem is
to introduce an artificial bias value into the lookup, effectively pushing the
shadows away from the light source. Note that some bias is always needed
in order to account for the quantization of the depth values in the shadow
map, but this alone is not sufficient, as the bias has to also hide the errors
caused by the mislocation of the sampling positions in the shadow map.
Too small bias value does not remove the self-shadowing artifacts, whereas
too large bias eventually detaches the shadows from the shadow casters,
giving the impression that objects that in reality touch each other are float-
ing some distance apart. See Figure 3.1c for an illustration of a situation
where the bias manages to fix the resampling problem. For any given bias
value, it is possible to construct a simple planar surface so that it is sloped
enough to present false self-shadowing. What alleviates this problem is that
the cosine between the surface normal and light direction approaches zero
when the light shines from acute angles, masking the problem in the most
pathological cases. Aside from the self-shadowing problem, it is evident that
fine details of the shadow casters may be lost if the resolution of the shadow
map is too small.

A number of techniques have been developed for coping with the
shadow map resampling problem. Second-depth shadow mapping [73]
stores the depth of the second-closest surface into the shadow map, which

28 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

yields correct shadows and can prevent self-shadowing in many situations.
Arvo and Hirvikorpi [12] compress shadow maps in a hardware-friendly way.
The compression is based on an observation that storing any depth value
between the two closest surfaces gives correct shadows. Manipulating the
projection from world-space 3D to light-space 2D in order to concentrate
the shadow map resolution near the viewpoint was first proposed by Stam-
minger and Drettakis [67], and novel projection matrix constructions were
subsequently presented by Wimmer et al. [76] and Martin and Tan [49].
Methods for subdividing the shadow map into a number of tiles have been
presented by Fernando et al. [31] and Arvo [8]. Brabec and Seidel [19]
focus the view frustum used in rendering the shadow map to the visible
portion of the scene.

Irregular shadow maps
Shadow mapping can be modified so that the shadow queries can be an-
swered exactly, by first collecting the query points and then constructing
the shadow map using the transformed query points as the sampling points
for rasterization. This was independently discovered by Aila and Laine [P1]
and Johnson et al. [44]. The irregular sampling results in an exact hard
shadow algorithm, but with the cost of losing the simplicity of rasterizing
into a regular lattice of sampling points. In addition, the execution model
of the algorithm is changed, since the query points must be gathered before
the shadow map can be constructed.

Current graphics hardware does not directly support rasterization to
irregularly located sampling points, but reasonably efficient CPU-based
implementations are possible. Hardware for performing irregular rasteriza-
tion efficiently has been proposed by Johnson et al. [43], and a multi-pass
algorithm that utilizes current GPUs by Arvo [10].

3.2 Shadow Volumes

The shadow volume algorithm [26] constructs the three-dimensional vol-
umes that represent the shadowed regions, and tests whether the visible
surfaces are inside these regions or not. The hardware-accelerated ver-
sion [40] is currently a popular method for rendering exact hard shadows in
real-time. It works by first rendering the scene with ambient lighting only,
collecting the depths of the visible surfaces in the depth buffer, and then
rendering the boundaries of the shadow volumes into a hardware stencil
buffer. The rendering of shadow volume boundaries effectively counts the
number of times a ray between a receiver point and a reference point enters
and exits the shadow volumes, and if the number of enter events is greater
than the number of exit events, the visible surface point is in shadow.

Note that the intermediate data structure in the shadow volume algo-
rithms is the depth buffer computed from the actual viewpoint. As these
depth values define exactly the locations where the shadows need to be
computed at, no resampling takes place, and consequently no resampling
problems are encountered.

The bounding surface of a shadow volume consist of three parts: light
cap, dark cap and side quads (Figure 3.2). The light cap is formed by

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 29

LC DC
SQ

(a) (b)

Figure 3.2: An example of a shadow volume. (a) The faces of a shadow-
casting object are classified to front-facing and back-facing with respect to
the point light source. The edges that separate faces with different facings
are silhouette edges, and they are shown as dashed line in the figure. (b)
The boundary of the shadow volume consists of three parts. The light cap
(LC) is formed by the back-facing triangles of the shadow caster, the side
quads (SQ) are extruded from the silhouette edges, and the dark cap (DC)
closes the shadow volume. One side quad is constructed for each silhouette
edge. It is common to use a replica of the light cap at the extrusion distance
as the dark cap, but any surface that closes the volume is equally valid.

the back-facing triangles of the shadow caster, the side quads are extruded
from the silhouette edges, and the dark cap closes the shadow volume.
Bergeron [17] generalizes shadow volumes so that non-closed shadow casters
can also be handled correctly.

The original shadow volume algorithm, commonly dubbed as Z-pass
shadow volumes, counts the numbers of times a ray from the camera to
a visible surface enters and exits the shadow volume using stencil buffer.
See Figure 3.3a for an example. The Z-pass algorithm cannot handle cases
where the shadow volumes intersect the near plane of the view frustum,
since enter/exit events that occur between the camera and the near plane
are missed due to view frustum clipping. Wrong results are obtained also if
the camera is in shadow.

A small modification that solves the near-clip and camera-in-shadow
problems, so-called Z-fail shadow volumes, was independently discovered
by Bilodeau and Songy in 1999 and by Carmack in 2000, as explained by
Everitt and Kilgard [30]. The core idea of the Z-fail algorithm is to count the
events along a ray from the visible surface towards infinity, see Figure 3.3b.
Shadow volumes that are clipped to the far clip plane are now subject to
missing intersections, but conveniently, far clipping can be easily disabled
by locating the far clip plane at infinity. Similar trick is not possible with
the near clip plane.

Another method for handling the problematic cases was later found by
Hornus et al. [41]. Their ZP+ algorithm handles the shadow volumes lying
between the camera and the near clip plane in a separate pass, which allows
using the Z-pass algorithm with near-clipping shadow volumes and in cases
where the camera is in shadow.

30 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

(a) Z-pass (b) Z-fail

Figure 3.3: Z-pass and Z-fail shadow volume algorithms. The round object
is the only shadow caster in this example. (a) In Z-pass algorithm, the
number of enter/exit events is counted along a ray from the camera to the
visible surface point. Because the counting is done using rasterization into
stencil buffer, only the events that occur inside the view frustum can be
counted, which leads to problems at the near clip plane. In this example,
the lowest point shown is incorrectly determined as being lit, because the
intersection with the shadow volume boundary lies outside the view frustum.
(b) In Z-fail algorithm, the number of events is counted along a ray from the
visible surface point to infinity. In this example, correct results are obtained
for all three points shown. Obviously, shadow volumes that intersect the
back clip plane would cause similar problems as in case (a), but clipping to
the far plane of the view frustum can be easily prevented, whereas clipping
to the near plane cannot.

