unknown

Secure Integrated Routing and Localization in Wireless Optical Sensor Networks

Abstract

Wireless ad hoc and sensor networks are envisioned to be self-organizing and autonomous networks, that may be randomly deployed where no fixed infrastructure is either feasible or cost-effective. The successful commercialization of such networks depends on the feasible implementation of network services to support security-aware applications. Recently, free space optical (FSO) communication has emerged as a viable technology for broadband distributed wireless optical sensor network (WOSN) applications. The challenge of employing FSO include its susceptibility to adverse weather conditions and the line of sight requirement between two communicating nodes. In addition, it is necessary to consider security at the initial design phase of any network and routing protocol. This dissertation addresses the feasibility of randomly deployed WOSNs employing broad beam FSO with regard to the network layer, in which two important problems are specifically investigated. First, we address the parameter assignment problem which considers the relationship amongst the physical layer parameters of node density, transmission radius and beam divergence of the FSO signal in order to yield probabilistic guarantees on network connectivity. We analyze the node isolation property of WOSNs, and its relation to the connectivity of the network. Theoretical analysis and experimental investigation were conducted to assess the effects of hierarchical clustering as well as fading due to atmospheric turbulence on connectivity, thereby demonstrating the design choices necessary to make the random deployment of the WOSN feasible. Second, we propose a novel light-weight circuit-based, secure and integrated routing and localization paradigm within the WOSN, that leverages the resources of the base station. Our scheme exploits the hierarchical cluster-based organization of the network, and the directionality of links to deliver enhanced security performance including per hop and broadcast authentication, confidentiality, integrity and freshness of routing signals. We perform security and attack analysis and synthesis to characterize the protocol’s performance, compared to existing schemes, and demonstrate its superior performance for WOSNs. Through the investigation of this dissertation, we demonstrate the fundamental tradeoff between security and connectivity in WOSNs, and illustrate how the transmission radius may be used as a high sensitivity tuning parameter to balance there two metrics of network performance. We also present WOSNs as a field of study that opens up several directions for novel research, and encompasses problems such as connectivity analysis, secure routing and localization, intrusion detection, topology control, secure data aggregation and novel attack scenarios

    Similar works