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ABSTRACT Fingerprint orientation field (FOF) estimation plays a key role in enhancing the performance of
the automated fingerprint identification system (AFIS): accurate estimation of FOF can evidently improve
the performance of AFIS. However, despite the enormous attention on the FOF estimation research in
the past decades, the accurate estimation of FOFs, especially for poor-quality fingerprints, still remains a
challenging task. In this paper, we devote to review and categorization of the large number of FOF estimation
methods proposed in the specialized literature, with particular attention to the most recent work in this area.
Broadly speaking, the existing FOF estimation methods can be grouped into three categories: gradient-based
methods, mathematical models-based methods, and learning-based methods. Identifying and explaining the
advantages and limitations of these FOF estimation methods is of fundamental importance for fingerprint
identification, because only a full understanding of the nature of these methods can shed light on the most
essential issues for FOF estimation. In this paper, we make a comprehensive discussion and analysis of these
methods concerning their advantages and limitations. We have also conducted experiments using publically
available competition dataset to effectively compare the performance of the most relevant algorithms and
methods.

INDEX TERMS Fingerprint identification, fingerprint orientation field estimation, sparse coding, dictionary
learning, convolutional neural networks.

I. INTRODUCTION
A number of biometric technologies have been developed
and several of them have been successfully deployed com-
mercially. Among these, fingerprint is the most commonly
used approach. In fact, fingerprints and biometrics are often
considered as synonyms! Fingerprints recognition can be
tracked back over 100 years when they were first introduced
as a method for person identification [1]. With the continuous
growing demand on security, fingerprint recognition tech-
nology has been deployed in a wide range of applications,
such as smartcards, commercial services, airport security
and automated banking. In recent decades, the research has
been focusedmainly on development of automatic fingerprint
identification systems (AFIS). In general, the AFIS works
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by extracting and matching fingerprint minutiae [2], [3].
A typical AFIS consists of fingerprint acquisition, fingerprint
preprocessing (such as fingerprint segmentation, orientation
field estimation and enhancement), fingerprint classification,
minutiae detection and matching [4].

There is a common misconception that automatic finger-
print recognition is a fully solved problem since the AFIS
have been around for decades. However, fingerprint recog-
nition remains as a challenging and important pattern recog-
nition problem due to its large intra-class variability and
inter-class similarity in fingerprint patterns [1]. Furthermore,
automatic fingerprint identification has to acquire reliable
matching features from fingerprint images with poor quality,
which are degraded by various factors such as dirt, scar,
greasing and moisture on the surface of fingertips.

Fingerprints features as alternated ridges and valleys where
the former are foreground and the latter are background.
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In general, ridge and valley flows are of a local constant
orientation. So, the orientations, formally fingerprint orienta-
tions, are often used to describe the ridge flow patterns, pro-
viding useful features for further fingerprint processing and
recognition [5], [6]. Although significant advances have been
achieved for extracting fingerprint orientation field (FOF)
in literatures, it is still challenging to reliably estimate the
orientations of poor quality and latent fingerprints, which
are usually caused by unclear ridge structure and various
overlapping patterns. Due to its inherent global and reliable
nature, the FOF plays a very important role in the areas of
fingerprint segmentation [7]–[10], enhancement [11]–[20],
singularity detection [21]–[25], classification [26]–[32], and
matching [33]–[42]. Errors in computing the FOF propagate
through all the stages of the AFIS. In particular, errors in esti-
mation of the FOFwill affect enhancement, feature extraction
and as a consequence the accuracy of the recognition. So,
an increasing number of researches have been focused on the
study of the reliability of an FOF estimation, and a wealth
of methods has been proposed for extracting the FOF in the
literatures.

To present a unified understanding of the state of the art
research in FOF, avoid duplicated efforts and address the lack
of existing empirical comparisons, this survey endeavors to
cover most emerging FOF estimation methods, and reflect
the research trend toward the extraction of FOF. Table 1 lists
in a compact manner the most relevant works for fingerprint
orientation field estimation. We will classify the pertinent
FOF estimation methods presented in the literatures into
three classes according to the nature of the characteristics
considered: gradient-based, mathematical models-based and
learning-based methods. Furthermore, the different classes of
algorithms and their evolved counterparts in the literatures
will be analyzed. Finally, we conduct an empirical study to
analyze the most important FOF algorithms in terms of accu-
racy and time cost when they are applied to AFIS. We will
make some performance evaluations of the algorithms by the
relevant experimental results.

The remainder of this paper is organized as follows.
Section 2 gives a glance at popular gradient-based methods
that are widely accepted as basic FOF estimation approaches
in this field. Section 3 summarizes various mathemati-
cal models-based methods. The learning-based methods are
reviewed in Section 4. The inherent properties and differ-
ences among them are investigated, and the advantages and
limitations of them are discussed and analyzed within each
sections. Performance evaluations are reported and analyzed
in Section 5. Finally, some conclusions of this paper are
drawn in Section 6.

II. GRADIENT-BASED METHODS
The aim of FOF estimation is to determine the global struc-
ture and orientation of the ridges in the fingerprint image.
The simplest and most natural method for extracting ridge
orientation is based on gradients in the fingerprint image. The
gradient-based method was introduced in [43] and adopted

by many researchers [44]–[61], where the gradient vectors
were calculated in a fingerprint image by taking the partial
derivatives of gray intensity at each pixel.

G(x, y) =
[
Gx(x, y)
Gy(x, y)

]
=


∂I(x, y)
∂x

∂I(x, y)
∂y

 (1)

where I represents the gray-scale fingerprint image,
Gx(x, y) and Gy(x, y) components are the derivatives of I at
pixel[x, y] with respect to the x-axis and y-axis directions,
respectively. The local ridge orientation at pixel [x, y] is
defined as the angle θ (x, y). It is noteworthy that fingerprint
ridges are not directed, and θ (x, y) is an unoriented direction
lying in [0, π). For notational convenience, the gradient
vector is often rewritten as G(x, y) =

[
Gx ,Gy

]T . The ridge
orientation θ (x, y) is perpendicular to the gradient orientation
ϕ(x, y). Except in the region of singularities such as core
and delta as shown in Fig 2, the ridge orientation varies very
slowly across the fingerprint image. Therefore the FOF is sel-
dom computed at pixel level. Most of the AFISs compute the
local ridge orientation at discrete positions based on patch of
pixels. The problem that needs to be solved is howwe can find
the optimal orientation for the gradient vectors in a patch. One
method that is easy to come upwith is to average these vectors
and estimate the local optimal orientation by minimizing
the mean square error. However, the ridge orientation is
undirected, and the opposite gradient vectors actually indicate
the same ridge orientation [86]. So, this method will not work
for the reason that gradients cannot be directly averaged in
local neighborhood since the opposite gradient vectors will
cancel rather than strengthen each other [57], [86]. Kass
and Witkin [43] proposed a simple yet elegant solution to
map two ridge directions that are over 180 degrees into a
single direction by doubling them. This achieves a single
direction representation of the ridge directions and allows
local gradient estimations to be averaged. In their algorithm,
the orientation of a pixel gradient can be computed by the

vector J(x, y) =
[
G2
x − G

2
y, 2GxGy

]T
. The magnitude of J(x,

y) is just the square of the magnitude ofG(x, y) and the angle
between J(x, y) and the x-axis is twice as the angle between
G(x, y) and the x-axis, and the gradient orientation ϕ(x, y)
can be estimated by:

ϕ (x, y) =
1
2
tan−1

(
2GxGy
G2
x − G2

y

)
(2)

Based on the above idea, some feasible methods can be
derived for estimating the FOF. Rao and Schunck [44] and
Rao and Jain [45] presented another method based on the
gradient of the Gaussian, and it was related directly to results
concerning the mean direction and dispersion in statistics of
directional data. It is an improvement over Kass and Witkin’s
scheme in [43] as it removes the assumptions of the nature
of the oriented texture. In their method, the gradient vector
[Gx ,Gy]T is represented as polar expression of Rmneiϕmn ,
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TABLE 1. List of the most relevant fingerprint orientation field estimation works.
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where m and n are the x and y co-ordinates of pixels in local
patch, and the estimation of the optimal ridge orientation 2
in a local patch of size N × N pixels can be given by

2 = tan−1


N∑
m=1

N∑
n=1

R2mn sin(2ϕmn)

N∑
m=1

N∑
n=1

R2mn cos(2ϕmn)

+ π2 (3)

The method based on the gradient of the Gaussian is
also used to estimate FOF in [46] and [47]. Unlike the
above method, Jain et al. [4], Bazen and Gerez [21], and
Ratha et al. [48] estimated the local orientation of each fin-
gerprint patch based on averaging squared gradients method
(ASGM). The optimal gradient orientation of fingerprint
patch is computed by

8 =
1
2
tan−1


N∑
h=1

N∑
w=1

2Gx(h,w)Gy(h,w)

N∑
h=1

N∑
w=1

(G2
x(h,w)− G2

y(h,w))

 (4)

And then the ridge orientation can be computed by:

2 = 8+
π

2
(5)

The FOF estimated byASGMstill contains inconsistencies
caused by creases, adhesions and ridge breaks. Utilizing the
regularity property of the fingerprint, each patch orientation
is smoothened with its neighborhood average by low-pass
filtering, and a Gaussian window [2], [52], [54] is employed
to smooth patch orientation according to Eq. (6).

2̂ (i, j) =
1
2
tan−1

(
G (x, y) ∗ sin(22(i, j))
G (x, y) ∗ cos(22(i, j))

)
(6)

Here G(x, y) represents a Gaussian smoothening ker-
nel. Low-pass filtering is very effective when the patch
orientations of miscalculation are relatively isolated in the
local region as shown in Fig. 1 row 1 (a1)-(c1). However,
if the falsely estimated patch orientations dominate the local
region, the correctly estimated orientation will be falsely
impacted by low-pass filtering as shown in Fig. 1 row
2(a2)-(c2). Besides, the location of the singular points
(see section 2) will shift slightly away from the true location
after low-pass filtering as shown in Fig. 1 row 3 (a3)-(c3) [91].

Averaging the squared gradients can only reduce the esti-
mation errors caused by noise that has no dominant orien-
tation in the averaging window. Obviously, the essence of
the ASGM is computing the weighted average of all squared
gradient vectors within a patch, where the weights for all
squared gradient vectors are one. In fact the anti-noise ability
of this method varies in relation to the patch size. It is weak-
ened when the patch is small and is strengthened when the
patch is large. On the other hand, the smaller the size of a
patch, the higher the accuracy of the orientation estimation.
In other words, the distortion of the patch orientation becomes
more noticeable when the patch size increases. To overcome

the contradiction, methods based on composite window were
employed in [55], [57], and [58] to achieve the balances
between accuracy and anti-noise ability. The composite win-
dow integrates the robustness of a large outer window and
the accuracy of a small inner window. However, we have to
face a challenge: the selection of the appropriate scales for
the composite window. Aiming at this problem, Li et al. [59]
used a weighted multi-scale composite window to adapt the
scales of the patches based on the squared gradient coherence.

Bazen and Gerez [21] showed another effective averaging
concept for computing the orientation field. Their derived
method is found to be mathematically equivalent as taking
the principal component analysis (PCA) of autocorrelation
matrix of a group of the gradient vectors within a local
neighborhood. The method assumes that the expectations of
gradient vectors are zeros. However, Bian et al. [86] chal-
lenged this assumption and showed that it might not be well
established. They estimated the local ridge orientation by
the linear projection analysis (LPA) based on the gradient
vectors within a local neighborhood, and the LPA method
can reveal the inner nature and rationality of the algorithm
more comprehensively. The estimation of the dominant ridge
orientation 2 in a patch can be given by the LPA:

2 = tan−1

 2Gxy(
Gxx−Gyy

)
+

√(
Gxx−Gyy

)2
+4G2

xy

+ π
2

(7)

In this expression,

Gxx=
N×N∑
j=1

G2
jx , Gyy=

N×N∑
j=1

G2
jy, Gxy=

N×N∑
j=1

GjxGjy

After analyzing the robustness of the orientation and
anisotropy estimation methods and the effect of the modulus
normalization on the estimation performance, Jiang [50] pro-
posed a two stage averaging frameworkwith patch-wisemod-
ulus handling to extract the FOF. And this method inherits
the merits of both linear and normalized averaging methods
for the de-noising. Wang et al. [51] improved the perfor-
mance of gradient-based methods and proposed an enhanced
gradient-based algorithm for extracting the FOF. The
enhanced algorithm choose the best orientation estimated
from four overlapping neighborhoods of every image patch,
where the voting scheme was based on the reliability mea-
sures. Mei et al. [53] presented a gradient-based combined
method for extracting the FOF. To overcome inherent weak-
nesses of using just one single size patch, they tried to
extract the FOF by combining the orientation fields cal-
culated by using multiple sized patches. The orientations
within large noisy regions are predicted by iteration using the
already estimated orientations. Inspired by Wang et al. [51]
and Saparudin and Sulong [56] proposed a new scheme of
enhanced FOF based on minimum variance of squared gra-
dients to find the minimum variance among the four direc-
tions of squared gradients. This method only focuses on the
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FIGURE 1. FOF estimation based on gradient and FOF smooth by low-pass filtering. Column 1: original
fingerprints; Column 2: FOF by gradient-based method; Column 3: FOF filtered by low-pass filter.

noise regions without encroaching rest of clean area of the
fingerprint.

In the gradient-based methods, there are different opinions
on whether or not the modulus of the gradient vector should
be normalized. In [21] and [43]–[45], not only the angle of
the gradients is doubled, but also the length of the gradient
vectors is squared. The authors thought that the gradient
orientation was closely related to the modulus of gradient.
In their methods, the stronger gradients have higher votes
than the weaker ones in computing the local orientation.
On the contrary, some researchers [60], [61] believe that we
are purely interested in the orientation and the modulus only
reflects the image contrast, therefore the modulus should be
normalized. Jiang [50] analyzed the effect of the modulus
normalization of gradients on estimation performance, and
showed that the gradient modulus normalization has both
advantages and disadvantages. In order to compare the two
viewpoints directly, the FOF is calculated with the classical
gradient-based method using normalized and unnormalized
point gradient vectors respectively in [55]. The comparison of
the experimental results indicate that the effective point gradi-
ent vectors (which are located at the edges between ridges and
valleys) often take positive effects and the ineffective point
gradient vectors (which are often located inside ridges or

valleys with small modulus, or located at the edges of abrupt
noise with distinctly large modulus) often take side effects.

In order to assess the effectiveness of point gradient vector,
Bian et al. [57] proposed a weighted LPA algorithm based on
the similarity of point gradient orientations. The effectiveness
of point gradient vector is judged according to the similarity
of point gradient orientations. The similarity measure R(m, n)
is computed by

R(m, n)=
1

N × N

N∑
h=1

N∑
w=1

cos (θ (h,w)−θ (m, n))+ 1
2

(8)

Bian et al. [57] reconstruct the FOF by combining
weighted LPA with orientation diffusion. The accuracy and
reliability of lower quality patch orientations can be improved
by the feedback of the estimated patch orientations with
higher quality.

However, there are drawbacks in gradient-based methods.
Gradient-based methods always consist of two components:
gradient computation and orientation estimation. There are
sensitive to noise due to the gradients computed at the pixel
level and not robust against large scale noises. Another short-
coming with gradient-based methods is the orientation bias
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caused by the discrete operators used to approximate the
differentiation operation.

III. MATHEMATICAL MODELS-BASED METHODS
In fact, the FOF is sufficiently smooth except for a few
regions with singularities, so it is a very promising approach
to infer local structure using more global information. In the
meanwhile, the most attractive feature of the mathematical
model-based methods is that they have capability to give
a global constraint to each point in a FOF. When recon-
structing one orientation in a FOF, all the other orientations
also contribute. We coarsely divide the model-based methods
into two categories: heuristic knowledge based methods and
orthogonal polynomials based methods.

A. HEURISTIC KNOWLEDGE BASED METHODS
Singular points (SPs) are points of discontinuity of the FOF.
The two types of SPs (cores and deltas) were defined in terms
of the ridge structures [62]. They have often been considered
as prior or heuristic knowledge and used to refine the FOF.
The core point is the end point of the innermost curving ridge
while the delta point is the confluence point of three different
flow directions (see Fig. 2).

FIGURE 2. Singular regions in fingerprint image. Core: white circle; Delta:
white box.

To reconstruct the FOF robustly, some global models
based on heuristic knowledge (GMHK) are developed in the
past years by many researchers. The pioneering research on
GMHK was presented by Sherlock and Monro [63]. In [63],
a simple mathematical model is developed which computes
fingerprint local ridge orientation from core and delta posi-
tions, which take core as zero and delta as pole in complex
plane. This method is named as zero-pole model andmodeled
the FOF by using:

Om(z) = O0 +
1
2

[
L∑
l=1

arg(z− zlc)−
K∑
k=1

arg(z− zkd )

]
(9)

where O0 is an initial FOF, zlc, z
k
d are the positions of the

cores and deltas. Quite evidently, the influence of a core
zc is 0.5arg(z-zc) for a point z, and that of a delta zd , is
-0.5arg(z-zd ). The orientation at z is the sum of the influences

of all cores and deltas. The main contribution of this model is
to provide a powerful approach to interpolate the orientation
at any point, which can be used to reconstruct the FOF with
noise.

However, it is an inescapable fact that any two fingerprints
with the same SPs will both be modeled by the same function
even though their local ridge orientation values may differ
significantly. In other words, the zero-pole model cannot
model all possible fingerprint orientation patterns accurately.
Vizcaya and Gerhardt [64] modify the zero-pole model to
a non-linear orientation model by using a piecewise linear
approximationmodel around SPs to adjust the zero and pole’s
behavior. The orientation at any point z is given by:

Om(z)=O0+
1
2

[
K∑
k=1

gkd (arg(z− z
k
d ))−

L∑
l=1

glc(arg(z− z
l
c))

]
(10)

where g is the correction term, which are some family of
nonlinear functions that preserve the singularity (Poincare
index) at the given point. This additional correction is not
precise enough to approximate all orientation fields. These
two models mentioned above cannot handle the fingerprints
where there are no SPs.

Zero-pole based methods are aiming at obtaining the local
orientation patterns near the singularities followed by a series
of nonlinear functions to correct the global patterns. Zhou and
Gu [65] built another complex model, which was based on
zero-pole model but with a high-order rational function used
as the non-linear correction instead. It can estimate the FOF
for all types of fingerprints at regions near or far from SPs.
This model can be defined as

φ (z) =
1
2
arg

[
f (z)
g(z)
·
P(z)
Q(z)

]
(11)

where P(z) =
∏s0

l=1

(
z− zlc

)
,Q(z) =

∏s1
k=1

(
z− zkd

)
,{

zlc
}
1≤l<s0

and
{
zkd
}
1≤k<s1

are the cores and deltas of the
fingerprint in the known region. The zeros of f (z) and g(z)
are outside the known region. The FOF can be reconstructed
by this model regardless of the existence of singular points in
fingerprint.

Gu and Zhou [66], Zhou and Gu [67], and Gu et al. [68]
observed that the power-series polynomials worked well for
smooth FOF but had difficulty in the regions with singular-
ities, and proposed a combination model to reconstruct the
FOF. On the one hand, from the global pattern considera-
tion, the fingerprint ridge orientation is quite smooth and
continuous except at singular point regions, so they apply
a polynomial model to approximate the global orientation
field. On the other hand, at each singular point, a point-charge
model is used to describe the local region. These two models
are combined together by a weight function.(

R(x, y)
I (x, y)

)
= αPM ·

(
PR
PI

)
+

K∑
k=1

αkPC ·

(
H k
1

H k
2

)
(12)
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where PR and PI are the real and imaginary parts of the
polynomial model respectively, αPM is the weighting factor
for polynomial model, k is the number of SPs, αkPC is the
weighting factor of the kth singular point in point-charge
model, H k

1 and H k
2 are the real and imaginary parts of the

point-charge model for the kth singular point. This combina-
tion model gives a better estimation of the FOF compared to
other previous models. However, in this method, the partition
of each effective region relies on a trial and error means.
There appears to be no solid rules for the seamless integration
of different models in the combination method.

A similar work was presented by Li et al. [69], which
combined the piecewise linear model and the high order
phase portrait model for the local and global descriptions
of the FOF, respectively. They first divide the fingerprint
into several regions and predict the orientation in regions
where there are no ridge information or the coherence of
the orientation fields are low by using piecewise first-order
phase portrait model. And then their algorithm computes a
global model using a constrained nonlinear phase portrait
algorithm. It should be noted that the prediction model is
heavily dependent on the detection of SPs. If the SPs cannot
be detected correctly due to bad image quality, the prediction
model may fail. Furthermore, the model could do nothing
in some cases, especially when the two SPs are close to
each other. Li et al. [70] presented a modified algorithm and
gave a thorough stability analysis to deal with such cases.
However the model still demands constraints for each of the
singularities.

Although adding substantial flexibility, these
models [64]–[70] do not explicitly take more of the geo-
metrical structure of fingerprints into account. Led by
the analytic properties of quadratic differentials (QDs),
Huckemann et al. [71] built the model honoring the special
geometry of fingerprints while keeping the model as simple
as possible. In fact, themodel of Sherlock andMonro [63] can
be viewed as the simplest QDs respecting the observed singu-
larities. The QDmodel better fits real FOFs especially for the
fingerprint of the type arch. To apply the quadratic differential
based models, the fingerprints have to be aligned with respect
to the coordinate systems defined by SPs. However, it is not
feasible to establish the required coordinate systems when
some of the SPs are missing. Gottschlich et al. [72] intro-
duced a locally adaptive global model called the extended
quadratic differential (XQD) model to model the FOF. The
major advantage of the XQD model lies in its small number
of parameters, each of which has a simple and obvious
geometric meaning. This method adds a variable number of
local correction points (manually marked) as anchor points
thereby obtaining an extended quadratic differential (XQD)
model. With these points the local orientation field modeled
by a QD can be corrected to better match with the ridge flow
of a fingerprint. One important application of XQD model is
to semi-automatically mark a FOF by an expert.

The modeling methods mentioned above have one com-
mon limitation, i.e., they all require the heuristic knowledge

such as SPs or anchor points in the input fingerprints in order
to refine model descriptions and predict the fingerprint global
orientation field. Thesemethodsmostly depend on the precise
detection of SPs. However the accurate detection of SPs,
in turn, relies on a good estimation of the FOF. As a result,
the problem turns this task into the paradoxical chicken-egg
problem. An accurate extraction of SP is a hard problem for
bad quality fingerprints, and thus these algorithms are not
much useful. For most of aforementioned methods, SPs or
anchor points are often marked manually, which evidently
limits their application in the AFIS.

B. ORTHOGONAL POLYNOMIALS BASED METHODS
To overcome inherent weaknesses of the methods mentioned
above, some global FOF modeling algorithms without any
heuristic knowledge are reported in the literatures. We will
review this category of work in this section.