Optimizations for shadow volumes
Shadow volume algorithms are often criticized for their excessive fillrate
consumption, and various methods for alleviating this problem have been
presented. Lengyel [46] bounds the pixel processing region by using scissor
tests, and a similar bounding in depth direction can be obtained by using
the depth bounds hardware extension [55]. Combining both scissor test
and depth bounds was suggested by McGuire et al. [52]. Lloyd et al. [47]
gives a method for conservatively culling redundant parts of shadow vol-
umes. Aila and Akenine-Möller [3] present a two-stage shadow volume
rendering algorithm that first identifies screen-space tiles that may contain
a shadow boundary, and then rasterizes shadow volume boundaries with
full resolution only in the potential boundary tiles. This technique re-
quires modifications in the hardware. Décoret [27] introduces a novel data
structure, N-buffer, that enables performing rectangular occlusion tests in
constant time regardless of the size of the rectangle, and presents a shadow
volume clamping algorithm that utilizes the new data structure.

3.3 Ray Casting

Ray casting [6] is the most frequently used method for computing both hard
and soft shadows in offline rendering. In this thesis, we use term ray casting
when referring to the process of determining visibility between two points,
and reserve ray tracing [74] for the process of following illumination paths
by performing repeated ray casts.

For a point light source, it is enough to cast a single shadow ray per

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 31

receiver point in order to determine whether it is in shadow or not. For an
area light source, stochastic shadow ray casting [25] is used for sampling
the light source with a large number of shadow rays, essentially evaluating
Equation 2.6 that was presented in Chapter 2. Because of the widespread
use of ray casting, it was also used as baseline for evaluating the performance
of all offline shadow algorithms in this thesis.

Constructing a spatial acceleration structure of shadow-casting geometry
makes it possible to perform ray casts in sub-linear time with respect to the
number of shadow-casting primitives. Performing ray casts efficiently is a
topic of great interest in computer graphics, and vast amount of research
has been devoted to it. We will not go into details here, but refer the reader
to extensive surveys on the topic [22, 7, 38] and an interesting analysis
of worst-case and average-case complexity of different methods by Szirmay-
Kalos and Márton [70]. Many of the recent advances in ray-casting methods
are related to tracing multiple rays simultaneously. As an example of a
recent technique we mention the spectacularly fast multi-level algorithm of
Reshetov et al. [60]. A programmable hardware unit for ray casting has been
described by Woop et al. [69], and the strongest proponents of ray tracing
argue that the traditional rasterization-based rendering will be eventually
replaced by ray tracing. Whether this will happen or not, the developments
in the field are certainly interesting.

Optimizations specific to shadow rays, where finding any surface that
intersects the ray is sufficient, include shadow caching [35]. In shadow
caching, a list is maintained for primitives that have most recently succeeded
in blocking shadow rays. When casting a new shadow ray, it is first tested
against the recently encountered occluders, and if intersection is found, the
test is finished. Shadow caching does not accelerate the visible shadow ray
casts.

3.4 Miscellaneous Hard Shadow Algorithms

Projection shadows [18] can be applied if the surface that receives the
shadows is planar. This method is based on construction of a matrix that
transforms the triangles of a shadow caster from their world-space position
projectively onto the plane of the shadow receiver, and it produces exact
results. Conceptually, the shadow-casting object is flattened into its own
shadow. The most critical limitation of projection shadows is that only
planar shadow receivers can be supported, making the method unsuitable
for general-purpose rendering.

The same approach can be used for computing a shadow map that is
pixel-exact on a given 3D plane. Chong and Gortler [24] compute such
shadow maps for multiple shadow-receiving planes, and perform arbitrary
shadow queries by choosing the most suitable shadow map for the query.
The queries for points lying on the planes used can be answered exactly,
but other queries suffer from the resampling problems.

Chan and Durand [21] present a hybrid method for culling shadow
volumes based on shadow maps. In their method, a shadow map is used for
finding regions that are in full shadow or fully lit, and shadow volumes are
used for determining the shadows in the remaining regions only. Because

32 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

of the finite resolution of the shadow map, it is possible that details of the
shadow casters are lost due to their absence in the shadow map, and thus
the algorithm is not exact. McCool [50] constructs shadow volumes based
on shadow maps. The benefit of the method is that the resulting shadow
volumes have no geometrical overlap, but again, due to the use of shadow
maps, details of the shadow casters may be lost. Sen et al. [62] improves
the shadow boundaries in shadow maps by adding edge information to the
shadow map entries. The resolution of the shadow map still limits the
amount of information that can be stored, as no more than one vertex of the
silhouette can be stored in each shadow map pixel. Woo et al. [77] gives a
survey of hard shadow algorithms introduced prior to 1990.

3.5 Approximative Soft Shadow Algorithms

In this section, we shall briefly consider some of the approximative soft
shadow algorithms, and especially focus on the penumbra wedge-based al-
gorithms [4, 14, 15] that have certain common features with the physically-
based soft shadow volume algorithm [P4, P5] presented in this thesis. An
extensive survey of real-time soft shadow algorithms is given by Hasen-
fratz et al. [37]. The overview part of Arvo’s PhD thesis [9] also contains a
thorough treatment of many approximative soft shadow algorithms.

In approximative soft shadow algorithms, many simplifications are usu-
ally made that steer the result away from the correct result that would be
obtained if Equation 2.6 were used. Such simplifications include, but are
not limited to:

• approximating the visibility function V ,

• evaluating the BRDF function fr only once, e.g. for the direction to
the center of the light source,

• assuming constant emission function e,

• assuming constant geometry terms bnp · ωinc, bnl · −ωinc and
1/|l − p|2 over the surface of the light source.

Most approximative soft shadow algorithms merely modulate the (approx-
imate) color of the light illuminating the surface by an approximate scalar
visibility factor, as in the following equation:

u(p→ ωout) ≈ e(lc,−ωin c)fr(p, ωin → ωout)×
bnp · ωin ccbnlc · −ωin cc

|lc − p|2

∫
L

V(p, l) dAl.
(3.1)

Here, the emission function e, BRDF function fr, and the geometry factors
are computed only for the center of the light source lc, and assumed to be
constant over the surface of the light source, allowing them to be moved
outside the integral. Symbol ωin c denotes the direction from p to the
center of the light source. The approximation is reasonable if the light
source is small compared to the distance to the surface being shaded, and
the BRDF of the surface is not exceedingly reflective. When the light source

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 33

is enlarged and moved closer to the receiving surface, the approximation
error rises rapidly.

It is sometimes claimed (e.g. by Hasenfratz et al. [37]) that a shadow
algorithm that computes the visibility integral

∫
L
V(p, l) dAl correctly gives

physically-based shadows. Even though this may hold sufficiently well in
certain situations, it is evident that Equations 2.4 and 3.1 are different.
Because of this, we shall not count these algorithms as being physically-
based in this thesis.

Even if we are happy with the approximation of Equation 3.1, the prob-
lem of evaluating the visibility integral still remains. Hence, various forms of
trickery are used for approximating the visibility integral without sampling,
and how this is exactly done depends on the algorithm in question. Many
techniques (e.g. Reeves et al. [59], Brabec and Seidel [20], Arvo et al. [13])
compute soft or antialiased shadows by filtering hard shadow boundaries.
St-Amour et al. [66] combine several shadow maps into a discretized penum-
bra deep shadow map (PDSM) that captures the changes in light attenuation
in each PDSM pixel. Real-time rendering with soft shadows is possible with
a precomputed PDSM, and shadow queries can be made at arbitrary points,
allowing e.g. fog to be shadowed.

