6,768 research outputs found

    Application of Machine Learning Methods for Asset Management on Power Distribution Networks

    Get PDF
    This study aims to study the different kinds of Machine Learning (ML) models and their working principles for asset management in power networks. Also, it investigates the challenges behind asset management and its maintenance activities. In this review article, Machine Learning (ML) models are analyzed to improve the lifespan of the electrical components based on the maintenance management and assessment planning policies. The articles are categorized according to their purpose: 1) classification, 2) machine learning, and 3) artificial intelligence mechanisms. Moreover, the importance of using ML models for proper decision making based on the asset management plan is illustrated in a detailed manner. In addition to this, a comparative analysis between the ML models is performed, identifying the advantages and disadvantages of these techniques. Then, the challenges and managing operations of the asset management strategies are discussed based on the technical and economic factors. The proper functioning, maintenance and controlling operations of the electric components are key challenging and demanding tasks in the power distribution systems. Typically, asset management plays an essential role in determining the quality and profitability of the elements in the power network. Based on this investigation, the most suitable and optimal machine learning technique can be identified and used for future work. Doi: 10.28991/ESJ-2022-06-04-017 Full Text: PD

    Attributes of Big Data Analytics for Data-Driven Decision Making in Cyber-Physical Power Systems

    Get PDF
    Big data analytics is a virtually new term in power system terminology. This concept delves into the way a massive volume of data is acquired, processed, analyzed to extract insight from available data. In particular, big data analytics alludes to applications of artificial intelligence, machine learning techniques, data mining techniques, time-series forecasting methods. Decision-makers in power systems have been long plagued by incapability and weakness of classical methods in dealing with large-scale real practical cases due to the existence of thousands or millions of variables, being time-consuming, the requirement of a high computation burden, divergence of results, unjustifiable errors, and poor accuracy of the model. Big data analytics is an ongoing topic, which pinpoints how to extract insights from these large data sets. The extant article has enumerated the applications of big data analytics in future power systems through several layers from grid-scale to local-scale. Big data analytics has many applications in the areas of smart grid implementation, electricity markets, execution of collaborative operation schemes, enhancement of microgrid operation autonomy, management of electric vehicle operations in smart grids, active distribution network control, district hub system management, multi-agent energy systems, electricity theft detection, stability and security assessment by PMUs, and better exploitation of renewable energy sources. The employment of big data analytics entails some prerequisites, such as the proliferation of IoT-enabled devices, easily-accessible cloud space, blockchain, etc. This paper has comprehensively conducted an extensive review of the applications of big data analytics along with the prevailing challenges and solutions

    Modern Fault Diagnosis in Power Systems Based on 5G Networks

    Get PDF
    The future power system will be dynamic, requiring Intelligent control, reliable protection, and fast communication. Modern concepts in power systems, such as smart grids, involve bidirectional power flow and two-way communication. Conventional protection schemes and fault diagnosis methods are unsuitable for future power systems. This study proposes a modern fault diagnosis that integrates 5G's reliable communication and AI. 5G's URLLC, mMTC, and edge computing can bring significant advantages to the applications of power systems. In this study, a concept of intelligent fault diagnosis is proposed, which utilizes a 5G network and AI. This work is divided into two main sections. The first section develops an ML-based power system protection model in MATLAB, and the second section deals with Simulating a 5G communication network is OMNeT ++. ML algorithm developed for power system protection achieved fault detection with an accuracy of 99% and isolated faults within 7ms. The standalone 5G network without an edge computing server achieved a round trip network latency of 20 ms

    Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes

    Get PDF
    The book documents 25 papers collected from the Special Issue “Advances in Condition Monitoring, Optimization and Control for Complex Industrial Processes”, highlighting recent research trends in complex industrial processes. The book aims to stimulate the research field and be of benefit to readers from both academic institutes and industrial sectors

    Smart Grid Sensor Monitoring Based on Deep Learning Technique with Control System Management in Fault Detection

    Get PDF
    The smart grid environment comprises of the sensor for monitoring the environment for effective power supply, utilization and establishment of communication. However, the management of smart grid in the monitoring environment isa difficult process due to diversifieduser request in the sensor monitoring with the grid-connected devices. Presently, context-awaremonitoring incorporates effective management of data management and provision of services in two-way processing and computing. In a heterogeneous environment context-aware, smart grid exhibits significant performance characteristics with the grid-connected communication environment for effective data processing for sustainability and stability. Fault diagnoses in the automated system are formulated to diagnose the fault separately. This paper developed anoptimized power grid control model (OPGCM) model for fault detection in the control system model for grid-connected smart home appliances. OPGCM model uses the context-aware power-awarescheme for load management in grid-connected smart homes. Through the adaptive smart grid model,power-aware management is incorporated with the evolutionary programming model for context-awareness user communication. The OPGCM modelperforms fault diagnosis in the grid-connected control system initially, Fault diagnosis system comprises of a sequential process with the extraction of the statistical features to acquirea sustainable dataset with effective signal processing. Secondly, the features are extracted based on the sequential process for the acquired dataset with a reduction of dimensionality. Finally, the classification is performed with the deep learning model to predict or identify the fault pattern. With the OPGCM model, features are optimized with the whale optimization model to acquire features to perform fault diagnosis and classification. Simulation analysis expressed that the proposed OPGCM model exhibits ~16% improved classification accuracy compared with the ANN and HMM model

    Data Mining Applications to Fault Diagnosis in Power Electronic Systems: A Systematic Review

    Get PDF

    Data Challenges and Data Analytics Solutions for Power Systems

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore