1,195 research outputs found

    An automatic fingerprint classification technique based on global features

    Get PDF
    Fingerprint classification is an important stage in automatic fingerprint identification system (AFIS) because it significantly reduces the processing time to search and retrieve in a large-scale fingerprint database. However, its performance is heavily relied on image quality that comes in various forms such as low contrast, wet, dry, bruise, cuts, stains, etc. This paper proposed an automatic fingerprint classification scheme based on singular points and structural shape of orientation fields. It involves several steps, amongst others: firstly, fingerprint foreground is extracted and then noise patches in the foreground are detected and enhanced. Next, the orientation fields are estimated, and a corrective procedure is performed on the false ones. Afterward, an orientation image is created and singular points are detected. Based on the number of core and delta and their locations, an exclusive membership of the fingerprint can be discovered. Should it fail, the structural shape of the orientation fields neighboring the core or delta is analyzed. The performance of the proposed method is tested using 27,000 fingerprints of NIST Special Database 14. The results obtained are very encouraging with an accuracy rate of 89.31% that markedly outperformed the latest work

    An accurate fingerprint reference point determination method based on curvature estimation of separated ridges

    Get PDF
    This paper presents an effective method for the detection of a fingerprint’s reference point by analyzing fingerprint ridges’ curvatures. The proposed approach is a multi-stage system. The first step extracts the fingerprint ridges from an image and transforms them into chains of discrete points. In the second step, the obtained chains of points are processed by a dedicated algorithm to detect corners and other points of highest curvature on their planar surface. In a series of experiments we demonstrate that the proposed method based on this algorithm allows effective determination of fingerprint reference points. Furthermore, the proposed method is relatively simple and achieves better results when compared with the approaches known from the literature. The reference point detection experiments were conducted using publicly available fingerprint databases FVC2000, FVC2002, FVC2004 and NIST

    Core Point Pixel-Level Localization by Fingerprint Features in Spatial Domain

    Get PDF
    Singular point detection is a primary step in fingerprint recognition, especially for fingerprint alignment and classification. But in present there are still some problems and challenges such as more false-positive singular points or inaccurate reference point localization. This paper proposes an accurate core point localization method based on spatial domain features of fingerprint images from a completely different viewpoint to improve the fingerprint core point displacement problem of singular point detection. The method first defines new fingerprint features, called furcation and confluence, to represent specific ridge/valley distribution in a core point area, and uses them to extract the innermost Curve of ridges. The summit of this Curve is regarded as the localization result. Furthermore, an approach for removing false Furcation and Confluence based on their correlations is developed to enhance the method robustness. Experimental results show that the proposed method achieves satisfactory core localization accuracy in a large number of samples

    Curvature and singularity driven diffusion for oriented pattern enhancement with singular points

    Full text link

    A Survey of the methods on fingerprint orientation field estimation

    Get PDF
    Fingerprint orientation field (FOF) estimation plays a key role in enhancing the performance of the automated fingerprint identification system (AFIS): Accurate estimation of FOF can evidently improve the performance of AFIS. However, despite the enormous attention on the FOF estimation research in the past decades, the accurate estimation of FOFs, especially for poor-quality fingerprints, still remains a challenging task. In this paper, we devote to review and categorization of the large number of FOF estimation methods proposed in the specialized literature, with particular attention to the most recent work in this area. Broadly speaking, the existing FOF estimation methods can be grouped into three categories: gradient-based methods, mathematical models-based methods, and learning-based methods. Identifying and explaining the advantages and limitations of these FOF estimation methods is of fundamental importance for fingerprint identification, because only a full understanding of the nature of these methods can shed light on the most essential issues for FOF estimation. In this paper, we make a comprehensive discussion and analysis of these methods concerning their advantages and limitations. We have also conducted experiments using publically available competition dataset to effectively compare the performance of the most relevant algorithms and methods

    Minutiae filtering using ridge-valley method

    Get PDF
    In order to identify subjects in a convenient and efficient way one must use some special feature that makes it possible to discriminate between persons. Some of the features are biometric in nature, such as iris texture, hand shape, the human face, and of course finger prints. These play an important role in many automatic identification systems, since every person is believed to have a unique set of fingerprints. Before a fingerprint image can be looked up in a database, it has to be classified into one of 5 types in order to reduce processing times
    corecore