Approximative real-time soft shadow volumes [4, 14, 15] are based on
construction of penumbra wedges that are closed volumes containing the
points where a single silhouette edge may cast penumbra. The most appeal-
ing feature of soft shadow volumes is that only the silhouette edges need
to be taken into account, and the number of silhouette edges is typically
much smaller than the number of triangles [51].

In these algorithms, the penumbra wedges are rasterized one by one
using graphics hardware, and occlusion coverage is collected to the screen-
space pixels. The inherent approximations in these techniques are:

• silhouette edges of the shadow casters are computed only once, from
the center of the light source, and assumed to hold for all receiver
points,

• at most one surface is assumed to block each possible ray between
surface being shaded and the light source,

• BRDF and geometry terms are assumed to remain constant.

However, the most recent of these algorithms [14] supports area light sources
with spatially varying emission. As silhouette edges are processed one at a
time, and the occlusion coverage is stored as a scalar value, it is impossible
to store information about which parts of the light source are occluded from
the point being shaded. Therefore, areas that are covered multiple times
are not handled correctly. A possible solution to the problem of constant
silhouettes is executing a fast silhouette extraction algorithm [61, 42] from
every receiver point, but this would complicate and slow down the algorithm
significantly.

Cone tracing [5] approximates the visibility inside a circular cone, and
this can be applied in soft shadow computations. For shading a point, a
cone is constructed so that the apex is at the point being shaded, and the
base covers the area light source. In practice, occlusion inside the cone

34 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

has to be modeled heuristically, since exact clipping of the cone easily
leads to unbearable fragmentation and complicated geometry because of
the curved surface of the cone. Pencil tracing [63] operates on a set of
rays that lie inside a cone-shaped beam (with possibly non-circular base) so
that in certain situations only the central ray needs to be traced. Optical
events such as transport, reflection and refraction of the pencil are modeled
using simple matrix algebra, which enables analyzing errors caused by the
pencil-spread angle. Validating if the destination of all rays in a pencil can
be derived from the central ray is non-trivial.

Soler and Sillion [65] approximate soft shadows using convolution, and
present a hierarchical algorithm that drives the approximation error below
a threshold value. Agrawala et al. [1] present an image-based soft shadow
algorithm that uses layered attenuation maps for fast approximations. A
coherent ray tracer is used for generating higher-quality images. Bala et
al. [16] approximate soft shadows by computing the shadowed illumination
in a sparse set of points, and then filtering the output image by taking
into account important discontinuities such as shadow boundaries. Parker
et al. [56] render soft shadows at interactive rates in a parallel ray tracer
by using only a single sample per pixel and “soft-edged” objects. Their
algorithm is very fast, but not physically-based.

3.6 Physically-Based Soft Shadow Algorithms

In physically-based soft shadow algorithms, as defined in a somewhat strict
sense in this thesis, the visibility is computed correctly and in a fashion that
enables approximating the integral in Equation 2.4.

Beam tracing [39] constructs a polygonal beam between the point to be
shaded and the light source. Occlusion inside the beam is correctly modeled
by clipping the beam according to occluders. In highly tessellated scenes,
the beam geometry quickly becomes prohibitively complex, and the benefits
of using analytic geometrical representation instead of a set of rays is lost.
Ghazanfarpour and Hasenfratz [33] introduce a variant that subdivides the
beam recursively until the entire beam is either free of occluding geometry
or blocked by a single triangle. Subdivision is also terminated when a
specified subdivision limit is reached. Clipping to occluder geometry is
avoided in this approach, but since connected surfaces cannot block the
beam, the beam has to be subdivided all the way to the limit when it contains
an internal edge of a single occluding surface.

Marks et al. [48] consider the common bounding volume of two quadri-
lateral patches, and note that shadow rays between these patches can only
be blocked by the shadow casters inside the volume. Thus, when casting
the shadow rays, all other objects in the scene can be ignored. This idea was
extended to shaft culling [36, 34, 28] by considering the common bound-
ing volume—called a shaft—between two bounding volumes. Finding the
objects inside the shaft again allows the shadow rays to consider only those
objects, leading to faster visibility queries.

Nishita and Nakamae [54] construct two shadow volumes for bounding
the penumbra regions of a light source. Shadow terms are computed
analytically for polygons that intersect the penumbra. Shadow casters need

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 35

to be decomposed into convex polyhedra, which limits the practicality of the
approach. Chin and Feiner [23] take a similar approach by constructing two
BSP trees for umbra and penumbra volumes. Again, analytic shadow terms
are computed by traversing the BSP trees and clipping away the occluded
parts of a polygonal light source.

Tanaka and Takahashi [71] use angular subdivision for culling shadow
casters affecting the shadows at a given receiver point. The remaining set of
shadow casters is further refined by removing shadow casters that do not lie
inside the pyramid formed by the receiver point and the light source. Finally,
all silhouette edges of the shadow casters are projected onto the surface of
the light source, and analytical shadow term is computed by clipping away
the occluded parts of the light source. Stark and Riesenfeld [68] compute
exact illumination from diffusely emitting polygons by enumerating the
vertices of the shadow casters, including apparent vertices that result from
intersecting edges, which avoids polygon clipping.

A method for bounding the penumbrae cast by objects that can
be approximated by spheres has been presented by Formella and
Łukaszewski [32]. Since conservative decomposition of arbitrary objects
into spheres is a non-trivial task, this algorithm has quite limited applicabil-
ity.

Casting separate shadow rays [6, 25] is still the most popular method for
solving the values of the visibility function in Equation 2.6. The multi-level
ray-tracing algorithm of Reshetov et al. [60] could be used for accelerating
the shadow ray casts as well.

36 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

4 SHADOW ALGORITHMS

This chapter outlines the new contributions in the shadow algorithms in
this thesis. Publication [P1] presents a method for performing shadow
mapping so that depth values are computed exactly at the receiver points,
which removes the need for resampling. Extending this method to area
light sources [P2] allows rendering physically-based soft shadows. Publi-
cation [P3] describes a method for accelerating the rendering of shadow
volumes [26, 40] by locally choosing the faster of two existing techniques.
A physically-based soft shadow algorithm that uses shadow volumes is pre-
sented in Publication [P4], and the geometrical acceleration structure used
in the original algorithm is replaced with a more efficient one in Publica-
tion [P5].

At the end of the chapter, a couple of observations are made about the
general approach taken towards shadow computation in this thesis, and the
applicability of hierarchical shadow algorithms in general.