The problem of FOF modeling can also be solved as a
data fitting problemwhere FOF obtained from a local method
is fitted on some well-defined basis functions. Optimization
algorithms are first applied to obtain the parameters of the
model to fit the data. Then the basis functions and the model-
ing parameters are used to reconstruct the FOF. For example,
Wang et al. [73] proposed a fingerprint orientation model
based on 2D Fourier expansions (FOMFE) in the phase plane.
It first uses a series of 2D Fourier expansion basis functions
to model the FOF. It can be expressed in the following general
form,

f (x, y) =
k∑

m=0

k∑
n=0

λmn [amnbmncmndmn]

×


cos(mνx) cos(nωy)
sin(mνx) cos(nωy)
cos(mνx) sin(nωy)
sin(mνx) sin(nωy)

+ ε (x, y) (13)

where −l ≤ x ≤ l,−h ≤ y ≤ h, m, n, k ∈ N are the order of
the Fourier expansion, ε(x, y) is the residual, v = π/l, ω =
π/h, (amn, bmn, cmn, dmn) are the Fourier coefficients and λmn
is a constant scalar. Then in order to reconstruct the FOF
using the FOMFE, the coarse FOF needs to be estimated by
using the classic gradient-based method. And the FOF is to
be mapped into a new vector field where each element is
denoted as a 2D vector v = (vs, vc) with vs, vc being the
phase functions of cos 2θ and sin 2θ , respectively, and θ is
the ridge orientation angle. And then the Fourier coefficients
are computed by solving a linear least square problem below,

α̂ = argmin
α
‖3α − b‖ (14)

where the matrix 3 is constructed from the (2k + 1)2 basis
functions evaluated at the total M sampling points in the
phase space, the observation vector b is a single column
vector weighted from the initially estimated FOF, and α is the
Fourier coefficient vector. The FOF is reconstructed by the
evaluated parameters using FOMFE. This method starts from
the noisy initial estimation, so the orientation fields cannot be
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recovered in very poor quality areas. Wang and Hu [74] fur-
ther improved the modeling methodology by exploiting the
predictive capability of mathematical modeling to reconstruct
the full orientation fields from partial fingerprints.

Tashk et al. [75] pointed out that the FOMFE did not
work perfectly in fingerprints areas with high curvature
and poor quality. They proposed a modification of fin-
gerprint orientation model based on 2D Fourier expansion
(M-FOMFE) to address these drawbacks. The squared gra-
dient matrix named coherence matrix is used to tackle the
uncertainty of each ridge orientation and improve the accu-
racy of FOMFE. The elements of coherence matrix are large
for ridges of clear ridge pattern and are small for noisy regions
and non-ridge regions. The coherence matrix elements are
considered as weight values of the uncertainty of ridge orien-
tations, and they are introduced into original FOMFE to cor-
rect the error of ridge orientation estimation. Similar to [75],
Tao et al. [76] pointed out that the FOMFE was sensitive to
abrupt changes in orientation field and it did not differentiate
the impacts from patches that were of different quality. Hence
they built a FOF model based on weighted 2D Fourier expan-
sion (W-FOMFE) to deal with these two drawbacks. They
use the Harris-corner strength (HCS) [77] to remove abrupt
changes in FOF, and then incorporate the normalized HCS
as weighted value into original FOMFE. The weighted 2D
W-FOMFE model demonstrates better results to reconstruct
FOF by assigning higher weights to uniform and linear ridge
valley flow and lower weights to the areas near SPs. However
it cannot well handle the poor quality areas.

Fourier approximations substantially reduce the problem
of ill conditioned equation systems, but are slow to com-
pute and evaluate. Furthermore, they are still subject to
error for higher terms. On the other hand, the trigonometric
functions naturally obey the property of being orthogonal.
The trigonometric polynomial can be used to fit the dis-
crete orientation data obtained by the local estimation [73].
Ram et al. [78], [79] presented a fingerprint ridge orientation
model based on Legendre polynomials. The authors propose
to independently model the sine and cosine data of the given
original orientation field O computed by gradient-based
method. Let a and b be the parameters of a Legendre expan-
sion of the sine and cosine data respectively. Then, the orien-
tation field can be computed in the following:

Õ =
1
2
arctan

(
ϕaT

ϕbT

)
(15)

where ϕ represents the set of basis functions based on Legen-
dre polynomials. The optimal parameters â and b̂ for the sine
and cosine approximation can be computed by minimizing
the following non-linear function:

(â, b̂) = argmin
a,b

ω

(
sin
(
1
2
arctan

(
ϕaT

ϕbT

)
−O

))2

(16)

where ω is the diagonal weighting matrix containing the
weights for every coordinates. It is computed using finger-
print segmentation, ω = 0 for background and ω = 1

for foreground pixels. To minimize the cost function,
Ram et al. [78] employed a simple non-linear optimization
algorithm based on line search. In addition, a more standard
algorithm called the Levenberg Marquard algorithm (LMA)
is adopted to solve the problem described in [79, eq. (16)].

Finally, the reconstructed FOF can be obtained using

Ô =
1
2
arctan

(
ϕâT

ϕb̂T

)
(17)

To smooth the original FOF, Tashk et al. [80] employed
a combination of filtering- and model-based orientation
smoothing methods to reconstruct FOF. They employ a Gaus-
sian filter to smooth the original FOF first, and then recon-
struct the FOF by using one of the orthogonal polynomials
such as
Legendre and Chebyshev type I or II, based on the results
obtained at the filtering-based stage. The algorithm adap-
tively selects the best orthogonal polynomials (Legendre,
Chebyshev type I or II) for reconstructing FOF using its basis
functions according to the following criteria:

ϕ =


Chebyshev I, if |Con · Coh| ≥ UB
Chebyshev II, if UB> |Con · Coh| ≥ LB
Legendre polynomials, if |Con · Coh| < LB

(18)

whereCoh andCon are the coherence and consistency param-
eters, respectively. The lower bound (LB) and the upper
bound (UB) can be determined through trial and error by
experimenting on fingerprint image databases. The authors
did not explain why these different orthogonal polynomials
were considered. They only simply tested it, without giving
any theoretical explanation. In addition, it should be noted
that this is a very computationally complex algorithm.

In [79], the LMA was used to minimize the modeling cost
function in order to preserve SPs. This method is positively
advantageous in preserving SPs, but at a cost of high com-
putation load. In addition, false SPs could be kept uninten-
tionally. A major problem in FOF modeling is to remove the
noise but preserve the singularity points in the meantime.
A higher order polynomial model is usually advantageous
in singularity points preservation, but tends to over-fit the
data and keeps some noisy structures. In contrast, a lower
order polynomial model performs better in noise removal, but
at the cost of larger error in singularity points preservation,
Fig. 3 depicts this situation as an example [82]. Aiming at
this problem, Jirachaweng et al. [81] modeled the preliminary
FOF first using a lower order Legendre polynomial to capture
the global orientation pattern, then the regions with SPs were
dynamically refined using a higher order Legendre polyno-
mial. The singular point regions are automatically detected
through the analysis on the orientation residual field between
the original FOF and the preliminary FOF reconstructed by
the lower order Legendre polynomial. In fact, this method has
two models, one for smooth region and the other for region
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with singularities. A good balance between noise suppression
and SPs preservations has been achieved by the method.

Liu et al. [82] chose weighted discrete cosine trans-
forms (DCT) as basis functions to reconstruct FOF. Instead
of using a fixed order, they combine the DCT basis atoms
of low and high orders with weights evaluated by singularity
measurements. Large weights are assigned to the DCT atoms
of high orders for reconstructing the orientations in singular
regions. The weighted DCT model is further extended for
partial fingerprints with a large amount of noisy or incomplete
information, by gradually and iteratively expanding the orien-
tations from known to unknown regions. By making full use
of the basis atoms of low and high orders, the proposed model
is advantageous in preserving the true orientations of singular
regions during the process of noise removal. The DCT basis
functions at the frequencies (u, v) are computed as follows:

ϕu,v (m, n) =
Cu × Cv
√
PQ

cos
(
(2m+ 1) uπ

2P

)
× cos

(
(2n+ 1) vπ

2Q

)
(19)

in this expression,

Cu =

{
1, if u = 0
√
2, otherwise

Cv =

{
1, if v = 0
√
2, otherwise

(20)

where 0 ≤ m ≤ P − 1, 0 ≤ n ≤ Q − 1, 0 ≤ u ≤ U −
1, 0 ≤ v ≤ V − 1, U and V denote the order of DCT model.
The DCT basis vectors are generated from the evaluations of
basis functions at all coordinates of FOF. The FOF can be
reconstructed by weighted DCT model:

Ô (m, n) = Ôl (m, n)+ ωÔh (m, n) (21)

where Ôl (m, n) and Ôh (m, n) represent the orientation ele-
ments of patch (m, n) in FOF reconstructed by the DCT
basis functions of low and high orders, respectively; ω is
the weight assigned to Ôh (m, n). The weight ω related to a
singularity measurement which evaluates howmuch the local
orientations are close to singular regions. It can be computed
using complex filters.

Weights are assigned based on probable locations of SPs
in [82]. However, it cannot handle the situations when SPs are
absent (e.g. in an arch type fingerprint) or spurious SPs
are obtained due to lager noise. In order to preserve the
genuine FOF in the areas containing uniform flow and to
accurately reconstruct the FOF in poor quality areas, Gupta
and Gupta [83], [84] proposed a weighted FOF modeling
algorithm based on orthogonal basis. In [83], the weighted
FOF model was built based on Legendre basis, and it was
built based on Fourier basis in [84]. However, the authors did
not give a convincing explanation why the basis was selected.
The weights are assigned according to the patch quality
evaluated by symmetric filters. Gupta and Gupta [83], [84]
used a variational approach to regularize the FOF in first.
It can successfully preserve the genuine FOF in the areas
containing uniform flow and accurately reconstruct the FOF

in bad quality areas. However, sometimes it may generate
spurious FOF in SPs close-by areas. So, next they employed
weighted FOF modeling based on Legendre/Fourier basis to
resolve this problem. Also, Gupta and Gupta [85] used the
similar method to estimate the FOF for vivificating the slap
fingerprint. It is slightly different from FOF model described
in [83] and [84], because it reconstructs FOF only using
polynomial basis without the use of any other weights.

The Legendre and Chebyshev are both classical continuous
orthogonal polynomials, and their basis functions do not
exactly satisfy the orthogonal properties under the condition
of the finite discrete data set. Therefore, the coefficient matrix
of the normal equations used in these papers [78]–[81], [83]
were actually not standard orthogonal matrix, and they were
likely to be nonsingular matrix in some cases. If this is the
case, the method of a weighted pseudo-inverse technique for
least squares approximation proposed in these papers will
not be applicable. In addition, the high computational cost of
these methods limits their usage in large data sets because the
authors try to fit directly the original point-gradient vectors
by using polynomial and non-linear technology to approxi-
mate the parameter vectors of the polynomial. There are also
no information of execution time reported by these papers.
To address these issues, Bian et al. [86] modeled the FOF
by using orthogonal polynomials in two discrete variables.
The authors build the set of basis functions based on the 2D
discrete orthogonal polynomials which are composed by two
sets of 1D discrete basis functions that satisfy the orthogonal
property under the condition of the finite discrete data set.
A 1D discrete complete orthogonal basis is denoted as the
set of polynomials Pi (x) (i = 0, 1, 2, · · · , k), and the basis
function satisfies

n∑
m=0

Pi (xm)Pj (xm)

{
6= 0, i = j
= 0, i 6= j for i, j ≤ k < n

(22)

where xm(m = 0, 1, 2, · · · , n) is the finite 1D point set, and
the discrete orthogonal polynomials are computed using the
so-called three-term recurrence relation, as described below:

P0 (x) = 1
P1 (x) = (x − α1)P0 (x)
Pi+1 (x) = (x − αi+1)Pi (x)− βiPi−1 (x)

(i = 1, 2, · · · , k − 1)

(23)

The coefficients αi+1 and βi can be obtained as follows:

αi+1 =

n∑
m=0

xmP2i (xm)

n∑
m=0

P2i (xm)
, βi =

n∑
m=0

P2i (xm)

n∑
m=0

P2i−1 (xm)
(24)

Considering the 1D discrete polynomials Pi (x) and Qj (y)
in the two variables x and y, the 2D discrete orthogonal basis
functions can be obtained [86]:

Tij (x, y) = Pi (x)Qj (y)

{
0 ≤ i ≤ M
0 ≤ j ≤ N

(25)
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FIGURE 3. The orientation fields reconstructed with the discrete cosine transforms models of different orders: (a) order = 2,
(b) order = 4, (c) order = 6, (d) order = 8, (e) order = 10 and (f) order = 12.

