
IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

Mirroring Mobile Phone in the Clouds

Bin Ye

 School of Computing

The University of Kent

Canterbury, UK

e-mail: by30@kent.ac.uk

Frank Wang

 School of Computing

The University of Kent

Canterbury, UK

e-mail: frankwang@ieee.org

Abstract— This paper presents a framework of Mirroring

Mobile Phone in the Clouds (MMPC) to speed up

data/computing intensive applications on a mobile phone by

taking full advantage of the super computing power of the

clouds. An application on the mobile phone is dynamically

partitioned in such a way that the heavy-weighted part is

always running on a mirrored server in the clouds while the

light-weighted part remains on the mobile phone. A

performance improvement (an energy consumption reduction

of 70% and a speed-up of 15x) is achieved at the cost of the

communication overhead between the mobile phone and the

clouds (to transfer the application codes and intermediate

results). Our original contributions include a dynamic profiler

and a dynamic partitioning algorithm compared with

traditional approaches of either statically partitioning a mobile

application or modifying a mobile application to support the

required partitioning.

Keywords- Mobile Service, Cloud computing, Virtual Machine,

Green Computing

I. INTRODUCTION AND BACKGROUND

In recent years, mobile phones are getting faster and
more intelligent, thanks to more powerful processors.
However, one of the biggest obstacles for future growth is
battery. Unfortunately, technologies trend for batteries
indicate that these limitations are here to stay and that energy
consumption will remain the primary bottleneck for
handheld mobile devices[1]. Making smartphones last longer
are becoming mobile industry’s foremost challenge [2].

One of most popular technique to reduce energy
consumption is dynamic remote execution: application
automatically offloads a part of code from mobile phones to
Cloud computing servers. In recent years, there are many
attempts using two of the following methods. The first
approach is to rely on partition algorithm. The partition
decision is made based on network condition and whether
computing is intensive [3]. The partition scheme is made by
a complex algorithm according to each smartphone’s
environment. The second approach is to clone a virtual
mobile on Cloud servers and smartphones do not send any
code from mobile to Cloud. Instead, it invokes service
located on Cloud servers based on mobile phones conditions
[4].

In this paper we present a new framework called MMPC
(Mirroring Mobile Phone in the Clouds) that mirrors an

entire mobile phone operating system to Cloud servers and
uses an intelligent partition algorithm to decide how to
deploy an application. MMPC uses DISPY[5] to offload a
part of code from mobile phone to Cloud. Firstly, MMPC
creates a virtual mobile system on Cloud servers, which
brings in a number of advantages. For instance, your
personal information can be saved if you lose your phone. It
is also possible to have minimal amount of code
modifications, leading to an improvement in the
development efficiency. Secondly, MMPC uses a profiler to
decide how to deploy an application based on the network
and mobile environment and then uses DISPY to send a part
of application code from the mobile phone to Cloud servers.
Thirdly, the virtual mobile system executes the received
code. Finally, the cloned system uses DISPY again to send
back results to the mobile phone.

II. SYSTEM ARCHITECTURE

A. System Architecture

The goal of MMPC is to reduce energy consumption and
to improve the performance by using Cloud Computing. This
section provides a high-level overview of the architecture, in
which a virtual mobile operation system is mirrored and
running on a Cloud Computing infrastructure. In this work,
DISPY is used to support remote parallel computing. DISPY
is a framework developed in python, for parallel execution of
computations by distributing them across multiple processors
on a single machine, or among many machines in a
cluster/grid/cloud. The project set up a 3 nodes cluster. Each
node runs a virtual mobile system. Then, DISPY clients are
installed on all of the virtual mobile systems. DISPY
framework automatically allocates resources to machines.

Figure 1 shows the architecture of MMPC, which is
composed of three functional parts. Cloud computing
provides an unlimited computing resource. The system is
designed to automatically partition a single application into a
distribution of execution in such a way that the resource
intensive part is run in a powerful clone. The Cloud servers
pay the cost of execution including energy and computer
resources. The idea is inspired by CloneCloud [4], in which
an application is partitioned statically providing a fine-
grained partition environment. Unlike CloneCloud, our
original contributions include a dynamic profiler and a
dynamic partitioning algorithm. In theory, the project

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/30703831?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

provided a partition strategy to manage code in method level.
The designation allows developers to manage their code at
the method level in order to decide which part of the code is
better to be executed remotely. A fundamental design goal is
to allow a fine-grained flexibility on what to run where. The
second goal is to reduce the difficulties and complexity of
making a partition strategy for a particular application [6].
Another benefit is that if the smart-phone is lost or stolen, the
clone image can be used as backup.