4.1 Alias-Free Shadow Maps

Publication [P1] presents a method for obtaining exact hard shadows using
a shadow map-based approach. As was discussed in Chapter 3, the funda-
mental resampling problem in shadow maps is caused by first constructing
the shadow map without a priori information about the locations of the re-
ceiver points, and after this, performing the shadow queries, i.e. the lookups
in the shadow map, that determine which receiver points are in shadow. In
alias-free shadow maps, the receiver points are first gathered by rendering
the scene from the camera and recording the depth values from the depth
buffer (Figure 4.1a). Then, the receiver points are transformed to the image
space of the light source, yielding the correct sampling points for the shadow
map (Figure 4.1b). A 2D kd-tree is constructed for the sampling points,
after which every shadow-casting triangle is hierarchically “rasterized” into
the set of sampling points.

Since the shadows are computed exactly at the receiver points, no ar-
tificial bias is needed for battling against the geometrical discrepancy that
would otherwise result from the resampling. A small constant bias is still
needed to account for the quantization of the depth values in the initial
rasterization, and for the loss of numerical precision in the transformation
of the receiver points into the light space.

4.2 Hierarchical Penumbra Casting

Publication [P2] presents a novel method, hierarchical penumbra casting,
for rendering physically-based soft shadows. In traditional stochastic sam-
pling of area light sources [25], every visibility relation, i.e. visibility between
a light sample and a receiver point, is sampled separately by casting a shadow
ray. Hierarchical penumbra casting is effectively a transpose of this classical
approach. First, every receiver point and light sample is collected by i.e.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 37

(a) (b) (c)

Figure 4.1: Illustration of alias-free shadow maps. (a) An image of a simple
scene as seen from the camera. The receiver points on the visible surfaces
are drawn as black dots. (b) The receiver points as seen from the light source.
(c) A traditional shadow map, with shades of grey corresponding to different
depth values, shown for comparison purposes. Note that the lookups in (b)
do not land at the centers of the pixels in (c), which causes the resampling
problem. In alias-free shadow maps, the depth values are computed exactly
at the sampling points in (b), i.e. at the light-space projections of the actual
receiver points, which removes the resampling problem.

rasterization or ray tracing, which fully defines the set of visibility relations
whose statuses need to be computed. Then, each shadow-casting triangle is
processed individually, and all visibility relations blocked by each triangle
are found and their status updated using a hierarchical traversal. The status
of all visibility relations are stored in memory throughout the computation,
and after all triangles are processed, the shading can be performed using
this data.

An interesting consequence of the transposed computation order is that
the full set of shadow-casting triangles does not need to reside in main mem-
ory at any point of the computation. Therefore, the memory consumption
of the hierarchical penumbra casting algorithm is not affected by the num-
ber of triangles in the scene, which allows extremely complex scenes to be
rendered. On the other hand, storage space is needed for storing the status
of all visibility relations, which makes the memory consumption strongly
dependent on the resolution of the image and the number of light samples
used. To remedy this, we allocate memory for the status of the visibil-
ity relations only when needed, which reduces the average-case memory
consumption considerably.

The hierarchical finding of blocked visibility relations is done by travers-
ing a 3D BSP constructed for the receiver points and a three-level hierarchy
of the light samples. Determining if a triangle may shadow a group of
visibility relations is done by testing intersections of various penumbra vol-
umes against the bounding volumes of the nodes of the receiver point BSP.
Two kinds of penumbra volumes are constructed for each triangle: a main
penumbra volume constructed from the triangle and the bounding polygon
of the light source (Figure 4.2a), and several smaller penumbra volumes
spanned by different light sample groups in the three-level light sample
hierarchy (Figure 4.2b). Finally, hard shadow volumes formed for each
light sample (Figure 4.2c) are used for testing which visibility relations are
shadowed by the triangle.

Several optimizations to the basic HPC algorithm are discussed in Pub-

38 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

(a) (b) (c)

Figure 4.2: The volumes associated with the three levels of the light sample
hierarchy. In this illustration, the light source consists of 16 light samples
grouped into four light sample groups. (a) The main penumbra volume
VolL is defined by the bounding polygon ∆L of the light source and the
blocker triangle t. (b) For each light sample group Gk, a penumbra volume
VolGk

is constructed based on the bounding polygon ∆Gk
of the light

sample group and the blocker triangle t. (c) For each light sample lj , a
hard shadow volume Vol lj is constructed, based on the location of lj and
the blocker triangle t.

lication [P2]. These include the aforementioned on-demand allocation of
visibility relation status bits, tagging fully shadowed receiver point nodes
in the receiver point tree to enable early traversal termination in shad-
owed regions, keeping track of which planes of the penumbra volumes may
still intersect the receiver point nodes during traversal, lazy construction
of penumbra volumes and hard shadow volumes, and sorting the blockers
coarsely before computation according to their estimated occlusion power.
With these optimizations, the execution time and memory consumption of
the HPC algorithm compare favorably against the classical stochastic ray
casting.

4.3 Split-Plane Shadow Volumes

Publication [P3] introduces a novel acceleration technique for rendering
shadow volumes. The method is based on a simple observation: Z-pass and
Z-fail shadow volumes tend to require different amounts of pixel processing
in different parts of the image, depending on the location of the shadow
volume relative to the visible geometry.

Figure 4.3 illustrates this effect. In Figure 4.3a, a tree casts a shadow
to uneven ground, and also to itself. Z-pass shadow volumes update the
stencil buffer when the shadow volume lies in front of visible geometry
(Figure 4.3b), whereas Z-fail shadow volumes require stencil buffer updates
when the shadow volume is behind the visible geometry (Figure 4.3c).
By choosing between Z-fail and Z-pass algorithms locally, i.e. making the
choice independently in different parts of the image, the amount of pixel
processing can be reduced considerably (Figure 4.3d).

The choice between using Z-pass and Z-fail algorithms is done by con-
structing a split plane that approximately divides the shadow volume in two
halves. If the location of the split plane is such that it is visible, Z-fail

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 39

(a) (b)

(c) (d)

Figure 4.3: Split-plane shadow volumes. (a) A scene where a tree casts
a shadow to bumpy ground, and also shadows itself. (b) A false-color
image showing how many times each pixel is processed in the stencil buffer
update phase using Z-pass shadow volumes. (c) As in (b) but using Z-fail
shadow volumes. (d) With split-plane shadow volumes, the amount of pixel
processing is reduced considerably, while the resulting shadow quality is
not affected.

algorithm is used, and conversely, if the split plane lies behind the visible
geometry, Z-pass algorithm is used. Since both Z-pass and Z-fail algorithms
render correct shadows, switching between algorithms does not introduce
any artifacts in the image. The ZP+ algorithm of Hornus et al. [41] is
required for enabling the use of Z-pass shadow volumes even when they
intersect the near plane of the view frustum, or when the camera is in
shadow.

Accelerating the hardware rendering of shadow volumes requires that
tiles of pixels, e.g. 8× 8 pixels in size, can be efficiently culled so that their
individual pixels are not processed at all. The depth of the split plane would
need to be tested against a value fetched from the low-resolution depth buffer
that is internally constructed by all modern GPUs. Unfortunately, culling
entire pixel tiles programmatically is not possible with current hardware, but
future generations of GPUs will hopefully have features for supporting this.
The required hardware modifications would be quite small, and the need
for constructing and accessing such low-resolution “computation masks”
has been recognized in other shadow algorithms as well [21].

