22 research outputs found

    Adaptation to Easy Data in Prediction with Limited Advice

    Full text link
    We derive an online learning algorithm with improved regret guarantees for `easy' loss sequences. We consider two types of `easiness': (a) stochastic loss sequences and (b) adversarial loss sequences with small effective range of the losses. While a number of algorithms have been proposed for exploiting small effective range in the full information setting, Gerchinovitz and Lattimore [2016] have shown the impossibility of regret scaling with the effective range of the losses in the bandit setting. We show that just one additional observation per round is sufficient to circumvent the impossibility result. The proposed Second Order Difference Adjustments (SODA) algorithm requires no prior knowledge of the effective range of the losses, ε\varepsilon, and achieves an O(εKTlnK)+O~(εKT4)O(\varepsilon \sqrt{KT \ln K}) + \tilde{O}(\varepsilon K \sqrt[4]{T}) expected regret guarantee, where TT is the time horizon and KK is the number of actions. The scaling with the effective loss range is achieved under significantly weaker assumptions than those made by Cesa-Bianchi and Shamir [2018] in an earlier attempt to circumvent the impossibility result. We also provide a regret lower bound of Ω(εTK)\Omega(\varepsilon\sqrt{T K}), which almost matches the upper bound. In addition, we show that in the stochastic setting SODA achieves an O(a:Δa>0K3ε2Δa)O\left(\sum_{a:\Delta_a>0} \frac{K^3 \varepsilon^2}{\Delta_a}\right) pseudo-regret bound that holds simultaneously with the adversarial regret guarantee. In other words, SODA is safe against an unrestricted oblivious adversary and provides improved regret guarantees for at least two different types of `easiness' simultaneously.Comment: Fixed a mistake in the proof and statement of Theorem

    Beating Stochastic and Adversarial Semi-bandits Optimally and Simultaneously

    Full text link
    We develop the first general semi-bandit algorithm that simultaneously achieves O(logT)\mathcal{O}(\log T) regret for stochastic environments and O(T)\mathcal{O}(\sqrt{T}) regret for adversarial environments without knowledge of the regime or the number of rounds TT. The leading problem-dependent constants of our bounds are not only optimal in some worst-case sense studied previously, but also optimal for two concrete instances of semi-bandit problems. Our algorithm and analysis extend the recent work of (Zimmert & Seldin, 2019) for the special case of multi-armed bandit, but importantly requires a novel hybrid regularizer designed specifically for semi-bandit. Experimental results on synthetic data show that our algorithm indeed performs well uniformly over different environments. We finally provide a preliminary extension of our results to the full bandit feedback

    Banker Online Mirror Descent

    Full text link
    We propose Banker-OMD, a novel framework generalizing the classical Online Mirror Descent (OMD) technique in online learning algorithm design. Banker-OMD allows algorithms to robustly handle delayed feedback, and offers a general methodology for achieving O~(T+D)\tilde{O}(\sqrt{T} + \sqrt{D})-style regret bounds in various delayed-feedback online learning tasks, where TT is the time horizon length and DD is the total feedback delay. We demonstrate the power of Banker-OMD with applications to three important bandit scenarios with delayed feedback, including delayed adversarial Multi-armed bandits (MAB), delayed adversarial linear bandits, and a novel delayed best-of-both-worlds MAB setting. Banker-OMD achieves nearly-optimal performance in all the three settings. In particular, it leads to the first delayed adversarial linear bandit algorithm achieving O~(poly(n)(T+D))\tilde{O}(\text{poly}(n)(\sqrt{T} + \sqrt{D})) regret
    corecore