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 Ant-tree-miner (ATM) has an advantage over the conventional decision tree 

algorithm in terms of feature selection. However, real world applications 

commonly involved imbalanced class problem where the classes have 

different importance. This condition impeded the entropy-based heuristic of 

existing ATM algorithm to develop effective decision boundaries due to its 

biasness towards the dominant class. Consequently, the induced decision 

trees are dominated by the majority class which lack in predictive ability on 

the rare class. This study proposed an enhanced algorithm called hellinger-

ant-tree-miner (HATM) which is inspired by ant colony optimization (ACO) 

metaheuristic for imbalanced learning using decision tree classification 

algorithm. The proposed algorithm was compared to the existing algorithm, 

ATM in nine (9) publicly available imbalanced data sets. Simulation study 

reveals the superiority of HATM when the sample size increases with 

skewed class (Imbalanced Ratio < 50%). Experimental results demonstrate 

the performance of the existing algorithm measured by BACC has been 

improved due to the class skew-insensitiveness of hellinger distance. The 

statistical significance test shows that HATM has higher mean BACC score 

than ATM. 
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1. INTRODUCTION  

Imbalanced class is a condition when a data set consists of one class that has more observations than 

the others. The severity of imbalanced class can be measured by the imbalanced ratio (IR). For example, a 

data set with 5% IR indicates the majority class dominates 95% of the dataset‟s class label. This situation is 

common when dealing with data-intensive applications such as biomedical, defense and finance [1]. For 

instance, there were only 5.6% of recurrent disease patients out of 154 follow-up patients reported by 

Malaysian National Cancer Patient Registry in 2008. The other 94.4% patients are disease free thus 

considered as less important group. In terms of data mining perspective, it would be beneficial to the medical 

practitioners to have insights on what the 5.6% recurrent disease patients share in common like age, gender, 

race or blood type for better decision-making process. Hence, the patients can be treated effectively. This is 

known as supervised learning in which the machine learning algorithm learn the pattern of the training data 

and reveal the significant features in the model for prediction of new and unseen data.  
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Decision tree is one of the models in machine learning which is widely used for classification. This 

model is well-known for its simplicity and easy to interpret IF-THEN rules since it can be represented in 

graphical form. As with other machine learning models, decision tree is affected by the imbalanced class 

issue due to its entropy-based splitting criterion which is biased towards the majority class [2]. Developing a 

decision tree with significant features that can correctly classify the rare and more important group is a 

challenging task. Intuitively, most models are misled under imbalanced class environment since the majority 

group dominate the likelihood of prediction in the learning process. A heuristic approach which utilized bio-

inspired behaviour for tree induction such as Ant-Tree-Miner (ATM) is also affected by the skewed class 

distribution. This is due to the entropy-based heuristic function which suffer from information loss since the 

majority class dominates the frequently occurring events. This unfavoriable behaviour is illustrated in  

Figure 1. In this experiment setup, the Ionosphere data sets is divided into three sets of class imbalanced 

ratios (IR) in which the 60%:40% represents the original data sets class distribution while the synthetic 

domain with 5% IR is a highly imbalanced class skewness. It can be seen that as the class distribution 

became skewed (IR=5%), the entropy-based heuristic (gain ratio) is shrinking which indicates a significant 

loss of information thus justified the claim in literature that entropy-based information works well when the 

class is evenly distributed. Consequently, the developed decision tree with poor attribute evaluation due to 

biasness towards the dominant group tends to misclassify the rare class in new and unseen data sets as the 

majority group to achieve high accuracy rate. This is why accuracy rate is not a suitable performance 

measure for imbalanced class problem since higher accuracy rate does not necessarily means the classifier is 

good.  

For instance, related works by [3-6] focused on the ability of the classifier to detect the rare class 

which is known as the Minority Class Predicition (MCP). However, in this study we used the improved 

accuracy measure inspired by the work of [7] as the performance measure called the balance accuracy 

(BACC) which normalizes the correct prediction from both classes. Misclassification of important and rare 

class could be disastrous since for instance classifying the recurrent disease patients as disease free is a very 

costly decision. On the other hand, statistical distance which is based on class distribution divergence 

(Hellinger Distance) is found to be less affected by the class skewness since the prior distribution has no 

effect during the computation. Hence, Hellinger Distance is found to be a more reliable heuristic measure for 

attribute evaluation under imbalanced class environment. This is the main motivation of this study due to the 

fact that heuristic function in bio-inpsired algorithms such as ATM is a crucial weighting element to bias the 

ants‟ path creations in the probabilistic tree induction process.  