4.4 Soft Shadow Volumes for Ray Tracing

Publication [P4] presents an algorithm for computing physically-based soft
shadows efficiently for a single receiver point. Although the coherence

40 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

light
source

silhouette edge

penumbra
wedge

Figure 4.4: A penumbra wedge consists of the separating planes between
a polygonal light source and a spanning silhouette edge. When looking
towards the light source from any point inside the penumbra wedge, the
spanning edge lies in front of the light source. Conversely, the edge does not
overlap the light source when seen from any point outside the corresponding
wedge. Penumbra wedges can be seen as special cases of penumbra volumes
that were illustrated in Figure 4.2.

in shadows between nearby receiver points cannot be used, the execution
model of the algorithm is very well suited for general-purpose rendering
where e.g. surface shaders may require on-the-fly evaluation of shadow
terms due to conditional statements. Also, adaptive anti-aliasing is easiest
to implement when shadow queries can be performed whenever neces-
sary, without needing to collect all receiver points before commencing the
shadow computation.

In the SSV algorithm, each potential silhouette edge is identified and
a corresponding penumbra wedge (Figure 4.4) is constructed for each of
these in a preprocessing phase. A penumbra wedge is an infinite volume
that defines the region in space where the spanning edge may affect the
shadows. When looking towards the light source from any point inside
the wedge, the projection of the spanning edge overlaps the light source,
whereas from any point outside the wedge, the edge does not overlap the
light source, and thus does not affect the shadow. The penumbra wedges of
all silhouette edges are conservatively rasterized into a hemicube-like data
structure (Figure 4.5a) for quick access during the shadow queries.

During rendering, the penumbra wedges containing the receiver point
under consideration are fetched from the acceleration structure, and the set
of corresponding potential silhouette edges is pruned to contain only the
actual silhouette edges as seen from the receiver point. The silhouette edges
are then projected onto the surface of the light source, and the visibility
between the receiver point and a number of individual light samples is
determined using a variant of a polygon filling algorithm. Because of using
only the parts of the silhouette edge loops that project onto the light source,
a single reference ray is needed for testing if all light samples are occluded,
as this cannot be determined from the silhouette edges alone.

The main weakness of the SSV algorithm is that the potential silhouette
edge sets returned by the spatial acceleration structure quickly gets very
conservative when the spatial size of the scene is increased. Nevertheless,
the algorithm gives impressive speedups compared to traditional ray casting.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 41

hemicube footprint

(a) (b)

Figure 4.5: Comparison of the hemicube and BSP acceleration structures
in the SSV algorithm. This 2D illustration can be thought of a cross section
of a corresponding 3D situation. The light source is at the top, the dot marks
the silhouette edge, and the triangle below it is the penumbra wedge. The
outer region illustrates the conservativeness of the data structure, i.e. the
points where the edge is reported as a silhouette edge even though the point
does not lie inside the true penumbra wedge. (a) The original hemicube
structure considers only the hemicube footprint of the wedge, which is the
intersection of the wedge with the surface of the hemicube. The edge
is reported for all points lying in the pyramid formed by the penumbra
footprint and the center of the light source. (b) In the BSP structure, the
wedge is listed in nodes that intersect it. If a node is completely enclosed
by a wedge, the wedge is stored into its wedge list, even when the node is
not a leaf node of the BSP.

Improved spatial acceleration structure
In Publication [P5], the hemicube acceleration structure of the SSV algo-
rithm is replaced with a more efficient, lazily constructed 3D BSP. In this
data structure, each node of the BSP contains the list of wedges that enclose
it completely, or if the node is a leaf node, the list of wedges that intersect it
at all. A single traversal from the root of the tree to the leaf node containing
the point is sufficient for gathering the full list of wedges that contain the
point. Figure 4.5 illustrates the differences between the hemicube and BSP
acceleration structures.

The 3D acceleration structure allows trimming off the portions of the
penumbra wedges from which the spanning edge would not be a silhouette.
The silhouette region of an edge is defined by the planes of the triangles
connected to it, and only the intersection of the penumbra wedge and the
silhouette region can contain points that actually need to use the edge
for shadow computations. Being able to take the silhouette regions into
account is a major improvement, especially with smoothly curved shadow
casters where each edge is a silhouette from only a small region in space.

Another feature in the new acceleration structure is that it is constructed
lazily so that subdivision occurs only in regions that actually receive shadow
queries. Storage space is thus not wasted by subdividing regions where
shadows are not computed. Subdivision is terminated when the reduction
in the number of wedges becomes too small, or when the spatial size of the
BSP node falls below a given threshold.

42 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

The new acceleration structure behaves more predictably than the origi-
nal hemicube structure, meaning that seemingly minor modifications of the
scene, i.e. rotating the light source, do not heavily affect the performance.
In addition, the tighter set of silhouette edges obtained through the use of
silhouette regions was observed to consistently improve the performance of
the SSV algorithm, albeit only slightly in situations where the weaknesses
of the hemicube structure did not become into play.

4.5 Applicability of hierarchical methods

The algorithms in this thesis make it possible to compute physically-based
shadows more efficiently than what was possible before. Two characteristic
features can be recognized: the use of hierarchical acceleration structures,
and reordering the computations so that hierarchical structures can be
exploited.

Obviously, the reason for using hierarchical structures is that they make
the execution time of many operations sub-linear with respect to the size
of the data. The asymptotic behavior of an algorithm is thus enhanced.
However, there are two drawbacks.

The first drawback is that every hierarchy needs to be constructed before
it can be used. Even when the hierarchy itself is constructed lazily, the data
must be effectively predetermined and readily accessible. Gathering the
data beforehand may require reordering the computation, which affects the
execution model and memory consumption of an algorithm so that using
it usually becomes more cumbersome. For instance, AFSM, HPC and
SPSV algorithms need to know all receiver points beforehand, which makes
things like adaptive anti-aliasing or certain programmable shaders difficult
to implement efficiently. On the other hand, if the receiver points are not
processed en masse, no such problems occur. As in the SSV algorithm, this
yields more relaxed execution model, but linear execution time complexity
with respect to the number of receiver points.

The second drawback is that the base cost of traversing hierarchical
structures may be high. This is especially true when memory latencies are
high and coherent memory access patterns are necessary for maintaining
sufficient cache hit rates. Unfortunately, this is the case in current CPUs
and especially GPUs. As a consequence, some hierarchies may become
beneficial only for impractically large inputs.

Still, when the size of the data is large enough for the sub-linear process-
ing time to manifest itself, hierarchical techniques are extremely efficient,
and this is already the case in many real-world rendering scenarios today. It
can be expected that the number of primitives in a scene continues to grow.
Image resolution and desired supersampling density are probably not going
down, either. Hence, algorithms that are sub-linear with respect to those
parameters can be assumed to increase their applicability in the future.

The problem of changed, potentially cumbersome execution model is
quite severe, as it does not go away with increased processing power or
even special-purpose hardware. Sometimes it is simply not practical to
require having a complete dataset—e.g. all triangles or all receiver points—
known beforehand. In these situations, some algorithmic designs must be

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 43

excluded from further consideration. Conversely, whenever some part of
the data is available before starting the actual computation, and it remains
static throughout the computation, one should strive to take advantage of
this. The algorithms in this thesis are examples of this design principle.