In this expression, Pi (x) andQj (y) are 1D discrete orthog-
onal polynomials of order M and N respectively. The recon-
structed FOF can be obtained using

Ô (x, y) =
M∑
i=0

N∑
j=0

âijPi (x)Qj (y) (26)

The optimal parameters âij can be computed by the best
quadratic approximation.

In addition to the above work, there are also some other
FOF models which do not require prior knowledge. For
example, papers [87], [88] used a class of spatial smoothing
priors and a novel Bayesian formulation. Dass [87] proposed
a Markov random field (MRF) model for the reliable compu-
tation of FOF. The FOF is modeled in a Bayesian framework
and fingerprint SPs are described using SPs template models,
and parametric template models are used to extract SPs.
Joint extraction of the FOF and SPs has the advantage of
dynamic updating of features and the ability to detect previ-
ously missed SPs. However, a false singular point detected
in the first iteration of the joint update will be reinforced
in the subsequent iterations. In addition, this approach only
contains the quality and smooth pairwise priors. Therefore,
it cannot recover the FOF in those areas with bad quality. Hou
et al. [88] proposed a framework for modeling the fingerprint
orientation field based on the variational principle, where
the orientation pattern can be estimated through solving the
associated Euler–Lagrange equation. The presented model

included the term of data smoothness and the term of data
fidelity for singularity preservation. Similar to [81], weights
are assigned in this algorithm using the saliency of SPs.
It assigns low weights in smooth areas and high weights in
SPs areas. Different from the methods that approximate the
FOF using some function through regression, the variational
method needs no explicit form of the approximated function.

As a summary, the success of these methods heavily relies
on the accurate local FOF estimations and proper weight
assignment. Various approaches and strategies are proposed
for improving the accuracy and reliability of local FOF esti-
mation and weights computation. These proposed algorithms
do not require any prior knowledge of SPs and they are found
to be more practical in AFIS than those algorithms based on
heuristic knowledge.

IV. LEARNING-BASED METHODS
Despite the many research efforts made on the estimation
of FOF using mathematical and model building methods,
there are still many challenges. One of the challenges is to
simultaneously smooth out noise and preserve the orientation
information in SPs regions. The learning-based methods have
demonstrated their advantages to balance the contradictions
by adequately utilizing the prior knowledge of various orien-
tation patterns.

Nagaty [90] proposed a learning based FOF estimation
method using a hierarchical neural network. Two separately
trained neural networks are connected in series: a back
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propagation neural network (BPNN) is used for computing
feature vectors of fingerprint patches with the same size of
16 × 16, then these feature vectors of fingerprint patches are
grouped into distinct orientation classes by a self-organized
feature map (SOM) neural network using an unsupervised
learning strategy. The patches that submit to the first network
have to be binarized. It should be noted that the smaller
the granularity of orientation divisions (e.g. from four of a
180 degree circle to eight of that circle), the more accurate
the representation of a FOF, but the higher the computation
cost. These may influence the performance of the proposed
algorithm. To correct falsely estimated orientations in FOF,
Zhu et al. [91] designed a systematic scheme for estimating
FOF. The fingerprint is firstly divided into unoverlapped
patches of size 15 × 15 and the original FOF is estimated
by a gradient-based method. And then a neural network is
utilized to correct the falsely estimated patch orientations
according to their surrounding correct orientations. In their
systematic scheme the correct orientations and incorrect ori-
entations are distinguished by neural network and the orienta-
tion correctness is learned by a BPNN with a 11-dimensional
feature vector. Unlike [90] and [91], Ji and Yi [92] used
neuron pulses of pulse coupled neural network (PCNN) to
estimate the FOF. Similar to [90], this method also firstly
pre-processes the original image so as to obtain a series of
valid binary fingerprint patches with the same size of 16× 16,
and then these patches are submitted to PCNN to determine
their optimal ridge orientation. By comparing the projective
distance variances along four orientations of the optimal ridge
orientation, the orientation related to the minimal variance is
determined as the initial patch orientation. Finally, the initial
FOF is improved by a dual correction scheme. Moreover,
Sahasrabudhe and Namboodiri [94] attempted to use two
continuous restricted Boltzmann machines (CRBMs) to learn
various types of ridge patterns by training a neural network.
The trained CRBMs contain representations of the data used
for training and are used to approximate the input FOF that
have been estimated by a gradient method. The corresponding
output can be interpreted as the best to the learned representa-
tions. They demonstrated the advantage of using continuous
restricted Boltzmann machines in correcting initial FOF.

Both of the methods discussed above evaluate the cor-
rectness of ridge orientation based on neural network. Their
performances depend heavily on the data used in the learning
phase. A MRF model with small neighborhood or context is
able to exploit only limited prior knowledge about fingerprint
structure [89] and thus cannot deal with fingerprints of poor
quality. To improve FOF estimation by MRF model [87],
a global mixture model of orientation fields learned from
training fingerprint examples and the gradient information
of fingerprint was incorporated into a MRF [93]. Lee and
Prabhakar [93] firstly constructed a MRF and then inferred
the FOF from the MRF model. This method bears some
resemblance to [87] in a sense, it also admits a Markovian
interpretation. Put slightly differently, their algorithm incor-
porates a global mixture model of FOF learned from training

examples and thus yields more accurate FOF. Ram et al. [95]
proposed another statistical model called active fingerprint
ridge orientation model (AFROM) that iteratively fits the
FOF. This approach consists of an off-line subspace learn-
ing stage and an on-line stage for feature projection. The
FOF is represented by a vectorially linear regression using
Legendre Polynomials. The variability among the global ori-
entation patterns is learned using a training set. Its idea is
to perform PCA over a dataset of vectors corresponding to
feasible parameters for a given globalmodel and then, starting
from an original FOF, find the nearest legal patterns through
projection, optimization and back-projection. In proposed
model, the parameters are limited to a previously learned
linear subspace during the optimization procedure, and the
objective function is optimized in each iterative process and
results in a high time cost. Zhang et al. [96], [97] employed an
adaptive orientation model to separate latent overlapped fin-
gerprints. In their applications the reconstructed FOF is used
to compare and then adjust the initial FOF, and it only needs
to reconstruct the approximate fingerprint ridge flow. So they
only derived the rough FOF models and did not optimize
the objective function during the iterative process to obtain
the accurate model parameters, and only close form solutions
were used. Both these strategies reduce the computation time
cost.

Inspired by spelling correction techniques used in natural
language processing, Feng et al. [98] proposed a novel FOF
estimation algorithm based on prior knowledge of fingerprint
structure. We name it as global dictionary (GlobalDic) as
compared to localized dictionaries (LocalizedDic) proposed
later by Yang et al. [99]. The proposed algorithm consists
of an offline dictionary construction stage and an online
orientation field estimation stage. In the offline stage, a set of
good quality fingerprints of various pattern types is manually
selected and their orientation fields are used to construct an
orientation patch dictionary that represent the prior knowl-
edge of real fingerprints. In the online stage, the original
FOF is estimated by local Fourier analysis method and then
noisy orientation patches in original FOF are replaced by
the closest orientation patches in the dictionary by dictionary
lookup and context-based correction, and the FOF is auto-
matically estimated. To correct the errors in the initial FOF,
for each initial orientation patch, a list of candidates from
the dictionary which might be the true orientation patch is
found by a dictionary lookup operator, and then the contextual
information is used to determine a single candidate for each
patch. The final FOF is obtained by finding the combination
of candidates that minimizes an energy function E (r):

E (r) = Es (r)+ ωcEc (r) (27)

where Es (r) denotes the similarity term, Ec (r) denotes the
compatibility term, and ωc is the weight of compatibil-
ity term. Two factors are considered in the design of the
energy function: one is the similarity between the refer-
ence orientation patches and the corresponding initial ori-
entation patches, and the other is the compatibility between
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neighboring reference orientation patches. In this method, the
initial FOF was obtained by a conventional approach which
itself was sensitive to noise. Therefore, this approach may
not be useful when the latent is very noisy or overlaps with
strong background noise. The use of prior knowledge in the
GlobalDic is helpful for correcting many non-word errors.
However, it cannot correct the real-word errors because the
spatial distribution of orientation patches is not taken into
account, i.e., the orientation patch is real but its presence
at that location is impossible, as shown in Fig. 4(c). The
FOF estimated by short time Fourier transform (STFT) [52]
in Fig. 4(b) contains many non-word errors as marked by the
red box, while the FOF estimated by GlobalDic in Fig. 4(c)
contains real-word errors as marked by the yellow box.

FIGURE 4. Comparison of FOF estimation extracted by three different
algorithms; (a) original latent fingerprint; (b) STFT in [52]; (c) GlobalDic
in [98]; and (d) LocalizedDic in [99].

To overcome the limitations in [98], instead of a single
dictionary, Yang et al. [99] constructed a set of localized
dictionaries based on the fact that ridge orientations in dif-
ferent regions of fingerprints have different characteristics.
Therefore, it is improper to estimate the whole FOF using
a single dictionary. They introduced a stronger prior knowl-
edge of fingerprints in [99]. Each dictionary in LocalizedDic
contains only orientation patches which are likely to appear
at the corresponding location. It aims to reduce both non-
word errors and real-word errors in estimating FOF, as shown
in Fig. 4(d), neither of the two types of errors is present in
the FOF. Obviously, The FOF estimated by LocalizedDic is
much better than that reconstructed by GlobalDic due to the
introduction of position-dependent dictionaries. The proce-
dure of the algorithm in [99] is the same as the one in [98]
except that the pose of the fingerprint needs to be known
in [99]. It is a big obstacle to the LocalizedDic. A probabilistic
voting algorithm is used to estimate fingerprint pose. But it is

inevitable that the performance of this method highly depends
on the fingerprint pose estimation. In addition, similar to [98],
the registration step again is based on the initial FOF which
is not reliable.

Jain and Cao [100] summarized the role of the two types
of dictionaries, i.e. GlobalDic and LocalizedDic, as repre-
sentations of prior knowledge about fingerprint patterns, and
showed how these dictionaries can be used in latent seg-
mentation and enhancement. GlobalDic and LocalizedDic
algorithms both show promising performance in correcting
and smoothing FOFs. However, both GlobalDic and Local-
izedDic may encounter inaccurate estimations around sin-
gularities, as shown in Fig. 5 (orientations different from
ground truth by more than 20 degrees are marked in red).
Chen et al. [101] extended the GlobalDic to a multi-scale
version, we call it as MultiSDic. The motivation is that small
scale dictionary is more accurate while large scale dictionary
is more robust against noise. The proposed algorithm also
includes an off-line dictionary construction module and an
on-line estimation module. In off-line stage, the separate dic-
tionaries for each scale are learnt by using the corresponding
orientation patches of the same scale, and the process is
similar to [98]. In the on-line stage, similar to [98] and [99],
the FOF is estimated by three main steps, namely, initial FOF
estimation, multi-scale dictionaries lookup and context-based
correction. But unlike [98] and [99], after dictionary lookup,
the FOF reconstruction is formulated as a multi-layer MRF
model and then it can be optimized by minimizing an energy
function E(r) defined as

E (r) = Es (r)+ ωcnEcn (r)+ ωclEcl (r) (28)

where Es (r) denotes the similarity term, Ecn (r) denotes the
compatibility between neighboring candidate patches and
Ecl (r) refers to the compatibility across different layers. ωcn
and ωcl are the weights of compatibility terms. The proposed
method integrates the different scales of orientation patches
information into multi-scale dictionaries and thus improves
the accuracy of orientation estimation.

