66,858 research outputs found

    A WOA-based optimization approach for task scheduling in cloud Computing systems

    Get PDF
    Task scheduling in cloud computing can directly affect the resource usage and operational cost of a system. To improve the efficiency of task executions in a cloud, various metaheuristic algorithms, as well as their variations, have been proposed to optimize the scheduling. In this work, for the first time, we apply the latest metaheuristics WOA (the whale optimization algorithm) for cloud task scheduling with a multiobjective optimization model, aiming at improving the performance of a cloud system with given computing resources. On that basis, we propose an advanced approach called IWC (Improved WOA for Cloud task scheduling) to further improve the optimal solution search capability of the WOA-based method. We present the detailed implementation of IWC and our simulation-based experiments show that the proposed IWC has better convergence speed and accuracy in searching for the optimal task scheduling plans, compared to the current metaheuristic algorithms. Moreover, it can also achieve better performance on system resource utilization, in the presence of both small and large-scale tasks

    The financial clouds review

    No full text
    This paper demonstrates financial enterprise portability, which involves moving entire application services from desktops to clouds and between different clouds, and is transparent to users who can work as if on their familiar systems. To demonstrate portability, reviews for several financial models are studied, where Monte Carlo Methods (MCM) and Black Scholes Model (BSM) are chosen. A special technique in MCM, Least Square Methods, is used to reduce errors while performing accurate calculations. The coding algorithm for MCM written in MATLAB is explained. Simulations for MCM are performed on different types of Clouds. Benchmark and experimental results are presented for discussion. 3D Black Scholes are used to explain the impacts and added values for risk analysis, and three different scenarios with 3D risk analysis are explained. We also discuss implications for banking and ways to track risks in order to improve accuracy. We have used a conceptual Cloud platform to explain our contributions in Financial Software as a Service (FSaaS) and the IBM Fined Grained Security Framework. Our objective is to demonstrate portability, speed, accuracy and reliability of applications in the clouds, while demonstrating portability for FSaaS and the Cloud Computing Business Framework (CCBF), which is proposed to deal with cloud portability

    Mirroring Mobile Phone in the Clouds

    Get PDF
    This paper presents a framework of Mirroring Mobile Phone in the Clouds (MMPC) to speed up data/computing intensive applications on a mobile phone by taking full advantage of the super computing power of the clouds. An application on the mobile phone is dynamically partitioned in such a way that the heavy-weighted part is always running on a mirrored server in the clouds while the light-weighted part remains on the mobile phone. A performance improvement (an energy consumption reduction of 70% and a speed-up of 15x) is achieved at the cost of the communication overhead between the mobile phone and the clouds (to transfer the application codes and intermediate results) of a desired application. Our original contributions include a dynamic profiler and a dynamic partitioning algorithm compared with traditional approaches of either statically partitioning a mobile application or modifying a mobile application to support the required partitioning
    corecore