44 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

5 MAIN RESULTS OF THE THESIS AND CONTRIBUTIONS OF THE AUTHOR

Publication [P1] was included in the doctoral thesis of Timo Aila, whereas
Publications [P2–P5] have not previously formed a part of another the-
sis. The main results of the thesis and the author’s contributions can be
summarized as follows.

Publication [P1]
This article abandons the regular structure of shadow maps. The visible
samples are first transformed from screen space to the image plane of a light
source. The transformed points are then used as sampling points when the
geometry is rasterized into the shadow map. This provides correct sampling
points for the shadow map, and matches the result of tracing a shadow ray
from each visible sample to the light source. As a result, all problems that
result from the finite resolution of traditional shadow maps are eliminated.

Dr. Timo Aila invented the original idea of using the transformed screen-
space points as shadow map sampling points, and wrote all text in the
paper. The author designed the hierarchical rasterization algorithm and
implemented the algorithm. The author also constructed the test cases,
performed the performance measurements, and also produced all images
and illustrations that appear in the paper.

Publication [P2]
A novel approach for rendering physically-based soft shadows is presented.
Unlike in standard stochastic shadow computation, where each visibility
relation between light sources and visible surfaces is considered separately,
the proposed algorithm first gathers all the needed visibility relations and
then processes every shadow-casting triangle separately, hierarchically find-
ing the visibility relations blocked by the triangle. As a consequence, the
memory consumption of the algorithm does not depend on the geometry
content of the scene. A practical implementation with numerous opti-
mizations is presented, and the performance of the algorithm is shown to
compare favorably against stochastic ray casting.

The author invented the original idea and designed the algorithm, with
the presented optimizations, for finding blocked visibility relations by simul-
taneously traversing both the light sample and the receiver point hierarchies.
The author implemented the algorithm, performed the measurements, and
wrote 90% of the paper.

Publication [P3]
This article analyzes the causes for the inefficiency in rendering shadow
volumes, and presents a novel method for reducing the amount of redundant
pixel processing during rendering. The algorithm is based on choosing
locally between two previous algorithms, so that for every screen-space pixel
tile, the estimated amount of redundant pixel processing is minimized.
Two methods are presented for constructing geometrical split planes that

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 45

are used for choosing the shadow volume algorithm with expected better
performance. In addition, an optimization based on decomposing the
shadow casters into multiple parts is shown to give additional performance
benefit, when used in conjunction with the proposed algorithm.

The author is the sole author of this publication.

Publication [P4]
This article presents an algorithm for rendering physically-based soft shad-
ows efficiently in ray tracing-based renderers. The algorithm consists of two
phases. In the preprocessing phase, penumbra wedges are constructed for
potential silhouette edges, and stored into a spatial acceleration structure
for quick access in the query phase. When performing a shadow query, a
conservative set of silhouette edges is fetched from the acceleration structure
and refined to contain only the relevant edges. These are then projected
onto the surface of the light source, and the integral of the changes in the
depth complexity caused by the edges, giving relative depth complexities
of all light samples, is computed using a custom polygon-filling algorithm.
Finally, the visibility of all light samples is solved by casting a single refer-
ence shadow ray that determines the actual depth complexity of one of the
light samples.

Dr. Timo Aila and Dr. Tomas Akenine-Möller invented the idea of
finding the silhouette edges based on penumbra wedges and solving the
relative depth complexities. Dr. Tomas Akenine-Möller also proposed using
a hemicube acceleration structure for storing the footprints of the penumbra
wedges. Dr. Ulf Assarsson proposed casting a single reference shadow
ray. The author designed the multiresolution storage structure for the
hemicube, the rules used in the depth complexity integration, the bucketing
optimization for the integration step, and the optimal revertion strategy for
cases where precision issues prevent casting a robust reference ray. The
author also implemented the entire algorithm and wrote 70% of the paper.

Publication [P5]
This article identifies and analyzes the weaknesses of the hemicube ac-
celeration structure that was used in the soft shadow volume algorithm
presented in Publication [P4], and proposes replacing the hemicube with
a lazily-constructed 3D BSP. This acceleration structure is shown to avoid
the identified pitfalls of the hemicube, and to give better performance and
more predictable execution times.

The author and Mr. Jaakko Lehtinen formulated the proposed acceler-
ation structure and the related algorithms together. The observation that
silhouette region optimization became possible with the new data struc-
ture was also made together by the author and Mr. Lehtinen. The author
was mainly responsible for identifying and analyzing the weaknesses of the
hemicube, and also wrote 10% of the paper. Mr. Lehtinen implemented
the BSP acceleration structure, performed all measurements, and wrote
most of the paper.

46 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

BIBLIOGRAPHY

[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan Heirich, and Laruent Moll.
Efficient Image-Based Methods for Rendering Soft Shadows. In Proceedings
of ACM SIGGRAPH 2000, pages 375–384, 2000.

[2] Timo Aila. Efficient Algorithms for Occlusion Culling and Shadows. PhD
thesis, Helsinki University of Technology, 2005.

[3] Timo Aila and Tomas Akenine-Möller. A Hierarchical Shadow Volume Algo-
rithm. In Graphics Hardware, pages 15–23, 2004.

[4] Tomas Akenine-Möller and Ulf Assarsson. Approximate Soft Shadows on
Arbitrary Surfaces using Penumbra Wedges. In Proceedings of the 13th Euro-
graphics Workshop on Rendering, pages 297–305. Eurographics Association,
2002.

[5] John Amanatides. Ray tracing with cones. In Proceedings of SIGGRAPH ’84,
pages 129–135. ACM Press, 1984.

[6] Arthur Appel. Some techniques for shading machine renderings of solids. In
Proc. AFIPS Spring Joint Computing Conference, pages 37–45, 1968.

[7] James Arvo and David Kirk. An Introduction to Ray Tracing (ed. Andrew S.
Glassner), chapter A Survey of Ray Tracing Acceleration Techniques, pages
201–262. Academic Press Ltd., London, UK, 1989.

[8] Jukka Arvo. Tiled Shadow Maps. In Proceedings of Computer Graphics
International, pages 240–247. IEEE Computer Society, 2004.

[9] Jukka Arvo. Efficient Algorithms for Hardware-Accelerated Shadow Compu-
tation. PhD thesis, Turku Centre for Computer Science and University of
Turku, 2005.

[10] Jukka Arvo. Alias-Free Shadow Maps using Graphics Hardware. To appear in
Journal of Graphics Tools, 2006.

[11] Jukka Arvo and Timo Aila. Optimized shadow mapping using the stencil
buffer. Journal of Graphics Tools, 8(3):23–32, 2004.

[12] Jukka Arvo and Mika Hirvikorpi. Compressed Shadow Maps. The Visual
Computer, 21(3):125–138, 2005.