 

 

 
 

Figure 1. Synthetic ionosphere data sets 

 

 

2. RELATED WORKS 

2.1.  Classification of imbalanced data sets  

Imbalanced learning is about reducing the impact of imbalanced class either via algorithmic or 

resampling approach. Algorithmic approach is more promising since less effort is needed on pre-processing 

the data even-though the solution needed is quite complex. This approach will impose a bias on the rare class 

by adapting the decision threshold since most machine learning (ML) models such as support vector machine 

(SVM) and decision tree are affected by this condition. For instance, [8] proposed a new bias for imbalanced 

classification by adjusting the function learned by the SVM to improve the standardized error measures based 

on sensitivity and g-means. On the other hand, resampling approach involve removing instances from 

majority class or duplicating instances from the minority class. Both techniques are known as under-sampling 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 1, January 2021 :  412 - 419 

414 

and over-sampling respectively. Latest work by [9] introduced an efficient under-sampling algorithm by 

calculating the membership probabilities to the majority class in order to eliminate sample with the lowest 

membership probability. Their work was motivated by the fact that resampling technique for imbalanced data 

sets need to be conducted carefully since it could potentially introduce noise or lose information during the 

learning phase.  

The most prominent work that modify the decision tree algorithm to be skew-insensitive is by [2]. 

The algorithm is known as Hellinger-Distance-Decision-Tree (HDDT) which is based on the conventional 

decision tree algorithm but with skew-insensitive splitting criterion called the Hellinger Distance. Due to the 

greedy nature of conventional decision tree, [10] developed a hybrid of the swamp intelligence technique 

known as the Ant Colony Optimization (ACO) with the decision tree algorithm called Ant-Tree-Miner 

(ATM). Their work is an extension of algorithm by [11], the Ant-Miner which only extract classification rules 

from data sets. ATM is better than the conventional decision tree since the optimization approach has an 

advantage to induce a decision tree without being trapped in local optima due to its iterative way of searching 

for global best tree.  

Meanwhile, the impact of imbalanced class can be relaxed by hybrid technique which combines the 

algorithmic and sampling approach simultaneously. [12] presented a new hybrid sampling and boosting 

algorithm, called RUSBoost, for learning from skewed training data which provides a simpler and faster 

alternative to SMOTEBoost [4]. SMOTEBoost is an algorithm that combines boosting and data sampling for 

skewed data sets. In both techniques, the main idea is to balance the classes using a random sampling 

procedure before each round of boosting. Another hybrid approach by [13] proposed an algorithm called GA-

EoC in handling the imbalanced class problem in Alzheimer‟s dataset. The algorithm utilized the genetic 

algorithm-based search method to find the optimum combination from a pool of base classifiers to form a 

heterogenous ensemble along with random sub-sampling approach to balance the class distribution. [14] 

developed a cost sensitive feature selection algorithm that adds the cost-based evaluation function of a filter 

feature selection using a chaos genetic algorithm namely CSFSG. This approach is able to consider both 

feature acquiring cost (test costs) and misclassification cost which is crucial in imbalanced class learning. 

 

2.2.  Bio-inspired algorithms for imbalanced learning 

The idea of swarm intelligence (SI) which is a branch of artificial intelligence (AI) for machine 

learning is gaining interest since it combines the heuristic and pheromone measure for various applications. 

For example, [15] hybrid the Honeybee Mating Optimization (HBMO) behavior with the Pi-Sigma Neural 

Network (PSNN) for classification task. An approach by [16] found that by embedding the circle chaotic 

search of Whale Optimization Algorithm (WOA) in the searching iterations, they were able to effectively 

select relevant features of breast cancer data. An interesting application by [17] combined the fruit fly 

optimization algorithm (FFOA) as the features selection method with multi-kernel support vector machine 

(MKSVM) for classification of chronic kidney disease (CKD). Thus, it can be concluded that there are 

various applications of SI for ML offered in the literature since SI is able to compensate the imprecisions of 

local attribute evaluation by most machine learning models.  

