5 research outputs found

    Anchor-Free Localization in Mixed Wireless Sensor Network Systems

    Get PDF
    Recent technological advances have fostered the emergence of Wireless Sensor Networks (WSNs), which consist of tiny, wireless, battery-powered nodes that are expected to revolutionize the ways in which we understand and construct complex physical systems. A fundamental property needed to use and maintain these WSNs is ``localization\u27\u27, which allows the establishment of spatial relationships among nodes over time. This dissertation presents a series of Geographic Distributed Localization (GDL) algorithms for mixed WSNs, in which both static and mobile nodes can coexist. The GDL algorithms provide a series of useful methods for localization in mixed WSNs. First, GDL provides an approximation called ``hop-coordinates\u27\u27, which improves the accuracy of both hop-counting and connectivity-based measurement techniques. Second, GDL utilizes a distributed algorithm to compute the locations of all nodes in static networks with the help of the hop-coordinates approximation. Third, GDL integrates a sensor component into this localization paradigm for possible mobility and as a result allows for a more complex deployment of WSNs as well as lower costs. In addition, the development of GDL incorporated the possibility of manipulated communications, such as wormhole attacks. Simulations show that such a localization system can provide fundamental support for security by detecting and localizing wormhole attacks. Although several localization techniques have been proposed in the past few years, none currently satisfies our requirements to provide an accurate, efficient and reliable localization for mixed WSNs. The contributions of this dissertation are: (1) our measurement technique achieves better accuracy both in measurement and localization than other methods; (2) our method significantly improves the efficiency of localization in updating location in mixed WSNs by incorporating sensors into the method; (3) our method can detect and locate the communication that has been manipulated by a wormhole in a network without relying on a central server

    Scalable wireless sensor networks for dynamic communication environments: simulation and modelling

    No full text
    This thesis explores the deployment of Wireless Sensor Networks (WSNs) on localised maritime events. In particular, it will focus on the deployment of a WSN at sea and estimating what challenges derive from the environment and how they affect communication. This research addresses these challenges through simulation and modelling of communication and environment, evaluating the implications of hardware selection and custom algorithm development. The first part of this thesis consists of the analysis of aspects related to the Medium Access Control layer of the network stack in large-scale networks. These details are commonly hidden from upper layers, thus resulting in misconceptions of real deployment characteristics. Results show that simple solutions have greater advantages when the number of nodes within a cluster increases. The second part considers routing techniques, with focus on energy management and packet delivery. It is shown that, under certain conditions, relaying data can increase energy savings, while at the same time allows a more even distribution of its usage between nodes. The third part describes the development of a custom-made network simulator. It starts by considering realistic radio, channel and interference models to allow a trustworthy simulation of the deployment environment. The MAC and Routing techniques developed thus far are adapted to the simulator in a cross-layer manner. The fourth part consists of adapting the WSN behaviour to the variable weather and topology found in the chosen application scenario. By analysing the algorithms presented in this work, it is possible to find and use the best alternative under any set of environmental conditions. This mechanism, the environment-aware engine, uses both network and sensing data to optimise performance through a set of rules that involve message delivery and distance between origin and cluster hea

    Secure Integrated Routing and Localization in Wireless Optical Sensor Networks

    Get PDF
    Wireless ad hoc and sensor networks are envisioned to be self-organizing and autonomous networks, that may be randomly deployed where no fixed infrastructure is either feasible or cost-effective. The successful commercialization of such networks depends on the feasible implementation of network services to support security-aware applications. Recently, free space optical (FSO) communication has emerged as a viable technology for broadband distributed wireless optical sensor network (WOSN) applications. The challenge of employing FSO include its susceptibility to adverse weather conditions and the line of sight requirement between two communicating nodes. In addition, it is necessary to consider security at the initial design phase of any network and routing protocol. This dissertation addresses the feasibility of randomly deployed WOSNs employing broad beam FSO with regard to the network layer, in which two important problems are specifically investigated. First, we address the parameter assignment problem which considers the relationship amongst the physical layer parameters of node density, transmission radius and beam divergence of the FSO signal in order to yield probabilistic guarantees on network connectivity. We analyze the node isolation property of WOSNs, and its relation to the connectivity of the network. Theoretical analysis and experimental investigation were conducted to assess the effects of hierarchical clustering as well as fading due to atmospheric turbulence on connectivity, thereby demonstrating the design choices necessary to make the random deployment of the WOSN feasible. Second, we propose a novel light-weight circuit-based, secure and integrated routing and localization paradigm within the WOSN, that leverages the resources of the base station. Our scheme exploits the hierarchical cluster-based organization of the network, and the directionality of links to deliver enhanced security performance including per hop and broadcast authentication, confidentiality, integrity and freshness of routing signals. We perform security and attack analysis and synthesis to characterize the protocol’s performance, compared to existing schemes, and demonstrate its superior performance for WOSNs. Through the investigation of this dissertation, we demonstrate the fundamental tradeoff between security and connectivity in WOSNs, and illustrate how the transmission radius may be used as a high sensitivity tuning parameter to balance there two metrics of network performance. We also present WOSNs as a field of study that opens up several directions for novel research, and encompasses problems such as connectivity analysis, secure routing and localization, intrusion detection, topology control, secure data aggregation and novel attack scenarios

    Emerging Communications for Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are deployed in a rapidly increasing number of arenas, with uses ranging from healthcare monitoring to industrial and environmental safety, as well as new ubiquitous computing devices that are becoming ever more pervasive in our interconnected society. This book presents a range of exciting developments in software communication technologies including some novel applications, such as in high altitude systems, ground heat exchangers and body sensor networks. Authors from leading institutions on four continents present their latest findings in the spirit of exchanging information and stimulating discussion in the WSN community worldwide

    An Improved GPSR Algorithm Based on Energy Gradient and APIT Grid

    No full text
    We investigate GPSR algorithms of WSN and propose an improved routing algorithm based on energy gradient and APIT grid to solve the problem of high and unbalanced energy consumption of GPSR. In GPSR, network uses greedy algorithm and right-hand rule to establish routing paths, and the path keeps running till some nodes within the path are invalid because energy is exhausted, which would lead to the high energy consumption of some nodes in the path and the low energy consumption of others nearby the nodes not in the path as well as bringing high and unbalanced energy consumption of the network. Regarding these problems, we use APIT localization algorithm and APIT grid to query and establish routing paths and establish the corresponding energy gradient when messages are transmitted along the routing paths. When some nodes are approaching the threshold status, we use right-hand rule and recursion greedy algorithm in advance to plan a new routing path towards the target area. When query messages arrive at the event area, the network uses a different method to transmit data according to the density of sensor nodes. Simulation experiments show that the improved routing algorithm is capable of reducing the energy consumption of network and extending the lifecycle of network
    corecore