[13] Jukka Arvo, Mika Hirvikorpi, and Joonas Tyystjärvi. Approximate Soft Shad-
ows with an Image-Space Flood-Fill Algorithm. Computer Graphics Forum,
23(3):271–279, 2004.

[14] Ulf Assarsson and Tomas Akenine-Möller. A Geometry-Based Soft Shadow
Volume Algorithm using Graphics Hardware. ACM Transactions on Graphics
(SIGGRAPH 2003), 22(3):511–520, 2003.

[15] Ulf Assarsson, Michael Dougherty, Michael Mounier, and Tomas Akenine-
Möller. An Optimized Soft Shadow Volume Algorithm with Real-
Time Performance. In Graphics Hardware, pages 33–40. ACM SIG-
GRAPH/Eurographics, 2003.

[16] Kavita Bala, Bruce Walter, and Donald P. Greenberg. Combining Edges
and Points for Interactive High-Quality Rendering. ACM Transactions on
Graphics (SIGGRAPH 2003), 22(3):631–640, 2003.

[17] Philippe Bergeron. A General Version of Crow’s Shadow Volumes. IEEE
Computer Graphics and Applications, 6(9):17–28, 1986.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 47

[18] James F. Blinn. Me and my (fake) shadow. IEEE Comput. Graph. Appl.,
8(1):82–86, 1988.

[19] Stefan Brabec and Hans-Peter Seidel. Practical Shadow Mapping. Journal of
Graphics Tools, 7(4):9–18, 2002.

[20] Stefan Brabec and Hans-Peter Seidel. Single Sample Soft Shadows using
Depth Maps. In Graphics Interface 2002, pages 219–228, 2002.

[21] Eric Chan and Frédo Durand. An efficient hybrid shadow rendering algorithm.
In Proceedings of the Eurographics Symposium on Rendering, pages 185–195.
Eurographics Association, 2004.

[22] Allen Y. Chang. A survey of geometric data structures for ray tracing. Technical
Report TR-CIS-2001-06, CIS Department, Polytechnic University, Brooklyn,
New York, 2001.

[23] Norman Chin and Steven Feiner. Fast Object-Precision Shadow Generation
for Area Light Source using BSP Trees. In Proceedings of the 1992 symposium
on Interactive 3D graphics, pages 21–30. ACM Press, 1992.

[24] Hamilton Chong and Steven Gortler. A Lixel for every Pixel. In Proceedings
of the Eurographics Symposium on Rendering, pages 167–172. Eurographics
Association, 2004.

[25] Robert L. Cook, Thomas Porter, and Loren Carpenter. Distributed Ray Trac-
ing. In Computer Graphics (Proceedings of ACM SIGGRAPH 84), pages
137–145. ACM, 1984.

[26] Frank Crow. Shadow Algorithms for Computer Graphics. In Computer
Graphics (Proceedings of ACM SIGGRAPH 77), pages 242–248. ACM, 1977.

[27] Xavier Décoret. N-buffers for efficient depth map query. Computer Graphics
Forum, 24(3), 2005.

[28] Kirill Dmitriev, Vlastimil Havran, and Hans-Peter Seidel. Faster ray tracing
with SIMD shaft culling. Research Report MPI-I-2004-4-006, Max-Planck-
Institut für Informatik, December 2004.

[29] Philip Dutré, Philippe Bekaert, and Kavita Bala. Advanced Global Illumina-
tion. AK Peters, 2003.

[30] Cass Everitt and Mark Kilgard. Practical and Robust Stenciled Shadow Vol-
umes for Hardware-Accelerated Rendering. http://developer.nvidia.com, 2002.

[31] Randima Fernando, Sebastian Fernandez, Kavita Bala, and Donald P. Green-
berg. Adaptive Shadow Maps. In Proceedings of ACM SIGGRAPH 2001,
pages 387–390. ACM Press, 2001.

[32] Arno Formella and Andrzej Łukaszewski. Fast penumbra calculation in ray
tracing. In Proceedings of WSCG’98, pages 238–245, 1998.

[33] Djamchid Ghazanfarpour and Jean-Marc Hasenfratz. A Beam Tracing with
Precise Antialiasing for Polyhedral Scenes. Computer Graphics, 22(1):103–
115, 1998.

[34] Eric Haines. A shaft culling tool. Journal of Graphics Tools, 5(1):23–26, 2000.

[35] Eric Haines and Donald Greenberg. The Light Buffer: A Ray Tracer Shadow
Testing Accelerator. IEEE Computer Graphics and Applications, 6(9):6–16,
1986.

[36] Eric Haines and John Wallace. Shaft culling for efficient ray-traced radiosity.
In Eurographics Workshop on Rendering, 1991.

48 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

[37] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas Holzschuch, and François Sil-
lion. A survey of real-time soft shadows algorithms. In Eurographics. Euro-
graphics, Eurographics, 2003. State-of-the-Art Report.

[38] Vlastimil Havran. Heuristic Ray Shooting Algorithms. Ph.d. thesis, Depart-
ment of Computer Science and Engineering, Faculty of Electrical Engineer-
ing, Czech Technical University in Prague, November 2000.

[39] Paul S. Heckbert and Pat Hanrahan. Beam tracing polygonal objects. Pro-
ceedings of SIGGRAPH ’84, pages 119–127, 1984.

[40] Tim Heidmann. Real Shadows, Real Time. Iris Universe, 18:28–31, 1991.

[41] Samuel Hornus, Jared Hoberock, Sylvain Lefebvre, and John Hart. ZP+: Cor-
rect z-pass stencil shadows. In SI3D ’05: Proceedings of the 2005 symposium
on Interactive 3D graphics and games, pages 195–202. ACM Press, 2005.

[42] David Johnson and Elaine Cohen. Spatialized Normal Cone Hierarchies.
In Proceedings of the 2001 symposium on Interactive 3D graphics, pages
129–134. ACM Press, 2001.

[43] Gregory S. Johnson, Juhyun Lee, Christopher A. Burns, and William R. Mark.
The irregular Z-buffer: Hardware acceleration for irregular data structures.
ACM Transactions on Graphics, 24(4):1462–1482, 2005.

[44] Gregory S. Johnson, William R. Mark, and Christopher A. Burns. The Irregular
Z-Buffer and its Application to Shadow Mapping. Technical report, The
University of Texas at Austin, Department of Computer Sciences, April 2004.

[45] James T. Kajiya. The Rendering Equation. In Computer Graphics (Proceed-
ings of ACM SIGGRAPH 86), pages 143–150. ACM Press, 1986.

[46] Eric Lengyel. The Mechanics of Robust Stencil Shadows. http://www.
gamasutra.com, 2002.

[47] Brandon Lloyd, Jeremy Wendt, Naga K. Govindaraju, and Dinesh Manocha.
CC Shadow Volumes. In Proceedings of the Eurographics Symposium on
Rendering, 2004.

[48] Joseph Marks, Robert Walsh, Jon Christensen, and Mark Friedell. Image and
intervisibility coherence in rendering. In Proceedings of Graphics Interface
’90, pages 17–30, 1990.