GlobalDic, LocalizedDic and MultiSDic are based on ori-
entation patches and they ignore the ridge structure informa-
tion. Instead of using orientation patch dictionaries, the ridge
structure dictionary (RidgeSDic) are learnt from a set of high
quality fingerprint patches directly and then used to recover
the fingerprint ridge structure from noisy patches [102].
In order to construct a reliable and robust ridge structure
dictionary, a large number of high quality fingerprint patches
are selected to build up a training set. Constructing the
RidgeSDic involves the solution of following optimization
problem

D = argmin
D,0
‖P− D0‖2F

s.t ∀k ‖γk‖0 ≤ L, k = 1, 2, · · ·K (29)

where P is a training set, K is the number of atoms of
dictionary, 0 is the sparse representation matrix, γk is the
kth column of 0. The K-SVD algorithm [103] is employed to
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FIGURE 5. FOF of a latent fingerprint obtained by (a) STFT in [52]; (b) GlobalDic in [98]; and
(c) LocalizedDic in [99]; (d) manual method (ground truth), respectively.

solve the optimization problem. Once the dictionaryD is con-
structed, the reconstructed patch p̂ for a given texture image
patch p can be obtained by solving the following optimization
problem using orthogonal matching pursuit [104].

γ̂ = argmin
γ
‖p− Dγ ‖22 s.t ‖γ ‖0 ≤ L (30)

Generate the reconstructed patch p̂ according to the optimal
solution γ̂ to Eq. 30

p̂ = Dγ̂ (31)

The orientation field of reconstructed patch p̂ can be obtained
by using the approach described in [2]. Quite evidently,
the proposed algorithm in [102] is a fingerprint enhancement
technology based on dictionary learning over sparse represen-
tation in essence. It firstly reconstructs the fingerprint patch
using RidgeSDic, and then estimates the orientation field
using traditional method. Liu et al. [105] proposed a similar
FOF estimation algorithm based on dictionary learning and
sparse coding. But the algorithms in [102] and [105] are
different in nature from dictionary learning to orientation
estimation. In dictionary learning stage, the approach used
in [105] is similar to [98]. A large number of high quality
fingerprint patches are selected, and all patch orientations
are estimated by the traditional gradient based method and
they are used to build the training set. An initial redundant

dictionary is constructed, a greedy algorithm is employed
to select a set of reference orientation patches from training
set, and thus construct the dictionary D. The orientation
estimation procedure in [105] is similar to [102], where the
fingerprint texture component is obtained by decomposing
the original fingerprint with the total variation model. Instead
of searching the similar orientation patch from the dictio-
nary [98], Liu et al. [105] modeled the fingerprint orientation
estimation as a sparse coding and reconstruction problem
over the orientation dictionary, we call it as SparseCod. It can
be described as the following optimization problem

γ̂ = argmin
γ

{
‖p− Dγ ‖22 + λ ‖γ ‖1

}
(32)

where λ is a regularization parameter which balances the
trade-off between the sparsity of the solution and the fidelity
of the approximation to P. The estimated orientation patch
p̂ can be obtained according to Eq. 31. To capture the prior
knowledge of various orientation patterns, multi-scale dic-
tionaries are learned for iterative estimation of local ridge
orientations on the corresponding scale texture image.

However, the above dictionary-based methods have a com-
mon drawback that the dictionaries learnt from high quality
fingerprints may not work well on poor quality fingerprints
(see Fig. 6 (b) and (c)). Therefore, an intuitive idea is to
directly learn orientation fields on large number of fingerprint
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FIGURE 6. A comparison of latent FOF estimated by different algorithms.
(a) a latent fingerprint; (b) GlobalDic in [98]; (c) RidgeSDic in [102];
(d) CNN in [106] and [107].

patches of poor quality. Cao and Jain [106], [107] proposed
a convolutional neural network (CNN) based FOF estimation
algorithm by posing orientation field estimation of a latent
patch as a classification task. They classify the orientation
field of a latent patch as one of a set of representative orien-
tation patterns using a CNN. CNN has the capability to learn
distinctive features directly from the input images. The FOF
estimated from CNN generally performs better than dictio-
nary based methods (see Fig. 6(d)). In the proposed method,
target labels for the classes are a selection of 128 character-
istic orientation fields, which have to be carefully selected
in advance. However, the quality of pattern of target labels
is directly determined by the quality of training database,
so the reliability of dictionary largely depends on the training
database. Schuch et al. [108] proposed to train CNNs as
a regression to estimate the FOF, namely the ConvNetOF.
Compared to Cao et al.’s classification approach [106],
regression is a more natural approach for the estimation
of continuous values (The local ridge orientation in finger-
print image is a continuous value). In addition, the pro-
posed method doesn’t need to select the target patterns of
characteristic orientation fields. Further, Schuch et al. [109]
incorporated Deep Expectation into CNN and trained a
CNN to estimate FOF called DEX-OF. Compared to Local-
izedDic and ConvNetOF, DEX-OF has better performance.
Tang et al. [110] first transformed traditional FOF estima-
tion method to convolutional kernels and integrated it as
shallow network, and then expanded it to the deeper ver-
sion using some convolutional layers to enhance its repre-
sentation ability. Qu et al. [111] recently proposed a deep
regression neural network (DRNN) to estimate FOF. Outputs
of the network are directly the predicted orientations. The
authors claimed that the proposed algorithm had exhibited a
higher accuracy and faster training speed. Turroni et al. [112]

implemented and tested several well-known FOF estimation
methods and proved that parameter optimizations, pre- and
post-processing stages could remarkably improve accuracy of
the baseline methods on bad quality fingerprints. The authors
proposed an adaptive method which selectively exploited
accuracy of local-based analysis and learning-based global
methods, thus could obtain more reliable FOF from poor
quality fingerprint.

Learning-based methods have shown improvements of the
performance in FOF estimation, especially when the tradi-
tional methods fail to work in the cases of poor quality finger-
prints (such as latent fingerprints). However these methods
also have inherent limitations: 1) the dictionaries are learnt
from the initial orientation fields which themselves are not
reliable; 2) most of algorithms rely on the high quality finger-
prints to learn dictionaries, and they may fail on poor quality
fingerprints; 3) Human interventions are often required dur-
ing the process of algorithms executions; 4) the approaches
normally have a high computational complexity.

V. PERFORMANCE EVALUATIONS
This section is devoted to performing experimental evalu-
ations on the most important FOF estimating algorithms.
We expend a great deal of effort trying to provide a compar-
ative study between these methods. The FOFs estimated by
these algorithms are evaluated via SPs detection, fingerprint
matching, and accuracy of FOF estimation.

A. SINGULAR POINTS DETECTION
The SPs are an important feature in characterizing the finger-
print structure, thus SPs detection is an important indicator
to measure FOF estimation performance. The public finger-
print verification competition database FVC2004 DB1_A is
used to analyze the performance of the selected algorithms.
It contains 800 fingerprint images acquired by an optical sen-
sor under uncontrolled environment that may result in poor
quality fingerprints. A Poincare index algorithm is used to
detect the SPs. Performance of SPs detection can be evaluated
by the following metrics:

Precision =
TP

TP+ FP
(33)

Recall =
TP

TP+ FN
(34)

F-measure =
2× Recall× Precision
Recall+ Precision

(35)

where TP, FP, and FN represent true positive (the number of
correctly detected SPs), false positive (the number of spuri-
ously detected SPs), and false negative (the number of lost
SPs), respectively.

Precision measures the rate of detected SPs that are the
correct ones. Recall describes the proportion of correctly
detected SPs. F-measure is the trade-off between Precision
and Recall. Well performed FOF estimation will be indicated
by good SPs detection where high values of Precision, Recall
and F-measure are achieved. In fact, the average localization
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FIGURE 7. A comparison of SPs detection by various algorithms. (a) Precision; (b) Recall; (c) F-measure; (d) ALError.

error (ALError) is also used for evaluating the performance
of SPs detection, and the smaller the better. The localization
error of a singular point is given by the Euclidean distance
between its detected location and the true location, i.e. the
manually annotated location.

Fig. 7 shows a group of comparison between the selected
methods, and they are all based on mathematical models.
It can be found that the performance of the core point detec-
tion is better than delta point detection in all algorithms.
Tao et al. [76] used the HCS to remove isolated noises in
orientation field, and further incorporate the normalized HCS
as weighted value into FOMFE [73] to take into account the
quality difference of the patches. We can see from Fig. 7 that
the performance of the method presented in [76] is better
than that in [73]. Hou et al. [88] used the saliency of singular
points as weights and its value increases with respect to the
increase of the saliency. It can obtain better performance
than the methods based on orthogonal polynomials in most
cases. Further, we can find that the method in [83] has a
better performance than the two methods in [73] and [76].

It illustrates that the higher weights should be assigned to
the areas that is closer to the SPs. In addition, the lower
weights should be assigned to the areas with lower quality,
and thus improve the reliability of FOF estimation and reduce
the number of false positives. The algorithm proposed in [84],
by contrast, shows a better performance. The main reason
may be that both the regularization and weighted modeling
are used in [84].

B. FINGERPRINT MATCHING
As described in Section 1, FOF estimation plays a key role in
AFIS. The accuracy of an FOF estimation can largely affect
the final fingerprint matching performance. The final perfor-
mance of an AFIS is assessed by two indices: false match
rate (FMR) and the false non-match rate (FNMR). The FMR
index is defined as the general percentage of an imposter
being falsely matched by the system. The performances of
some FOF estimation algorithms have been reported in terms
of the corresponding equal error rate (EER), where the FMR
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is equal to the FNMR. The lower the EER, the better the
performance by the AFIS. In real applications, the AFIS often
operate far from the EER point by decreasing the FMR in
order to assure a high level of security. However, decreasing
the FMR will cause the FNMR to increase. It is therefore not
surprising that the performance of an AFIS is often evaluated
using the indicator FMR100, which is defined as the value of
the FNMR when FMR is 1%. Table 2 summarizes the match-
ing performance for various FOF estimation algorithms.

Mathematical models-based methods in general are supe-
rior to gradient-based methods from the fingerprint matching
point of view. Mathematical models-based methods have
gained significant improvements over the FOF estimated by
gradient-based methods. For the FVC2000 DB2-A database,
we observe that there is significant improvement to finger-
print matching using proposed method [80] in comparison
to competing methods in [43]. This is due to the fact that
this algorithm in [80] can select adaptively the best orthog-
onal polynomials (Legendre, Chebyshev type I or II) for
reconstructing FOF. For the FVC2002 DB1-A, the model-
based algorithms can obtain significant improvements from
the coarse FOF estimated by gradient-based. The algorithms
in [67] and [68] has reduced the FMR100 to only a quarter of
that with gradient-based methods [21], [43]. The algorithm
in [73] further reduces the FMR100 by about 60%. For the
FVC2004 DB2-A the proposed method [81] is better at deliv-
ering the matching performance than the method proposed
in [79]. The EER is 6.280% by the method proposed in [79].
By using the approach proposed in [81], thismeasure could be
reduced to 5.410%, achieving a relative improvement of 14%.
The FOF estimation method [81] play a more effective role
in preserving true SPs. For the FVC2004 DB3-A, the EER
is 2.28% using the approach [73]. The EER is reduced to
1.81% by using the method proposed in [79], giving a relative
improvement of 21%. There is a significant improvement on
SPs preservation in the region with presence of true SPs [79],
but it could fail to distinguish some false SPs due to noise
from the true ones. Consequently, some structures around
these false SPs are recovered as well, leading to the degra-
dation of the matching accuracy. For the FVC2006 DB2-A,
since the algorithm proposed in [112] has both characteristics
of the local-based analysis technique and the learning-based
globalmethods, thismethod achieves better performance than
others.