Figure 1 shows the architecture of MMPC.

B. DISPY

DISPY is used to carry out the distributed computing

paradigm. DISPY is well suited for data parallel (SIMD)

paradigm where a computation is conducted with different

(large) datasets independently.

 DISPY is implemented with asyncore [7], an independent

framework for asynchronous, concurrent, distributed

programming with coroutines (without threads) [8].

asyncore uses non-blocking sockets with I/O notification

mechanisms epoll [9], kqueue [10] and poll, and Windows

I/O Completion Ports (IOCP) for high performance and

scalability, so DISPY works efficiently with a single node

or large cluster(s) of nodes. After each execution is finished,

the results of execution, output, errors and exception trace

are made available for further processing. Nodes may

become available dynamically: DISPY will schedule jobs

whenever a node is available and computations can use that

node.

C. Application partitioning

 The algorithm requires developers to decide which part of

code should be executed on the mobile phone. Developers

need to mark methods as removable or non-removable at

beginning. Removable methods can be offloaded to the

server. Non-removable methods are:

(1) Methods that implement an application's user interface.

For instance, deploying screen based methods will reduce

the user experience of the application. Secondly, a display

component requires large amount of data transmission. This

phenomenon can reduce performance and increase energy

consumption[11]. (2) Methods that interact with I/O

devices. For example, a method requires a GPS module.

These kinds of methods do not make sense without phone

[12]. (3) Methods that interact with external components.

Such as a method to access a SD card [4]. We use

annotation to mark unmovable method. The reason of

annotation is that: (1) Annotation can reduce the complexity

of the partitioning stage. If we put more methods on the

partition decision maker, then the partitioning mechanism

will have more data and more conditions to consider. The

obvious thing is that those methods have to execute locally.

(2) Non-removable methods consume more energy if we

deploy them remotely. This is because more data interaction

between server and mobile phone will occur. It reduces user

experience and application performance. Removable

methods mean they can execute locally or remotely. Based

on a particular environment, partition mechanism will

decide whether to execute locally or remotely. Removable

methods are marked as removable.

D. Handling failures

 Failure handling is provided to detect internet disconnect

or servers shut down. A time-out mechanism is

instrumented to detect failures. A proxy is used to receive

control back from the server. When a smart-phone loses

contact with the server, then the proxy can re-invoke the

method locally or it can attempt to find a spare server to

invoke again. It does not affect the program's correctness,

because program state is only transferred at the start and end

of methods, re-executing a part of code is acceptable [13].

E. Profiler

 At execution, MMPC automatically decides how to

partition the application. How many methods run locally

and how many methods execute remotely. Partition

decisions are dependent on the three factors as below [10, 4,

2]:

(1) A smartphone’s energy consumption characteristics. If a

method's energy consumption is less than the cost of

transferring this method from mobile to Cloud, and will

therefore increase the energy consumption. (2) Methods

requirements, such as some methods need more runtime or

resources. For instance, when delivering a data intensive

method sacrifices internet bandwidth and makes the

application unstable. (3) Network characteristics.

Bandwidth, latency and packet loss are very important for

this architecture. Firstly, a wireless bandwidth is always

varying. A new bandwidth will cause the system to generate

a new partition scheme to re-deploy the application between

a mobile and servers

 The profiler system monitors continuously the network

and program characteristics because the network and

method invocation is changing all the time. When it is

decided to execute a method remotely, the code of a method

and all other data which it requires will be sent to remote

servers. DISPY will automatically serialize data and select

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

an available server to execute. After execution, all results

will be sent back to the mobile phone and combined.

1) Energy Prediction

 Several existing power profiling strategies exist, such as

quantifying the total energy used by an application with

varying throughput [14]. These techniques focus on

architecture and system layer optimization rather than the

application itself. The problem is that these kinds of

technologies do not provide enough information for the

designer to take full advantage of the application. They do

not reveal how much energy it split across different parts of

the application. This means we cannot trade-off between

performance and energy cost with those technologies.

Profiling at the application layer is typically limited to

manual methods that evaluate specific design modifications

proposed in a given problem context.

 Several approaches can be used to measure application

energy usage. The first one is to estimate energy

consumption based purely on analytic models. For instance,

measuring energy consumption using the relationship

between algorithms' algorithmic time and space complexity

to CPU or memory power model [15]. Although the

accuracy needs to be improved, it is very useful for making

early stage decision. The usage of this approach is limited

due to the effect of various system layer optimizations,

memory hierarchies and the use of low power states.

 The second method is to use power models for simulating

the application execution instead of analytic estimation[16].

For example, we can use a hardware power to predict

energy consumption. Applications are set up to collect the

power state transitions of different resources such as CPU

and network. The recorded data is used to estimate energy

consumption of the application. This technology suffices

when there is only one application executing on a system. It

is not sufficient when there is more than one application

using the same resource.

 The third one is to implement each resource in hardware

to measure energy usage. For instance, using hardware

equipment in an embedded platform to measure energy

usage by each application or hardware resource [17]. The

feasibility of this method is hard to predict and will cost too

much.

 To calculate the energy consumption based on a method,

we provide a per-device solution in which the work

combines the solutions of the first method and second

method described above. The reason for predicting energy

consumption is to decide whether this method is worth

executing remotely. So, it does not need the precise energy

consumption of a method. In this experiment, Firstly, we

used an API provided by Android system. It can provide

coarse-grained energy monitoring, which can detect energy

consumption based on 1% precision of the entire phone.

Then, we developed a set of benchmark tools to record CPU

utilization and corresponding energy consumption. Next a

simple linear model is created based on these two set of data

by using least-squares linear regression. Then, we measure

CPU cycles of a particular method. CPU cycles and CPU

utilization can be used to make another linear model. These

two linear data models can be used to predict the energy

consumption of a particular method. We only need to

measure how many CPU cycles to a method to estimate

energy consumption. After the experiment, our result shows

the median error produced by the model is about 7%, and

the mean error is about 11%. This is precise enough for us

to make a partition decision.

2) Program Profiling

 Initially, a profiler collects three different sets of data

from each method which are a methods' runtime duration,

the number of CPU cycles and the state transfer

requirements. The state transfer requirements include the

size of methods, all relevant data which it needs during the

execution and return data. A method's duration and CPU

cycles are used to estimate the energy consumption of a

method.

 To generate the state transfer requirements, we need to

calculate how much data it requires and how often this data

occurs. This is because when a method is located remotely,

some of the required data must invoke from a mobile phone.

It is very difficult to detect the frequency of this data.

Applications are not deterministic. The frequency is

changing during the runtime period. Instead, we use past

method invocation to predict future invocations. It is found

that this idea works well for a mobile application with this

architecture.

The state transfer requirements could be calculated as:

Vji tatal

iijijji
TB

codeDoutDinnRRR
),(*

1
})(|{|

 D_{in} is the amount of data transferred from vertex i to

vertex j and D_{out} means the amount of data sent from

vertex j to vertex i. n is a number indicating how many

times this data transaction occurring of total execution time.

The B represents a current capacity of the bandwidth.

code_{i} represents the code size of vertex i. Vertex i and j

represents methods who have data interaction between each

other’s. T_{total} represents total transferring time of data

and code. R_{i} is an indicator, when method i locates

locally, then, R_{i}=0. When R_{i} located remotely, then

R_{i}=1.

F. Partition Algorithm

 Profiler collects variables from smartphones and treats

them as a global optimization problem. In order to make the

system execute efficiently, deciding how to partition the

removable methods between a cell phone and servers is

difficult. The system needs to find a trade-off strategy which

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

keeps the energy consumption to a minimum and subject to

latency constraint.

 Deciding where to run each function is challenging

because it needs a global view of the application's behavior.

The energy consumed by transferring methods remotely

must be smaller than the energy consumed by executing

locally. So the decision must be made globally to consider

the entire program behavior.