[49] Tobias Martin and Tiow-Seng Tan. Anti-aliasing and Continuity with Trape-
zoidal Shadow Maps. In Proceedings of the Eurographics Symposium on
Rendering, pages 153–160. Eurographics Association, 2004.

[50] Michael D. McCool. Shadow Volume Reconstruction from Depth Maps.
ACM Transactions on Graphics,, 19(1):1–26, 2000.

[51] Morgan McGuire. Observations on Silhouette Sizes. Journal of Graphics
Tools, 9(1):1–12, 2004.

[52] Morgan McGuire, John F. Hugues, Kevin T. Egan, Mark Kilgard, and Cass
Everitt. Fast, Practical and Robust Shadows. Technical Report CS03-19,
Brown University, October 2003.

[53] Fred E. Nicodemus, Joseph C. Richmond, Jack J. Hsia, I. W. Ginsberg, and
T. Limperis. Geometric Considerations and Nomenclature for Reflectance.
NBS Monograph 160, National Bureau of Standards, 1977.

[54] Tomoyuki Nishita and Eihachiro Nakamae. Half-Tone Representation of
3-D Objects Illuminated by Area Sources or Polyhedron Sources. In IEEE
Computer Software and Application Conference, pages 237–242. IEEE, 1983.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 49

[55] NVIDIA. NVIDIA GeForceFX 5900, 5700 and Go5700 GPUs: UltraShadow
Technology. Technical report, http://www.nvidia.com, 2003.

[56] S. Parker, P. Shirley, and B. Smits. Single Sample Soft Shadows. Technical
report, University of Utah, UUCS-98-019, 1998.

[57] Pierre Poulin and John Amanatides. Shading and Shadowing with Linear
Light Sources. In Eurographics ’90, pages 377–386. Eurographics, 1990.

[58] Paul Rademacher, Jed Lengyel, Ed Cutrell, and Turner Whitted. Measuring
the Perception of Visual Realism in Images. In 12th Eurographics Workshop
on Rendering, pages 235–248. Eurographics, 2001.

[59] William T. Reeves, David H. Salesin, and Robert L. Cook. Rendering An-
tialiased Shadows with Depth Maps. In Computer Graphics (Proceedings of
ACM SIGGRAPH 87), pages 283–291. ACM, 1987.

[60] Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray tracing
algorithm. ACM Transactions on Graphics (SIGGRAPH 2005), 24(3):1176–
1185, 2005.

[61] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John
Snyder. Silhouette Clipping. In Proceedings of ACM SIGGRAPH 2000,
pages 327–334. ACM Press, 2000.

[62] Pradeep Sen, Make Cammarano, and Pat Hanrahan. Shadow Silhouette
Maps. ACM Transactions on Graphics (SIGGRAPH 2003), 22(3):521–526,
2003.

[63] Mikio Shinya, Tokiichiro Takahashi, and Seiichiro Naito. Principles and
applications of pencil tracing. In Proceedings of SIGGRAPH ’87, pages 45–
54. ACM Press, 1987.

[64] Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte Carlo Tech-
niques for Direct Lighting Calculations. ACM Transactions on Graphics,
15(1):1–36, 1996.

[65] Cyril Soler and François X. Sillion. Fast Calculation of Soft Shadow Textures
Using Convolution. In Proceedings of ACM SIGGRAPH 98, pages 321–332,
1998.

[66] Jean-François St-Amour, Eric Paquette, and Pierre Poulin. Soft shadows from
extended light sources with penumbra deep shadow maps. In GI ’05: Pro-
ceedings of the 2005 conference on Graphics interface, pages 105–112, 2005.

[67] Marc Stamminger and George Drettakis. Perspective Shadow Maps. ACM
Transactions on Graphics (SIGGRAPH 2002), 21(3):557–562, 2002.

[68] Michael M. Stark and Richard F. Riesenfeld. Exact Illumination in Polygo-
nal Environments using Vertex Tracing. In 11th Eurographics Workshop on
Rendering, pages 149–160. Eurographics, 2000.

[69] Jörg Schmittler Sven Woop and Philipp Slusallek. Rpu: A programmable ray
processing unit for realtime ray tracing. In Proceedings of ACM SIGGRAPH
2005 (to appear), July 2005.

[70] László Szirmay-Kalos and Gábor Márton. Worst-case versus average case
complexity of ray-shooting. Computing, 61(2):103–131, 1998.

[71] Toshimitsu Tanaka and Tokiichiro Takahashi. Fast Analytic Shading and
Shadowing for Area Light Sources. Computer Graphics Forum, 16(3):231–
240, 1997.

[72] Eric Veach and Leonidas J. Guibas. Metropolis light transport. In SIGGRAPH
’97: Proceedings of the 24th annual conference on Computer graphics and
interactive techniques, pages 65–76, 1997.

50 EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS

[73] Yulan Wang and Steven Molnar. Second-Depth Shadow Mapping. Technical
Report TR94-019, The University of North Carolina at Chapel Hill, 1994.

[74] Turner Whitted. An Improved Illumination Model for Shaded Display. Com-
munications of the ACM, 23(6):343–349, 1980.

[75] Lance Williams. Casting Curved Shadows on Curved Surfaces. In Computer
Graphics (Proceedings of ACM SIGGRAPH 78), pages 270–274. ACM, 1978.

[76] Michael Wimmer, Daniel Scherzer, and Werner Purgathofer. Light Space
Perspective Shadow Maps. In Proceedings of the Eurographics Symposium
on Rendering, pages 143–151. Eurographics Association, 2004.

[77] Andrew Woo, Pierre Poulin, and Alain Fournier. A Survey of Shadow Algo-
rithms. IEEE Computer Graphics and Applications, 10(6):13–32, 1990.

EFFICIENT PHYSICALLY-BASED SHADOW ALGORITHMS 51

HELSINKI UNIVERSITY OF TECHNOLOGY
PUBLICATIONS IN TELECOMMUNICATIONS SOFTWARE AND MULTIMEDIA

TML-A1 Håkan Mitts

Architectures for wireless ATM

TML-A2 Pekka Nikander

Authorization in agent systems: Theory and practice

TML-A3 Lauri Savioja

Modeling techniques for virtual acoustics

TML-A4 Teemupekka Virtanen

Four views on security

TML-A5 Tapio Lokki

Physically-based auralization – Design, implementation, and evaluation

TML-A6 Kari Pihkala print

Extensions to the SMIL multimedia language

TML-A7 Kari Pihkala pdf

Extensions to the SMIL multimedia language

TML-A8 Harri Kiljander

Evolution and usability of mobile phone interaction styles

TML-A9 Leena Eronen

User centered design of new and novel products: case digital television

TML-A10 Sanna Liimatainen and Teemupekka Virtanen (eds.)

NORDSEC 2004, Proceedings of the Ninth Nordic Workshop on Secure IT Systems

TML-A11 Timo Aila

Efficient algorithms for occlusion culling and shadows

TML-A12 Pablo Cesar

A graphics software architecture for high-end interactive TV terminals

ISBN 951-22-8357-3 (printed version)
ISSN 1456-7911
ISBN 951-22-8358-1 (electronic version)
ISSN 1455-9722