C. ACCURACY OF FOF ESTIMATION
The accuracy of an orientation field estimation algorithm
can be measured by average root mean square deviation
(RMSD) [112] which is defined as

RMSD (D,G) =

√√√√∑
(i,j)∈F1ϕ

(
θdi,j, θ

g
i,j

)2
|F|

(36)

where G is the ground truth FOF, F is the valid orientation
elements of G which belongs to fingerprint foreground, |F|

TABLE 2. Performance comparison of different FOF estimation
algorithms on FVC databases.

is the total amount of elements in F, and 1φ (θ1, θ2) is the
difference between angles θ1 and θ2.

Given a dataset X of n fingerprints with the corresponding
ground truth FOFs, the average RMSD can be denoted by

AvgErr (X) =
1
n

∑
(D,G)∈X

(RMSD(D,G)) (37)

The latent database NIST SD27 [114] is used for com-
parison. This database contains 258 latent fingerprints which
are classified into three different qualities, i.e. Good, Bad
and Ugly. The number of latent fingerprints in three cate-
gories are 88, 85 and 85, respectively. The ground truth FOFs
of the NIST SD27 and manually marked region of inter-
est (ROI) were provided in [98]. The performances of FOFs
estimation on the NIST SD27 latent fingerprint database are
reported. Average RMSDs of the nine algorithms (STFT [53],
FOMFE [73], LocalizedDict [99] GlobalDict [98], man-
ually marked pose (ManuMark) [99], MultiSDic [101],
RidgeSDic [102], SparseCod [105], and CNN [106], [107])
are computed both for the overall NIST SD27 database and
three subsets belonging to three quality levels (Good, Bad
and Ugly). Fig. 8 gives the experimental results of the var-
ious methods for visual inspection. Table 3 summarize the
accuracy of FOF for various methods.

From Fig. 8 and Table 3, we can find that the learning-
based algorithms have obvious advantages in estimating
bad quality fingerprints orientation fields. The Localized-
Dic (manually marked pose) [99] obtains a slightly better
result than LocalizedDic (automatically marked pose) [99].
Unsurprisingly, MultiSDic [101] achieves better accuracy
than GlobalDic [98] because it integrates information from
different scale orientation fields. SpareseCod [105] achieves
lower RMSD than the other algorithms in [52], [73], [98],
and [102]. The LocalizedDic [99], which applied the local-
ized dictionaries to make full use of the prior knowl-
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FIGURE 8. A comparison of RMSDs of various FOF estimation algorithms
on NIST SD27 latent database.

TABLE 3. RMSDs of different FOF estimation algorithms on NIST
SD27 latent database.

edge of fingerprints, obtains lower RMSD than SpareseCod.
However, the pose of latent fingerprint needs to be reliably
estimated in LocalizedDic. As reported in [99], the pose
estimation is computationally expensive in both the offline
and online stages. SpareseCod does not require the estimation
of fingerprint pose, which can save more computation cost.
CNN [106], [107] outperforms the other eight algorithms on
latents of different quality levels, and it is even slightly better
than LocalizedDic [99], where manually marked pose is used.

VI. CONCLUSIONS
In this paper, we have given a comprehensive survey of the
methods on FOF estimation. We have collected and carefully
studied the most relevant works in the scientific literature
about algorithms and methods used in fingerprint orientation

field estimation. We first described the background in this
field. Then, we studied the main technologies of the FOF esti-
mation algorithms, as well as the underlying strategies which
fundamentally characterize the distinction between differ-
ent methods: gradient-based methods, mathematical models-
based methods and learning-based methods. Finally, we gave
an insight into various methods and also highlighted their
advantages and limitations. In our opinion, discovering and
explaining benefits and limitations of the currently used FOF
estimation methods is of essential importance in fingerprint
identification, because without a full understanding of the
nature of these methods, it is difficult to identify the most
essential FOF estimation issues that remain to be solved.

These literatures discussed in this paper containmany good
ideas related to FOF estimation, some of them are quite
similar and even overlapped. In this paper, we have made
an in-depth investigation and analysis, together with empir-
ical studies, to some commonly known methods, trying to
explain and summarize the differences observed in the related
literatures. However, this task is difficult due to the fact that
there lack detailed descriptions to the relevant algorithms,
and it is extremely difficult to evaluate a given method fully,
especially when the information relating to the values of the
parameters involved have not been clearly described by the
authors. However, the systematic quantitative evaluations of
different methods is essential, and a continued research activ-
ity in this area will eventually introduce the FOF estimation
benchmark, which will provide both the database and the
testing protocol. If we can achieve the target, it has great sig-
nificance for the development of FOF estimation techniques
and technologies.

Most of the FOF estimation methods introduced in the
last decade are learning-based. One of the reasons to expect
learning-based algorithms to perform well is the sheer
amount of research done on this approach. Some of them
have exhibited a good robustness against poor-quality finger-
prints, such as latent fingerprints, where none of the tradi-
tional algorithms, such as gradient-based and mathematical
models-based can compete in this aspect. Of course, there
does not exist a perfect solution. The traditional algorithms
are sufficient enough to be embedded into an AFIS for many
real applications when the fingerprints taken by the AFIS are
of satisfactory quality. But, most learning-based algorithms
are too computational intensive to be fitted into an existing
AFIS for real applications. We believe this could be the next
challenge for developing future FOF estimation techniques,
and substantial research still needs to be done on this subject.

REFERENCES
[1] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of Finger-

print Recognition. London, U.K.: Springer-Verlag, 2009.
[2] L. Hong, Y. Wan, and A. Jain, ‘‘Fingerprint image enhancement: Algo-

rithm and performance evaluation,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 20, no. 8, pp. 777–789, Aug. 1998.

[3] E. Zhu, J. Yin, and G. Zhang, ‘‘Fingerprint matching based on global
alignment of multiple reference minutiae,’’ Pattern Recognit., vol. 38,
no. 10, pp. 1685–1694, 2005.

32660 VOLUME 7, 2019



W. Bian et al.: Survey of the Methods on FOF Estimation

[4] A. Jain, L. Hong, and R. Bolle, ‘‘On-line fingerprint verification,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 19, no. 4, pp. 302–314, Apr. 1997.

[5] A. Aravindan and S. M. Anzar, ‘‘Robust partial fingerprint recognition
using wavelet SIFT descriptors,’’ Pattern Anal. Appl., vol. 20, no. 4,
pp. 963–979, 2017.

[6] N. Ratha and R. Bolle, Automatic Fingerprint Recognition Systems.
New York, NY, USA: Springer-Verlag, 2003.

[7] J. Zhang, R. Lai, and C.-C. J. Kuo, ‘‘Adaptive directional total-variation
model for latent fingerprint segmentation,’’ IEEE Trans. Inf. Forensics
Security, vol. 8, no. 8, pp. 1261–1273, Aug. 2013.

[8] K. Tiwari and P. Gupta, ‘‘An efficient technique for automatic segmen-
tation of fingerprint ROI from digital slap image,’’ Neurocomputing,
vol. 151, pp. 1163–1170, Mar. 2015.

[9] D. H. Thai and C. Gottschlich, ‘‘Global variational method for fingerprint
segmentation by three-part decomposition,’’ IET Biometrics, vol. 5, no. 2,
pp. 120–130, 2016.

[10] A. Sankaran, A. Jain, T. Vashisth, M. Vatsa, and R. Singh, ‘‘Adaptive
latent fingerprint segmentation using feature selection and random deci-
sion forest classification,’’ Inf. Fusion, vol. 34, pp. 1–15, Mar. 2017.

[11] A. Almansa and T. Lindeberg, ‘‘Fingerprint enhancement by shape adap-
tation of scale-space operators with automatic scale selection,’’ IEEE
Trans. Image Process., vol. 9, no. 12, pp. 2027–2042, Dec. 2000.

[12] C. Gottschlich, ‘‘Curved-region-based ridge frequency estimation and
curved Gabor filters for fingerprint image enhancement,’’ IEEE Trans.
Image Process, vol. 21, no. 4, pp. 2220–2227, Apr. 2012.

[13] J. Yang, N. Xiong, and A. V. Vasilakos, ‘‘Two-stage enhancement scheme
for low-quality fingerprint images by learning from the images,’’ IEEE
Trans. Human-Mach. Syst., vol. 43, no. 2, pp. 235–248, Mar. 2013.

[14] J. S. Bartuněk, M. Nilsson, B. Sällberg, and I. Claesson, ‘‘Adaptive
fingerprint image enhancement with emphasis on preprocessing of data,’’
IEEE Trans. Image Process, vol. 22, no. 2, pp. 644–656, Feb. 2013.

[15] P. Sutthiwichaiporn and V. Areekul, ‘‘Adaptive boosted spectral filtering
for progressive fingerprint enhancement,’’ Pattern Recognit., vol. 46,
no. 9, pp. 2465–2486, Sep. 2013.

[16] M. Liu, X. Chen, and X. Wang, ‘‘Latent fingerprint enhancement via
multi-scale patch based sparse representation,’’ IEEETrans. Inf. Forensics
Security, vol. 10, no. 1, pp. 6–15, Jan. 2015.

[17] S. Ding, W. Bian, H. Liao, T. Sun, and Y. Xue, ‘‘Combining Gabor filter-
ing and classification dictionaries learning for fingerprint enhancement,’’
IET Biometrics, vol. 6, no. 6, pp. 438–447, Nov. 2017.

[18] S. Ding,W. Bian, T. Sun, and Y. Xue, ‘‘Fingerprint enhancement rooted in
the spectra diffusion by the aid of the 2D adaptive Chebyshev band-pass
filter with orientation-selective,’’ Inf. Sci., vols. 415–416, pp. 233–246,
Nov. 2017.

[19] P. Schuch, S. Schulz, and C. Busch, ‘‘Survey on the impact of finger-
print image enhancement,’’ IET Biometrics, vol. 7, no. 2, pp. 102–115,
Jan. 2018.

[20] W. Bian, S. Ding, and W. Jia, ‘‘Collaborative filtering model for enhanc-
ing fingerprint image,’’ IET Image Process., vol. 12, no. 1, pp. 149–157,
Jan. 2018.

[21] A. M. Bazen and S. H. Gerez, ‘‘Systematic methods for the computation
of the directional fields and singular points of fingerprints,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 24, no. 7, pp. 905–919, Jul. 2002.

[22] C.-H. Park, J.-J. Lee, M. J. T. Smith, and K.-H. Park, ‘‘Singular point
detection by shape analysis of directional fields in fingerprints,’’ Pattern
Recognit., vol. 39, no. 5, pp. 839–855, 2006.

[23] L. Fan, S. Wang, H. Wang, and T. Guo, ‘‘Singular points detection based
on zero-pole model in fingerprint images,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 30, no. 6, pp. 929–940, Jun. 2008.

[24] J. Zhou, F. Chen, and J. Gu, ‘‘A novel algorithm for detecting singular
points from fingerprint images,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 31, no. 7, pp. 1239–1250, Jul. 2009.

[25] T. H. Le and H. T. Van, ‘‘Fingerprint reference point detection for image
retrieval based on symmetry and variation,’’ Pattern Recognit., vol. 45,
no. 9, pp. 3360–3372, 2012.