 To formulate the global optimization issue, the program

is modeled as an annotated call graph. The example can be

seen in Figure 2. Through the graph we can see that each

vertex represents a method, each edge represents a weight of

executing a left side method remotely. To optimize the

problem, the graph is treated as unidirectional graph. Based

on the above variables, a weight is generated as the value of

the each edge. Then we apply the partition algorithm to the

graph to seek a minimum cut in the graph. After this

algorithm, the part with less energy cost will stay on the

mobile phone but a large part of code will transfer to

servers. In this work, a Min-Cut algorithm [18] is used to

seek the best cutting point in an undirected graph G with

vertex set V and edge set E. Every edge e has no-negative

real weight.

 An example is shown in Figure 2, in which an application

is assumed to consist of 6 methods. Figure 2 represents a

method invocation graph. G={F,G}, F represents method in

Figure 2 and F={F1,..,F6}. E represents edges in the graph

and E={E1,..,E6}. Each edge represents a data exchange

with a weight. Firstly, The Min-Cut algorithm selects a

random point. Let’s assume we pick point 5. Add F5 to a

most tightly connected vertex. Then, it takes F5 as a center

point and selects the most tightly connected point which has

the biggest weight. F6 is selects and add to the most tightly

connected vertex. After that, let pretend F5 and F6 as a

single point in the graph and select most tightly connected

vertex with biggest weight. So, F4 is selected and added to

most tightly connected group. Then, it pretends F5, F6 and

F4 as a single point. F2 is selected and added to most tightly

connected group. Now, we have F1 is not in the most tightly

connected group and this last step of the first min-cut

phrase. The induce ordering F5, F6, F4, F3, F2, F1 of the

vertex. The first cut of the phrase corresponds to the

partition {1}, {2, 3, 4, 5, 6} with weight w = 5. Then, min-

cut algorithm executes the cut-of phrase again. Before that,

F1 is merged together with F2. Figure 3 shows after the

second min cut phrase (G, w, F5) and the order is F5, F6,

F4, F3 and F(1,2). The second cut-of-the phrase corresponds

to the partition {1, 2}, {3, 4, 5, 6} of V with the weight w

=5. Figure 4 Figure 4 shows the result After the third min

cut phrase, the corresponding partition is {1,3 },{2,4,5,6 }.

The weight w is 4 Figure 5 shows a result after the fourth

min cut phrase, the partition is {4,6 } , {1,2,3,5 }, the weight

w is 5. Figure 56shows after the fifth min cut phrase, the

corresponding partition is {5}, {1, 2, 3, 4, and 6} and the

weight is 8.5. Overall, the minimum cut of the graph G is

the third cut and the weight is 4.

Figure 2 shows a method invocation graph.

Figure 3 shows after the second min cut phrase(G, w,

F5) and the order is F5, F6, F4, F3 and F(1,2). The

second cut-of-the phrase correspond to the partition {1,

2}, {3, 4, 5, 6} of V with the weight w =5.

Figure 4 shows the result of third min cut phrase, the

corresponding partition is {1,3 },{2,4,5,6 }. The weight w

is 4

Figure 5 shows the result of fourth min cut phrase,

partition is {4, 6 }, {1,2,3,5 }, the weight w is 5.

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

Figure 6 shows result of fifth min cut phrase, the

corresponding partition is { 5},{1,2,3,4,6 } and the weight

is 8.5.

III. EXPERIMENTAL SETUP

 The goal of this work is to reduce energy consumption of

mobile applications. In addition to saving energy, this

structure can also improve the performance of applications.

How much this prototype can improve the performance is

very important to some sensitive applications. A mobile

application, which is called power tutor (lee2012smart) is

used to monitor the energy consumption based on particular

applications. All results related to an application's energy

consumption is detected by this application. Mobile phones

normally have about 100 MB memories. This means some

applications cannot be deployed onto mobile devices. A

testing issue could be whether this prototype can support

resource-intensive applications or not.

A. Experiment 1

 To answer the questions above, we used three Android

phone based applications. Two of them were already

developed and they were open source. They are a video

game application and a translator application. We deployed a

Caesar encryption application which it is used to run as a

data intensive application.

 Three different scenarios are considered. In the first

scenario, three applications are running standalone on the

mobile phone. In the 2nd scenarios, MMPC is used to

offload methods to servers over a Wi-Fi link with different

RTT values (25ms, 50ms, and 100ms). RTT represents

Round-trip time which is the length of time it takes for a

signal to be sent plus the length of time it takes for an

acknowledgment of that signal to be received.

