9,873 research outputs found

    Applications of Improved Ant Colony Optimization Clustering Algorithm in Image Segmentation

    Get PDF
    When expressing the data feature extraction of the interesting objectives, image segmentation is to transform the data set of the features of the original image into more tight and general data set. This paper explores the image segmentation technology based on ant colony optimization clustering algorithm and proposes an improved ant colony clustering algorithm (ACCA). It improves and analyzes the computational formula of the similarity function and improves parameter selection and setting by setting ant clustering rules. Through this algorithm, it can not only accelerate the clustering speed, but it can also have a better clustering partitioning result. The experimental result shows that the method of this paper is better than the original OTSU image segmentation method in accuracy, rapidity and stability

    TSE-IDS: A Two-Stage Classifier Ensemble for Intelligent Anomaly-based Intrusion Detection System

    Get PDF
    Intrusion detection systems (IDS) play a pivotal role in computer security by discovering and repealing malicious activities in computer networks. Anomaly-based IDS, in particular, rely on classification models trained using historical data to discover such malicious activities. In this paper, an improved IDS based on hybrid feature selection and two-level classifier ensembles is proposed. An hybrid feature selection technique comprising three methods, i.e. particle swarm optimization, ant colony algorithm, and genetic algorithm, is utilized to reduce the feature size of the training datasets (NSL-KDD and UNSW-NB15 are considered in this paper). Features are selected based on the classification performance of a reduced error pruning tree (REPT) classifier. Then, a two-level classifier ensembles based on two meta learners, i.e., rotation forest and bagging, is proposed. On the NSL-KDD dataset, the proposed classifier shows 85.8% accuracy, 86.8% sensitivity, and 88.0% detection rate, which remarkably outperform other classification techniques recently proposed in the literature. Results regarding the UNSW-NB15 dataset also improve the ones achieved by several state of the art techniques. Finally, to verify the results, a two-step statistical significance test is conducted. This is not usually considered by IDS research thus far and, therefore, adds value to the experimental results achieved by the proposed classifier

    A class skew-insensitive ACO-based decision tree algorithm for imbalanced data sets

    Get PDF
    Ant-tree-miner (ATM) has an advantage over the conventional decision tree algorithm in terms of feature selection. However, real world applications commonly involved imbalanced class problem where the classes have different importance. This condition impeded the entropy-based heuristic of existing ATM algorithm to develop effective decision boundaries due to its biasness towards the dominant class. Consequently, the induced decision trees are dominated by the majority class which lack in predictive ability on the rare class. This study proposed an enhanced algorithm called hellingerant-tree-miner (HATM) which is inspired by ant colony optimization (ACO) metaheuristic for imbalanced learning using decision tree classification algorithm. The proposed algorithm was compared to the existing algorithm, ATM in nine (9) publicly available imbalanced data sets. Simulation study reveals the superiority of HATM when the sample size increases with skewed class (Imbalanced Ratio < 50%). Experimental results demonstrate the performance of the existing algorithm measured by BACC has been improved due to the class skew in sensitiveness of hellinger distance. The statistical significance test shows that HATM has higher mean BACC scorethan ATM

    Orthogonal methods based ant colony search for solving continuous optimization problems

    Get PDF
    Research into ant colony algorithms for solving continuous optimization problems forms one of the most significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial optimization, they have shown great potential in solving a wide range of optimization problems, including continuous optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and e±ciently. By implementing an "adaptive regional radius" method, the proposed algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is compared with two other ant algorithms for continuous optimization of API and CACO by testing seventeen functions in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others
    corecore