[26] M. Kawagoe and A. Tojo, ‘‘Fingerprint pattern classification,’’ Pattern
Recognit., vol. 17, no. 3, pp. 295–303, 1984.

[27] K. Karu and A. K. Jain, ‘‘Fingerprint classification,’’ Pattern Recognit.,
vol. 29, no. 3, pp. 389–404, 1996.

[28] R. Cappelli, A. Lumini, D. Maio, and D.Maltoni, ‘‘Fingerprint classifica-
tion by directional image partitioning,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 21, no. 5, pp. 402–421, May 1999.

[29] S. C. Dass and A. K. Jain, ‘‘Fingerprint classification using orientation
field flow curves,’’ in Proc. ICVGIP, 2004, pp. 650–655.

[30] K. Cao, L. Pang, J. Liang, and J. Tian, ‘‘Fingerprint classification by a
hierarchical classifier,’’ Pattern Recognit., vol. 46, no. 12, pp. 3186–3197,
2013.

[31] J.-M. Guo, Y.-F. Liu, J-Y. Chang, and J.-D. Lee, ‘‘Fingerprint classifica-
tion based on decision tree from singular points and orientation field,’’
Expert Syst. Appl., vol. 41, no. 2, pp. 752–764, 2014.

[32] H.-W. Jung and J.-H. Lee, ‘‘Noisy and incomplete fingerprint classifi-
cation using local ridge distribution models,’’ Pattern Recognit., vol. 48,
no. 2, pp. 473–484, 2015.

[33] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti, ‘‘Filterbank-based
fingerprint matching,’’ IEEE Trans. Image Process., vol. 9, no. 5,
pp. 846–859, May 2000.

[34] M. Tico and P. Kuosmanen, ‘‘Fingerprint matching using an orientation-
based minutia descriptor,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 25, no. 8, pp. 1009–1014, Aug. 2003.

[35] J. V. Kulkarni, B. D. Patil, and R. S. Holambe, ‘‘Orientation feature for
fingerprint matching,’’ Pattern Recognit., vol. 39, no. 8, pp. 1551–1554,
2006.

[36] Y. He, J. Tian, L. Li, H. Chen, and X. Yang, ‘‘Fingerprint matching based
on global comprehensive similarity,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 28, no. 6, pp. 850–862, Jun. 2006.

[37] J. Feng, ‘‘Combining minutiae descriptors for fingerprint matching,’’
Pattern Recognit., vol. 41, no. 1, pp. 342–352, 2008.

[38] A. K. Jain and J. Feng, ‘‘Latent fingerprint matching,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 33, no. 1, pp. 88–100, Jan. 2011.

[39] H. Choi, K. Choi, and J. Kim, ‘‘Fingerprint matching incorporating ridge
features with minutiae,’’ IEEE Trans. Inf. Forensics Security, vol. 6, no. 2,
pp. 338–345, Jun. 2011.

[40] K. Cao, X. Yang, X. Chen, Y. Zang, J. Liang, and J. Tian, ‘‘A novel ant
colony optimization algorithm for large-distorted fingerprint matching,’’
Pattern Recognit., vol. 45, no. 1, pp. 151–161, 2012.

[41] D. Peralta et al., ‘‘A survey on fingerprint minutiae-based local matching
for verification and identification: Taxonomy and experimental evalua-
tion,’’ Inf. Sci., vol. 315, pp. 67–87, Sep. 2015.

[42] J. Xu, J. Jiang, Y. Dou, X. Shen, and Z. Liu, ‘‘Coarse-grained architecture
for fingerprint matching,’’ ACM Trans. Reconfigurable Technol. Syst.,
vol. 9, no. 2, pp. 12:1–12:15, 2016.

[43] M. Kass and A. Witkin, ‘‘Analyzing oriented patterns,’’ Comput. Vis.,
Graph., Image Process., vol. 37, no. 3, pp. 362–385, 1987.

[44] A. R. Rao and B. G. Schunck, ‘‘Computing oriented texture fields,’’
CVGIP, Graph. Models Image Process., vol. 53, no. 2, pp. 157–185, 1991.

[45] A. R. Rao and R. C. Jain, ‘‘Computerized flow field analysis: Oriented
texture fields,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 7,
pp. 693–709, Jul. 1992.

[46] W. K. Lee and J. H. Chung, ‘‘Automatic real-time identification of finger-
print images using wavelets and gradient of Gaussian,’’ J. Circuits, Syst.,
Comput., vol. 7, no. 5, pp. 433–440, 1997.

[47] A. I. Awad, ‘‘Fast fingerprint orientation field estimation incorporat-
ing general purpose GPU,’’ in Soft Computing Applications. Cham,
Switzerland: Springer, 2016, pp. 891–902.

[48] N. K. Ratha, S. Chen, and A. K. Jain, ‘‘Adaptive flow orientation-based
feature extraction in fingerprint images,’’ Pattern Recognit., vol. 28,
no. 11, pp. 1657–1672, 1995.

[49] A. K. Jain, L. Hong, S. Pankanti, and R. Bolle, ‘‘An identity-
authentication system using fingerprints,’’ Proc. IEEE, vol. 85, no. 9,
pp. 1365–1388, Sep. 1997.

[50] X. Jiang, ‘‘On orientation and anisotropy estimation for online finger-
print authentication,’’ IEEE Trans. Signal Process., vol. 53, no. 10,
pp. 4038–4049, Oct. 2005.

[51] Y. Wang, J. Hu, and F. Han, ‘‘Enhanced gradient-based algorithm for
the estimation of fingerprint orientation fields,’’ Appl. Math. Comput.,
vol. 185, no. 2, pp. 823–833, 2007.

[52] S. Chikkerur, A. N. Cartwright, and V. Govindaraju, ‘‘Fingerprint
enhancement using STFT analysis,’’ Pattern Recognit., vol. 40, no. 1,
pp. 198–211, 2007.

[53] Y. Mei, H. Sun, and D. Xia, ‘‘A gradient-based combined method for
the computation of fingerprints’ orientation field,’’ Image Vis. Comput.,
vol. 27, no. 8, pp. 1169–1177, 2009.

[54] I. G. Babatunde, A. O. Charles, and O. Olatubosun, ‘‘A block processing
approach to fingerprint ridge-orientation estimation,’’ Comput. Technol.
Appl., vol. 3, no. 6, pp. 401–407, 2012.

[55] Y.Mei, G. Cao, H. Sun, andR.Hou, ‘‘A systematic gradient-basedmethod
for the computation of fingerprint’s orientation field,’’ Comput. Elect.
Eng., vol. 38, no. 5, pp. 1035–1046, 2012.

VOLUME 7, 2019 32661



W. Bian et al.: Survey of the Methods on FOF Estimation

[56] S. Saparudin and G. Sulong, ‘‘A technique to improve ridge flows of
fingerprint orientation fields estimation,’’ Telkomnika, vol. 14, no. 3,
pp. 987–998, 2016.

[57] W. Bian, S. Ding, and Y. Xue, ‘‘Combining weighted linear project
analysis with orientation diffusion for fingerprint orientation field recon-
struction,’’ Inf. Sci., vol. 396, pp. 55–71, Aug. 2017.

[58] W. Bian, S. Ding, and Y. Xue, ‘‘An improved fingerprint orientation field
extraction method based on quality grading scheme,’’ Int. J. Mach. Learn.
Cybern., vol. 9, no. 8, pp. 1249–1260, 2018.

[59] H. Li et al., ‘‘Combining multi-scale composite windows with hierar-
chical smoothing strategy for fingerprint orientation field computation,’’
Biomed. Eng. Online, vol. 17, no. 1, pp. 1–21, 2018.

[60] K. Nilsson and J. Bigun, ‘‘Localization of corresponding points in fin-
gerprints by complex filtering,’’ Pattern Recognit. Lett., vol. 24, no. 13,
pp. 2135–2144, 2003.

[61] P. Perona, ‘‘Orientation diffusions,’’ IEEE Trans. Image Process., vol. 7,
no. 3, pp. 457–467, Mar. 1998.

[62] E. R. Henry, Classification and Uses of Fingerprints. London, U.K.:
Routledge, 1900.

[63] B. G. Sherlock and D. M. Monro, ‘‘A model for interpreting fingerprint
topology,’’ Pattern Recognit., vol. 26, no. 7, pp. 1047–1055, 1993.

[64] P. R. Vizcaya and L. A. Gerhardt, ‘‘A nonlinear orientation model for
global description of fingerprints,’’ Pattern Recognit., vol. 29, no. 7,
pp. 1221–1231, 1996.

[65] J. Zhou and J. Gu, ‘‘Modeling orientation fields of fingerprints
with rational complex functions,’’ Pattern Recognit., vol. 37, no. 2,
pp. 389–391, 2004.

[66] J. Gu and J. Zhou, ‘‘A novel model for orientation field of fingerprints,’’
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), vol. 2,
Jun. 2003, pp. II-493–II-498.

[67] J. Zhou and J. Gu, ‘‘A model-based method for the computation of
fingerprints’ orientation field,’’ IEEE Trans. Image Process., vol. 13,
no. 6, pp. 821–835, Jun. 2004.

[68] J. Gu, J. Zhou, and D. Zhang, ‘‘A combination model for orientation
field of fingerprints,’’ Pattern Recognit., vol. 37, no. 3, pp. 543–553,
2004.

[69] J. Li, W.-Y. Yau, and H. Wang, ‘‘Constrained nonlinear models of fin-
gerprint orientations with prediction,’’ Pattern Recognit., vol. 39, no. 1,
pp. 102–114, 2006.

[70] J. Li, W.-Y. Yau, J. Wang, and W. Ser, ‘‘Stability analysis of constrained
nonlinear phase portrait models of fingerprint orientation images,’’ in
Proc. ICB, 2007, pp. 493–502.

[71] S. Huckemann, T. Hotz, and A. Munk, ‘‘Global models for the orienta-
tion field of fingerprints: an approach based on quadratic differentials,’’
IEEE Trans. Pattern Anal. Mach. Intell., vol. 30, no. 9, pp. 1507–1519,
Sep. 2008.

[72] C. Gottschlich, B. Tams, and S. Huckemann, ‘‘Perfect fingerprint orien-
tation fields by locally adaptive global models,’’ IET Biometrics, vol. 6,
no. 3, pp. 183–190, May 2017.

[73] Y. Wang, J. Hu, and D. Phillips, ‘‘A fingerprint orientation model based
on 2D Fourier expansion (FOMFE) and its application to singular-point
detection and fingerprint indexing,’’ IEEE Trans. Pattern Anal. Mach.
Intell., vol. 29, no. 4, pp. 573–585, Apr. 2007.

[74] Y. Wang and J. Hu, ‘‘Global ridge orientation modeling for partial fin-
gerprint identification,’’ IEEE Trans. Pattern Anal. Mach. Intell., vol. 33,
no. 1, pp. 72–87, Jan. 2011.

[75] A. Tashk, M. S. Helfroush, and M. Muhammadpour, ‘‘Improvement of
fingerprint orientation estimation by a modification of fingerprint orien-
tation model based on 2D Fourier expansion (M-FOMFE),’’ in Proc. 2nd
Int. Conf. Comput., Control Commun., Feb. 2009, pp. 1–6.

[76] X. Tao, X. Yang, K. Cao, R. Wang, P. Li, and J. Tian, ‘‘Estima-
tion of fingerprint orientation field by weighted 2D Fourier expansion
model,’’ in Proc. 20th Int. Conf. Pattern Recognit. (ICPR), Aug. 2010,
pp. 1253–1256.

[77] C. Wu, S. Tulyakov, and V. Govindaraju, ‘‘Robust point-based fea-
ture fingerprint segmentation algorithm,’’ in Proc. IC, vol. 7, 2007,
pp. 1095–1103.

