1,658 research outputs found

    Monte Carlo Simulation of Electron Backscattering in Solids Using a General-Purpose Computer Code

    Get PDF
    A Monte Carlo study of backscattering of kilovolt electrons in solids, a process of primary importance in electron microscopy and surface analytical techniques, is carried out. Simulations have been performed using the general-purpose simulation code PENELOPE (an acronym for Penetration and ENErgy LOss of Positrons and Electrons ), which generates electron-photon showers in arbitrary materials. A systematic comparison of results from PENELOPE with available experimental data, and with results from simulations with a much more sophisticated code, is given for electron beams with energies between 2.5 and 60 keV and elemental solids with atomic numbers Z = 4 to 92. It is concluded that PENELOPE gives a reliable description of the backscattering process, even for relatively low electron energies and thin targets

    Monte Carlo Simulation of SEM and SAM Images

    Get PDF

    Secondary Electron Emission from Solids. II. Theoretical Descriptions

    Get PDF
    A primary beam impinging on a solid target suffers elastic and inelastic collisions with the components of the solid. These collisions can be incorporated into a Monte-Carlo simulation model if all the cross sections associated with the various types of collisions are known. Elastic diffusion effects are mainly related to the interactions of the particles with the real potential V(r) surrounding each ionic core. An essential simplification of the inelastic interactions is to consider that the solid reacts as a whole to an external probe, which is the incident electron beam. The linear response of the solid to an external perturbation is described by its dielectric function. In the present paper, the methods used to evaluate the elastic and inelastic cross-sections and to simulate the secondary electron emission are reviewed and discussed

    Validation Test of Geant4 Simulation of Electron Backscattering

    Full text link
    Backscattering is a sensitive probe of the accuracy of electron scattering algorithms implemented in Monte Carlo codes. The capability of the Geant4 toolkit to describe realistically the fraction of electrons backscattered from a target volume is extensively and quantitatively evaluated in comparison with experimental data retrieved from the literature. The validation test covers the energy range between approximately 100 eV and 20 MeV, and concerns a wide set of target elements. Multiple and single electron scattering models implemented in Geant4, as well as preassembled selections of physics models distributed within Geant4, are analyzed with statistical methods. The evaluations concern Geant4 versions from 9.1 to 10.1. Significant evolutions are observed over the range of Geant4 versions, not always in the direction of better compatibility with experiment. Goodness-of-fit tests complemented by categorical analysis tests identify a configuration based on Geant4 Urban multiple scattering model in Geant4 version 9.1 and a configuration based on single Coulomb scattering in Geant4 10.0 as the physics options best reproducing experimental data above a few tens of keV. At lower energies only single scattering demonstrates some capability to reproduce data down to a few keV. Recommended preassembled physics configurations appear incapable of describing electron backscattering compatible with experiment. With the support of statistical methods, a correlation is established between the validation of Geant4-based simulation of backscattering and of energy deposition

    Monte-Carlo Simulation in Electron Microscopy and Spectroscopy

    Get PDF

    Metal oxides of resistive memories investigated by electron and ion backscattering