B. Experiment 2

 This experiment is designed to test the performance of the

partition algorithm. In order to prove that a min-cut

algorithm is the best solution we deployed two more

algorithms that can be used to solve the same problem,

which are an exhausting partition algorithm and a linear

program. The exhausting algorithm compares all possible

partition schemes, and then selects the best one. The linear

program collects all data from profiling process to find a

most balanced partition strategy.

 In this evaluation, we firstly executed three applications

standalone and recorded how long it takes for execution.

Then, we deployed a new prototype to offload code to

servers with a link. During the execution, we inserted various

queuing delay (25ms, 50ms, 100ms). Performance results are

recorded for each run.

C. Methodology and Environmental Setup

 During the evaluation, a ZET San Francisco ruing Android

2.3 with DISPY framwork 3.3 has been used. For the

servers, three dual-core desktops are used with installed

android simulators. The server is configured with an "tc"

command that inserts packet queuing delays to control the

RTT of the path between the smartphone. On the server side,

Eucalyptus [19] is used to organize three computers.

IV. EVALUATION

Figure 7, 8 and 9 represent comparisons of energy

consumption. The three applications were evaluated in four

scenarios. A battery monitor program is used to calculate

the energy consumption. Firstly, the three applications are

executed on mobile phone locally. Then, four different

round trip time (RTT) were inserted into the network

between a cellphone and servers. Through the above figures,

significant energy saving are seen in the translator and the

Caesar applications. With the increase RTT, the system

saves less energy. The video game application shows less

drastic in energy saving but it remains non-trivial.

 The RTT is added by using a Linux kernel function.

Within the current distributions of Linux there is a kernel

component called netem [20], which adds Network

Emulation and is used for testing and simulating the same

types of issues one would see in a WAN (Wide Area

Network). 'tc' is a command that allows one to add rules to

netem.

Figure 7 shows energy consumption of Caesar encryption

(500 words)

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

e

 Figure 10 shows the comparison of three different

partition algorithms. The experiments test the runtime

duration of each algorithm. 1000 different partition schemes

are created to find the best one. The results show that the

exhausting partition scheme consumes much more energy

than the other two algorithms. The min-Cut algorithm

consumes least energy.

Through Figure 11 and 12, the performance is generally

improved although it degrades when the latency is very big

(> 100 ms). This is probably because of the chatty nature of

the handshaking protocol, which makes Wi-Fi’s high power

state last longer.

Figure 13 describes the performance of the Caesar

application in four different scenarios. The Caesar

application is designed for the testing of remote execution.

The application consists of three methods: a data generator,

Figure 8 shows energy consumption of Video game with

500 frames

Figure 12 total execution time ran by 4 scenarios and a

move method was delivered to Cloud (smart phone

only).

Figure 13 shows the experiment was run by 4 scenarios

and decrypt and encrypt methods were delivered to

Cloud (smartphone only).

Figure 9 shows that three different partition

algorithms were evaluated and compared.

Figure 10 shows total execution time with different

conditions

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

an encrypt method and a decrypt methods. Firstly, we

executed the entire application on a mobile phone. Then, we

transported the encrypt and decrypt methods to the cloud for

remote execution. Encrypt and decrypt should take the

same amount of time and the small difference is probably

because of the monitor software.
A resource-intensive application is tested on the cloud as

it cannot be run on a mobile phone due to its high resource
requirements. During this experiment, the Caesar application
was used to process a very large dataset. Figure 14 shows the
memory consumption of the Caesar application, which is
around 80MB. The mobile phone’s RAM is about 100 MB,
which implies that such a big application cannot be run on
the mobile phone.

Figure 14 shows Memory consumption of the Caesar

application (smartphone only).

V. CONCLUSIONS

In this paper, we have implemented MMPC (Mirroring
Mobile Phone in the Clouds) and there are two original
contributions in implementing MMPC: 1. a dynamic
program profiler to analyze the program behaviors. The
profiler measures initially the behaviors of the Internet and
the mentioned methods and then continually monitors the
program behaviors. Such a continuous monitoring is crucial
as the old information may lead to wrong decisions when
offloading. 2. Dynamic Program Partitioning Algorithm to
divide a mobile application program into two pieces, the
small one of which remains in the mobile phone whereas the
large one goes to the Cloud to be executed there. Because the
Cloud represents an enormous execution power and storage
space so the overall performance of executing a (large)
mobile application is much improved.

REFERENCE

[1] K. Lahiri, S. Dey, D. Panigrahi, and A.

Raghunathan, “Battery-driven system design: A

new frontier in low power design,” in Proceedings

of the 2002 Asia and South Pacific Design

Automation Conference, 2002, p. 261.

[2] E. Cuervo, A. Balasubramanian, D. Cho, A.

Wolman, S. Saroiu, R. Chandra, and P. Bahl,

“MAUI: making smartphones last longer with code

offload,” in Proceedings of the 8th international

conference on Mobile systems, applications, and

services, 2010, pp. 49–62.

[3] K. Kumar and Y.-H. Lu, “Cloud computing for

mobile users: Can offloading computation save

energy?,” Computer (Long. Beach. Calif)., vol. 43,

no. 4, pp. 51–56, 2010.

[4] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A.

Patti, “Clonecloud: elastic execution between

mobile device and cloud,” in Proceedings of the

sixth conference on Computer systems, 2011, pp.

301–314.

[5] G. Pemmasani, “dispy : Python Framework for

Distributed and Parallel Computing,” 2013.

[6] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A

survey of mobile cloud computing: architecture,

applications, and approaches,” Wirel. Commun.

Mob. Comput., 2011.

[7] M. L. Hetland, “Project 5: A Virtual Tea Party,”

Begin. Python From Novice to Prof., pp. 455–472,

2005.

[8] G. Kahn, D. MacQueen, and others, “Coroutines

and networks of parallel processes,” 1976.

[9] P. Verhaeghe, K. Verslype, J. Lapon, V. Naessens,

and B. De Decker, “A mobile and reliable

anonymous epoll infrastructure,” in Security and

Privacy in Mobile Information and Communication

Systems, Springer, 2010, pp. 41–52.

[10] J. Lemon, “Kqueue-A Generic and Scalable Event

Notification Facility.,” in USENIX Annual

Technical Conference, FREENIX Track, 2001, pp.

141–153.

[11] S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud

computing: A review on smartphone augmentation

approaches,” arXiv Prepr. arXiv1205.0451, 2012.

[12] G. Huerta-Canepa and D. Lee, “A virtual cloud

computing provider for mobile devices,” in

Proceedings of the 1st ACM Workshop on Mobile

Cloud Computing & Services: Social Networks and

Beyond, 2010, p. 6.

[13] J. Flinn, “Cyber foraging: Bridging mobile and

cloud computing,” Synth. Lect. Mob. Pervasive

Comput., vol. 7, no. 2, pp. 1–103, 2012.

IEEE Mobile Services, Anchorage, Alaska, USA, 29th June 2014

[14] S. Rivoire, M. A. Shah, P. Ranganathan, and C.

Kozyrakis, “JouleSort: a balanced energy-efficiency

benchmark,” in Proceedings of the 2007 ACM

SIGMOD international conference on Management

of data, 2007, pp. 365–376.

[15] N. Balasubramanian, A. Balasubramanian, and A.

Venkataramani, “Energy consumption in mobile

phones: a measurement study and implications for

network applications,” in Proceedings of the 9th

ACM SIGCOMM conference on Internet

measurement conference, 2009, pp. 280–293.

[16] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick,

Z. M. Mao, and L. Yang, “Accurate online power

estimation and automatic battery behavior based

power model generation for smartphones,” in

Proceedings of the eighth IEEE/ACM/IFIP

international conference on Hardware/software

codesign and system synthesis, 2010, pp. 105–114.

[17] D. McIntire, T. Stathopoulos, and W. Kaiser, “etop-

Sensor Network Application Energy Profiling on

the LEAP2 Platform,” in Information Processing in

Sensor Networks, 2007. IPSN 2007. 6th

International Symposium on, 2007, pp. 576–577.

[18] M. Stoer and F. Wagner, “A simple min-cut

algorithm,” J. ACM, vol. 44, no. 4, pp. 585–591,

1997.

[19] K. G. Eldridge, J. Davidson, C. E. Harwood, G. van

Wyk, and others, Eucalypt domestication and

breeding. Clarendon Press, 1993.

[20] S. Hemminger and others, “Network emulation with

NetEm,” in Linux Conf Au, 2005, pp. 18–23.