[78] S. Ram, H. Bischof, and J. Birchbauer, ‘‘Curvature preserving fingerprint
ridge orientation smoothing using legendre polynomials,’’ in Proc. IEEE
CVPR Biometrics Workshop, Jun. 2008, pp. 1–8.

[79] S. Ram, H. Bischof, and J. Birchbauer, ‘‘Modelling fingerprint ridge
orientation using legendre polynomials,’’Pattern Recognit., vol. 43, no. 1,
pp. 342–357, 2010.

[80] A. Tashk, M. S. Helfroush, and M. J. Dehghani, ‘‘A Chebyshev/Legendre
polynomial interpolation approach for fingerprint orientation estimation
smoothing and prediction,’’ J. Zhejiang Univ. Sci. C, vol. 11, no. 12,
pp. 976–988, 2010.

[81] S. Jirachaweng, Z. Hou,W.-Y. Yau, and V. Areekul, ‘‘Residual orientation
modeling for fingerprint enhancement and singular point detection,’’
Pattern Recognit., vol. 44, no. 2, pp. 431–442, 2011.

[82] M. Liu, S. Liu, and Q. Zhao, ‘‘Fingerprint orientation field reconstruction
by weighted discrete cosine transform,’’ Inf. Sci., vol. 268, pp. 65–77,
Jun. 2014.

[83] P. Gupta and P. Gupta, ‘‘Fingerprint orientation modeling using sym-
metric filters,’’ in Proc. IEEE Winter Conf. Appl. Comput. Vis. (WACV),
Jan. 2015, pp. 663–669.

[84] P. Gupta and P. Gupta, ‘‘An accurate fingerprint orientation modeling
algorithm,’’ Appl. Math. Model., vol. 40, pp. 7182–7194, Aug. 2016.

[85] P. Gupta and P. Gupta, ‘‘A slap fingerprint based verification system
invariant to halo and sweat artifacts,’’ Appl. Math. Model., vol. 54,
pp. 413–428, Feb. 2018.

[86] W. Bian, Y. Luo, D. Xu, and Q. Yu, ‘‘Fingerprint ridge orientation field
reconstruction using the best quadratic approximation by orthogonal
polynomials in two discrete variables,’’ Pattern Recognit., vol. 47, no. 10,
pp. 3304–3313, 2014.

[87] S. C. Dass, ‘‘Markov random field models for directional field and sin-
gularity extraction in fingerprint images,’’ IEEE Trans. Image Process.,
vol. 3, no. 10, pp. 1358–1367, Oct. 2004.

[88] Z. Hou, H.-K. Lam, W.-Y. Yau, and Y. Wang, ‘‘A variational formulation
for fingerprint orientation modeling,’’ Pattern Recognit., vol. 45, no. 5,
pp. 1915–1926, 2012.

[89] A. Blake, P. Kohli, and C. Rother,Markov Random Fields for Vision and
Image Processing. Cambridge, MA, USA: MIT Press, 2011.

[90] K. A. Nagaty, ‘‘On learning to estimate the block directional image of a
fingerprint using a hierarchical neural network,’’ Neural Netw., vol. 16,
no. 1, pp. 133–144, 2003.

[91] E. Zhu, J. Yin, C. Hu, and G. Zhang, ‘‘A systematic method for fingerprint
ridge orientation estimation and image segmentation,’’ Pattern Recognit.,
vol. 39, no. 8, pp. 1452–1472, 2006.

[92] L. Ji and Z. Yi, ‘‘Fingerprint orientation field estimation using ridge
projection,’’ Pattern Recognit., vol. 41, no. 5, pp. 1491–1503, 2008.

[93] K.-C. Lee and S. Prabhakar, ‘‘Probabilistic orientation field estimation
for fingerprint enhancement and verification,’’ in Proc. Biometric Symp,
Sep. 2008, pp. 41–46.

[94] M. Sahasrabudhe and A. M. Namboodiri, ‘‘Learning fingerprint orienta-
tion fields using continuous restricted Boltzmannmachines,’’ inProc. 2nd
IAPR Asian Conf. Pattern Recognit. (ACPR), Nov. 2013, pp. 351–355.

[95] S. Ram, H. Bischof, and J. Birchbauer, ‘‘Active fingerprint ridge orienta-
tion models,’’ in Proc. Int. Conf. Biometrics Berlin, Germany: Springer,
2009, pp. 534–543.

[96] N. Zhang, X. Yang, Y. Zang, X. Jia, and J. Tian, ‘‘Overlapped fingerprints
separation based on adaptive orientation model fitting,’’ in Proc. 22nd Int.
Conf. Pattern Recognit. (ICPR), Aug. 2014, pp. 678–683.

[97] N. Zhang, Y. Zang, X. Yang, X. Jia, and J. Tian, ‘‘Adaptive orientation
model fitting for latent overlapped fingerprints separation,’’ IEEE Trans.
Inf. Forensics Security, vol. 9, no. 10, pp. 1547–1556, Oct. 2014.

[98] J. Feng, J. Zhou, and A. K. Jain, ‘‘Orientation field estimation for
latent fingerprint enhancement,’’ IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 4, pp. 925–940, Apr. 2013.

[99] X. Yang, J. Feng, and J. Zhou, ‘‘Localized dictionaries based orienta-
tion field estimation for latent fingerprints,’’ IEEE Trans. Pattern Anal.
Mach. Intell., vol. 36, no. 5, pp. 955–969, May 2014.

[100] A. K. Jain and K. Cao, ‘‘Fingerprint image analysis: Role of orientation
patch and ridge structure dictionaries,’’Geometry Driven Statist., vol. 15,
pp. 288–310, Nov. 2015.

[101] C. Chen, J. Feng, and J. Zhou, ‘‘Multi-scale dictionaries based finger-
print orientation field estimation,’’ in Proc. Int. Conf. Biometrics (ICB),
Jun. 2016, pp. 1–8.

[102] K. Cao, E. Liu, and A. K. Jain, ‘‘Segmentation and enhancement of latent
fingerprints: A coarse to fine ridgestructure dictionary,’’ IEEE Trans.
Pattern Anal. Mach. Intell., vol. 36, no. 9, pp. 1847–1859, Sep. 2014.

[103] M. Aharon, M. Elad, and A. Bruckstein, ‘‘K -SVD: An algorithm for
designing overcomplete dictionaries for sparse representation,’’ IEEE
Trans. Signal Process., vol. 54, no. 11, pp. 4311–4322, Nov. 2006.

[104] S. G. Mallat and Z. Zhang, ‘‘Matching pursuits with time-frequency
dictionaries,’’ IEEE Trans. Signal Process., vol. 41, no. 12,
pp. 3397–3415, Dec. 1993.

32662 VOLUME 7, 2019



W. Bian et al.: Survey of the Methods on FOF Estimation

[105] S. Liu, M. Liu, and Z. Yang, ‘‘Sparse coding based orientation estimation
for latent fingerprints,’’Pattern Recognit., vol. 67, pp. 164–176, Jul. 2017.

[106] K. Cao and A. K. Jain, ‘‘Latent orientation field estimation via convolu-
tional neural network,’’ in Proc. Int. Conf. Biometrics (ICB), May 2015,
pp. 349–356.

[107] K. Cao and A. K. Jain, ‘‘Automated latent fingerprint recognition,’’ IEEE
Trans. Pattern Anal. Mach. Intell., vol. 41, no. 4, pp. 788–800, Apr. 2019.
doi: 10.1109/TPAMI.2018.2818162.

[108] P. Schuch, S.-D. Schulz, and C. Busch, ‘‘ConvNet regression for fin-
gerprint orientations,’’ in Proc. Scandin. Conf. Image Anal., Tromso,
Norway. Cham, Switzerland: Springer, 2017, pp. 325–336.

[109] P. Schuch, S. D. Schulz, and C. Busch, ‘‘Deep expectation for estimation
of fingerprint orientation fields,’’ in Proc. IEEE Int. Joint Conf. Biomet-
rics (IJCB), Oct. 2017, pp. 185–190.

[110] Y. Tang, F. Gao, J. Feng, and Y. Liu, ‘‘FingerNet: An unified deep
network for fingerprint minutiae extraction,’’ in Proc. IEEE Int. Joint
Conf. Biometrics (IJCB), Oct. 2017, pp. 108–116.

[111] Z. Qu, J. Liu, Y. Liu, Q. Guan, C. Yang, and Y. Zhang, ‘‘OrieNet:
A regression system for latent fingerprint orientation field extraction,’’ in
Proc. Int. Conf. Artif. Neural Netw. Cham, Switzerland: Springer, 2018,
pp. 436–446.

[112] F. Turroni, D. Maltoni, R. Cappelli, and D. Maio, ‘‘Improving fingerprint
orientation extraction,’’ IEEE Trans. Inf. Forensics Security, vol. 6, no. 3,
pp. 1002–1013, Sep. 2011.

[113] (2010). FVC-onGoing. [Online]. Available: http://biolab.csr.
unibo.it/FVCOnGoing

[114] NSIT Special Database 27. Accessed: 2000. [Online]. Available:
http://www.nist.gov/srd/nistsd27.cfm

[115] NSIT Special Database 27A. Accessed: 2000. [Online]. Available:
http://www.nist.gov/itl/iad/ig/sd27a.cfm

WEIXIN BIAN received the M.S. degree in com-
puter science from Guizhou University, China,
in 2005, and the Ph.D. degree in computer sci-
ence from the China University of Mining and
Technology, China, in 2018. He is currently an
Associate Professor. His research interests include
information science, privacy preserving biometric-
based, image processing, machine learning, and
pattern recognition.

DEQIN XU received the B.S. degree in automa-
tion from Guizhou University, China, in 2006.
Her research interests include pattern recognition,
image processing, and machine learning.

QINGDE LI received the B.S. degree in math-
ematics from Beijing Normal University, China,
in 1982, and the Ph.D. degree in computer science
from the University of Hull, U.K., in 2002. His
current research interests include the areas of com-
puter graphics andmixed reality technology, with a
particular focus on high-precision geometric mod-
eling of real objects.

YONGQIANG CHENG is currently a Senior Lec-
turer with the Department of Computer Science
and Technology, University of Hull, U.K. He has
a very significant experience on focusing the
large-scale projects and has led industrial collab-
orations as a PI on several digital health technolo-
gies projects. His research interests include digital
healthcare technologies, embedded systems, con-
trol theory and applications, AI, and data mining.

BIAO JIE received the M.S. degree in computer
science from Yunnan Normal University, China,
in 2006, and the Ph.D. degree in computer science
from the Nanjing University of Aeronautics and
Astronautics, China, in 2015. In 2006, he joined
the School of Computer and Information, Anhui
Normal University, where he is currently a Profes-
sor. His research interests include machine learn-
ing and medical image analysis.

XINTAO DING received the M.S. degree in com-
putational mathematics from East China Normal
University, in 2005, and the Ph.D. degree from
Anhui Normal University, China, in 2015. He is
currently an Associate Professor. His research
interests include machine learning and pattern
recognition.

VOLUME 7, 2019 32663


	INTRODUCTION
	GRADIENT-BASED METHODS
	MATHEMATICAL MODELS-BASED METHODS
	HEURISTIC KNOWLEDGE BASED METHODS
	ORTHOGONAL POLYNOMIALS BASED METHODS

	LEARNING-BASED METHODS
	PERFORMANCE EVALUATIONS
	SINGULAR POINTS DETECTION
	FINGERPRINT MATCHING
	ACCURACY OF FOF ESTIMATION

	CONCLUSIONS
	REFERENCES
	Biographies
	WEIXIN BIAN
	DEQIN XU
	QINGDE LI
	YONGQIANG CHENG
	BIAO JIE
	XINTAO DING