    Get PDF
    The memristor is one of the most promising devices being studied for multiple uses in future electronic systems, with applications ranging from nonvolatile memories to artificial neural networks. Its working is based on the forming and rupturing of nano-scaled conductive filaments, which drastically alters the device’s resistance. These filaments are formed by oxygen vacancy accumulation, hence a deep understanding of the self-diffusion of oxygen in these systems is necessary. Accurate measurements of oxygen self-diffusion on metal oxides was achieved with the development of a quantitative analysis of the energy spectrum of the backscattering of electrons. The novel technique called Electron Rutherford Backscattering Spectroscopy (ERBS) uses the scattering of high energy electrons ( 40 keV) to probe the sample’s near surface (10–100 nm). Measurements of the high energy loss region – called Reflection High-Energy Electron Loss Spectroscopy (RHEELS) – also exhibit characteristics of the material’s electronic structure. A careful procedure was developed for the fitting of ERBS spectra, which was then applied on the analysis of multi-layered samples of Si3N4/TiO2, and measurements of the band gap of common oxides, such as SiO2, CaCO3 and Li2CO3. Monte Carlo simulations were employed to study the effects of multiple elastic scatterings in ERBS spectra, and a dielectric function description of inelastic scatterings extended the simulation to also consider the plasmon excitation peaks observed in RHEELS. These analysis tools were integrated into a package named PowerInteraction. With its use, a series of measurements of oxygen self-diffusion in TiO2 were conducted. The samples were composed of two sputtered deposited TiO2 layers, one of which was enriched with the 18 mass oxygen isotope. After thermal annealing, diffusion profiles were obtained by tracking the relative concentration of oxygen isotopes in both films. From the logarithmic temperature dependence of the diffusion coefficients, an activation energy of 1.05 eV for oxygen self-diffusion in TiO2 was obtained. Common ion beam analysis, such as RBS and NRA/NRP (Nuclear Reaction Analysis/Profiling), were also used to provide complementary information.O memristor é um dos dispositivos mais promissores sendo estudados para múltiplos usos em sistemas eletrônicos, com aplicações desde memórias não voláteis a redes neurais artificiais. Seu funcionamento é baseado na formação e ruptura de filamentos condutores nanométricos, o que altera drasticamente a resistência do dispositivo. Estes filamentos são formados pela acumulação de vacâncias de oxigênio, portanto um profundo entendimento da autodifusão de oxigênio nestes sistemas é necessário. Medidas acuradas da difusão em óxidos metálicos foi obtida com o desenvolvimento de uma análise quantitativa do espectro em energia de elétrons retroespalhados. A inovadora técnica de RBS de elétrons (ERBS) utiliza elétrons de alta energia ( 40 keV) para investigar a região próxima a superfície (10–100 nm). Medidas da região de alta perda de energia – chamada de Spectroscopia de Perda de Alta-Energia de Elétrons Refletidos (RHEELS) – também exibe características da estrutura eletrônica dos materiais. Um procedimento cuidadoso para o ajuste de espectros de ERBS foi desenvolvido, e então aplicado na análise de amostras multi camada de Si3N4/TiO2, e medidas de band gap de alguns óxidos, como SiO2, CaCO3 e Li2CO3. Simulações de Monte Carlo foram empregadas no estudo dos efeitos de espalhamento múltiplo nos espectros de ERBS, e uma descrição dielétrica dos espalhamentos inelásticos extendeu as simulação para também considerarem os picos de exitação plasmônica observados em RHEELS. Estas ferramentas de análise foram integradas em um pacote chamado PowerInteraction. Com o uso deste, uma série de medidas de autodifusão de oxigênio em TiO2 foram conduzidas. As amostras eram compostas por dois filmes de TiO2 depositados por sputtering, um dos quais enriquecido com isótopo 18 de oxigênio. Após tratamentos térmicos, perfis de difusão foram obtidos pelo rastreio das concentrações relativas dos isótopos de oxigênio nos dois filmes. Do comportamento logarítmico dos coeficientes de difusão em relação à temperatura, uma energia de ativação de 1.05 eV para a autodifusão de oxigênio em TiO2 foi obtida. Análises por feixes de íons, como RBS e NRA/NRP (Análise/Perfilometria por Reação Nuclear), também forneceram informações complementares

    Deconvolution in Auger Electron Spectroscopy

    Get PDF
    Deconvolution calculations have been applied in Auger Electron Spectroscopy to increase resolution and/or to eliminate loss features. We present: i) A short review of the methodology; ii) Recent results obtained in our laboratory in spectroscopy of Al, Ni, Cu, Ag and Te; iii) A discussion on the conditions for the appearance of artefacts originating either in the calculation or the physical processes (emission anisotropy, distribution of electron path lengths, and intrinsic losses)

    Exclusion Limits on the WIMP-Nucleon Cross-Section from the First Run of the Cryogenic Dark Matter Search in the Soudan Underground Lab

    Full text link
    The Cryogenic Dark Matter Search (CDMS-II) employs low-temperature Ge and Si detectors to seek Weakly Interacting Massive Particles (WIMPs) via their elastic scattering interactions with nuclei. Simultaneous measurements of both ionization and phonon energy provide discrimination against interactions of background particles. For recoil energies above 10 keV, events due to background photons are rejected with >99.99% efficiency. Electromagnetic events very near the detector surface can mimic nuclear recoils because of reduced charge collection, but these surface events are rejected with >96% efficiency by using additional information from the phonon pulse shape. Efficient use of active and passive shielding, combined with the the 2090 m.w.e. overburden at the experimental site in the Soudan mine, makes the background from neutrons negligible for this first exposure. All cuts are determined in a blind manner from in situ calibrations with external radioactive sources without any prior knowledge of the event distribution in the signal region. Resulting efficiencies are known to ~10%. A single event with a recoil of 64 keV passes all of the cuts and is consistent with the expected misidentification rate of surface-electron recoils. Under the assumptions for a standard dark matter halo, these data exclude previously unexplored parameter space for both spin-independent and spin-dependent WIMP-nucleon elastic scattering. The resulting limit on the spin-independent WIMP-nucleon elastic-scattering cross-section has a minimum of 4x10^-43 cm^2 at a WIMP mass of 60 GeV/c^2. The minimum of the limit for the spin-dependent WIMP-neutron elastic-scattering cross-section is 2x10^-37 cm^2 at a WIMP mass of 50 GeV/c^2.Comment: 37 pages, 42 figure
    corecore