Meanwhile, imbalanced learning via bio-inspired algorithm is gaining a significant attention in data 

mining recently. A recent work by [18] proposed the use of entropy and information gain as a fitness function 

in genetic algorithm with an aim to improve the impurity and gives a more balanced result without changing 

the original dataset. Earlier work by [19] proposed a cost-sensitive deep neural network, which can 

automatically learn robust feature representations for both the majority and minority classes. The proposed 

approach is applicable to both binary and multiclass problems without any modification to the original data 

distribution, which results in a lower computational cost during the training process. The results on six major 

image classification data sets show that the proposed approach significantly outperforms the popular data 

sampling techniques. Another work by [20] introduced bio-inspired kernels in twin support vector machine 

(Bio-TWSVM) for prediction of imbalanced multiclass protein data sets. There is also possibility to merge SI 

with the sampling technique. For instance, [21] combined ACO with under-sampling for imbalanced DNA 

microarray data classification using SVM.  

Based on the previous works, there were significant amount of efforts been taken on hybridizing SI 

with ML models particularly to alleviate the impact of imbalanced class problem. However, such strategy is 

still in its infancy. Thus, this is the main motivation of our study to improve the ACO-based decision tree by 

hybridizing Hellinger Distance in the algorithm. The aim is to improve the ants‟ heuristic measure so that the 

constructed decision tree is insensitive towards class skewness thus able to predict the minority class well. 

The proposed algorithm is called Hellinger-Ant-Tree-Miner (HATM). 
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3. METHODOLOGY 

This study extends the work of [10] by hybridizing statistical distance called Hellinger Distance in 

inducing the decision tree with ACO algorithm. This new algorithm will combine Hellinger Distance and 

pheromone to provide a precise response of the value of a feature considering its influence in a whole 

decision tree under imbalanced class domains. Thus, it is inferred to compensate the skew sensitiveness of 

the conventional information gain measure as the ant‟s bias component towards the promising paths during 

the tree constructions process. The proposed HATM algorithm follows the traditional structure of ATM 

algorithm in Figure 2. HATM algorithm starts by initializing the pheromone values and computing the 

Hellinger Distance for each attribute of the training set (Figure 3). Then, it enters in an iterative loop (while 

loop) where each ant in the colony creates a new decision tree until a maximum number of iterations is 

reached or the algorithm has converged. An ant creates a decision tree (for loop) in a top-down fashion by 

probabilistically selecting attributes to be added as decision nodes based on the amount of pheromone () and 

heuristic information (). The probability of an ant to visit the attribute vertex is given by (1).  

The algorithm of Compute Hellinger Distance() function returns the Hellinger Distance of the 

attributes as in Figure 3. This algorithm will measure the features‟ distributional divergence by quantifying 

the similarity between the majority and minority probability distribution in discriminating the class. This 

function also returns the Hellinger Distance for each feasible attribute in the decision tree induced during the 

training stage. Note that the implementation of this function is slightly different to the one applied in 

Hellinger-Distance-Decision-Tree (HDDT) in such a way that in HATM, the Hellinger Distance is used as 

the heuristic function while HDDT returns the highest Hellinger distance as the splitting criterion. 
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where 

a) ),,( ixLE is the amount of pheromone associated with the entry   ExLE i ,,  is the attribute condition 

represented by the edge being followed or „-‟ at the start of the construction procedure, L is the ant‟s 

current level in the decision tree or 0 at the start of the construction procedure, ix is the i-th attribute 

vertex of the construction graph-in the pheromone matrix. 

b)  is the heuristic information (Hellinger distance) of the i-th attribute. 

c) ℱ is the set of available (feasible) attributes for selection. 

d) Parameter  and  used to control the influence of the pheromone and heuristic information, 

respectively, during the selection of vertices. 

 

 

 
 

Figure 2. Pseudocode of the hellinger-ant- 

tree-miner algorithm 

 

 

 

 

 

 

 

 

 
 

Figure 3. Pseudocode of compute hellinger distance() 
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3.1.  Simulation procedure 

In this study, data X were simulated using R software and assigned to group 1 or 0 using the 

following logistic regression model: 

 

ze
YP
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1
)1(  (2) 

 

where 
kk XXXz   ...22110
 and k  is the number of features. Since decision tree construction is a 

process of rule induction which involve determining those features important for classification, hence the 

predictors (or features) were set as significant features with odds-ratio greater than 1. The value of the 

regression coefficients was set at an incremental factor of 0.1 starting from 0.5 up to 1.4 to generate 10 

features. 10 features are generated since this is to avoid poorly grown tree if too few features involved. 

Hence, a covariate with a coefficient of 1.2 will gives a significant odds ratio (OR) of 3.32012 for  

X (OR =     = 3.32012). We considered six imbalanced ratios (IR): 5%, 10%, 20%, 30%, 40% and 50% 

where IR of 5% reflects a highly imbalanced class in the response variable. The full multivariate logistic 

regression (MLR) is presented in (3): 

 

 (3) 

 

where k0 is varied according to the IR. The distribution of the covariates (X) considered in this study is the 

standard normal distribution, N(0,1). The sample sizes were generated for 1000, 5000 and 10000 subjects in 

order to permit the investigation of the learning ability of both algorithms as sample size increases. The 

simulated data is then split into 90% train and 10% test by using tenfold cross validation strategy which 

consists of dividing the data set into ten stratified partitions of examples. Each partition has a similar IR. The 

90%:10% splitting strategy is practical for imbalanced class learning in order to allow the decision trees to 

sufficiently represent the under-represented group (rare class) to be sampled during the decision tree 

construction procedure [22]. Finally, based on the confusion matrix in Figure 4, the balance accuracy 

(BACC) as shown in (4) is averaged after 5 repetitions over various sample sizes and IRs to avoid noise. 

 

 

 
 

Figure 4. Confusion matrix 
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3.2.  Applications to real data sets 

The summary of the data sets used is presented in Table 1. The data sets have various imbalanced 

ratio (IR) ranging from 1.4% to 40%. The most severe class IR is the Bioassay_AID362 data set with 144 

features of size 4279 while both Diabetes-Frankfurt and Diabetes-Pima have the least number of features. 

Hepatitis is the smallest data set which consist of 155 instances. The class labels are presented in the 

parentheses. Note that both Bioassay data sets are highly skewed with IR less than 15%. These data sets 

require a data pre-processing in order to avoid poorly structured trees since it is learnt that the minority class 

is not sufficient to provide effective decision boundaries for the tree algorithms to learn the rare class pattern. 

Thus, the synthetic minority oversampling technique (SMOTE) was applied using WEKA software in order 

to improve the IR to be 30% since thorough experiments show that this IR is reasonable to provide 

information for learning experience during the training phase. The experiment was initiated by generating a 

10-folds cross-validation to split the data sets into 90% train and 10% test domains. Then, all continuous 

features, if there are any, were discretized based on the minimum description length (MDL) principle by [23]. 

The stochastic algorithms were run 5 times for all 10-folds data sets and finally the BACC was averaged and 
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validated. Both algorithms were run with the default parameter values as depicted in Table 2 due to the good 

performance than other combinations [10]. 

 

 

Table 1. Summary of the data sets 
 Data sets Majority class freq. Minority class freq. Size No of features IR 

1 Bioassay_AID1284 305 (Inactive) 57 (Active) 362 103 15% 
2 Bioassay_AID362 4221 (Inactive) 60 (Active) 4279 144 1.4% 

3 Diabetes_Frankfurt 1316 (Non-diabetic) 684 (Diabetic) 2000 8 30% 

4 Diabetes_Pima 500 (Negative) 268 (Positive) 768 8 30% 
5 Hepatitis 123 (Live) 32 (Die) 155 19 20% 

6 Horse 232 (No) 136 (Yes) 368 26 40% 

7 Ionosphere 225 (Good) 126 (Bad) 351 34 40% 
8 Statlog-Heart 150 (Absence) 120 (Presence) 270 13 40% 

9 Vote 267 (Democrate) 168 (Republican) 435 16 40% 

 

 

Table 2. Parameters setting 
Parameters Values 

Colony size 5 

Max iterations 500 

Min case 3 
Stagnation 40 

Evaporation rate 0.9 

 

 

4. RESULTS AND ANALYSIS 

4.1.  Balance accuracy of simulation and real data sets 

In order to compare the performance of ATM and HATM, both algorithms were fitted on the 

simulation data sets generated in Section 3.1 and nine (9) publicly available data sets from UCI Machine 

Learning Repository [24] as summarized in Table 1. The average BACC of 10-folds cross validation for both 

domains were recorded in Table 3 and Table 4 respectively. 

 

 

Table 3. Balance accuracy (BACC) of  

simulation data sets 
No  Data set ATM HATM 

1 Sim1_1000_5% *50.5  0.3 *50.5  0.3 

2 Sim2_1000_10% 61.6  0.8 62.0  0.9 

3 Sim3_1000_20% 70.1  0.6 72.3  0.7 

4 Sim4_1000_30% 73.5  0.4 73.9  0.5 

5 Sim5_1000_40% 71.1  0.4 71.5  0.3 

6 Sim6_1000_50% 70.8  0.4 69.2  0.4 

7 Sim7_5000_5% 55.8  0.2 55.5  0.4 

8 Sim8_5000_10% 58.2  0.3 57.2  0.3 

9 Sim9_5000_20% 67.2  0.2 67.0  0.3 

10 Sim10_5000_30% *71.1  0.3 *71.1  0.3 

11 Sim11_5000_40% 73.1  0.2 74.0  0.3 

12 Sim12_5000_50% 73.9  0.2 73.4  0.2 

13 Sim13_10000_5% *50.0  0.0 *50.0  0.0 

14 Sim14_10000_10% 56.1  0.2 56.6  0.2 

15 Sim15_10000_20% 64.3  0.1  64.8  0.3 

16 Sim16_10000_30% 69.1  0.2 69.5  0.2 

17 Sim17_10000_40% 72.1  0.2 72.2  0.1 

18 Sim18_10000_50% 74.3  0.2 73.3  0.1 

      *Ties 

      *Bold values correspond to algorithm with higher BACC 

Table 4. Balance accuracy (BACC)  

of real data sets 
No Data set ATM HATM 

1 Bioassay AID1284 + 
SMOTE 

84.1  0.4 85.7  0.3 

2 Bioassay_AID362 + 

SMOTE 
93.2  0.3 93.4  0.2 

3 Diabetes-Frankfurt 81.4  0.04 81.2  

0.03 

4 Diabetes-Pima 73.2  0.5 73.3  0.5 
5 Hepatitis 66.8  1.3 65.9  1.2 

6 Horse *86.2  0.5 *86.2  

0.5 
7 Ionosphere 88.7  0.3 90.5  0.4 
8 Statlog Heart 82.0  0.4 82.3  0.5 
9 Vote 95.3  0.4 95.9  0.4 

*Ties 
*Bold values correspond to algorithm with higher BACC 

 

 

4.2.  Statistical significance test  

Based on Table 3 and Table 4, both ATM and HATM were compared for significance different using 

the nonparametric Sign Test [25]. The null hypothesis to be tested is 
HATMATMoH  :  against the alternative 

hypothesis 
HATMATMH  :1

. This make the significance test a one-tailed test with significance level  =0.05. 

From both tables, we see that HATM wins 15 times over ATM, ties 4 times, and loses 8 times. Based on the 

table of critical values for the Sign Test, for 27 data sets, a classifier needs to win at least 11 times for the null 



                ISSN: 2502-4752 

Indonesian J Elec Eng & Comp Sci, Vol. 21, No. 1, January 2021 :  412 - 419 

418 

hypothesis to be rejected with significance level  =0.05 for one-tailed test. Thus, since HATM wins 15 times, 

in this case, the null hypothesis can be rejected. We conclude that there is sufficient evidence to reject the null 

hypothesis thus indicating the HATM algorithm has a higher mean of BACC than ATM. 

 

 

5. CONCLUSION  

This study has demonstrated the hybrid of Hellinger Distance as new heuristics measure in the 

existing ATM algorithm is able to improve the learning experience of ATM in imbalanced class data sets. The 

Hellinger Distance is reliable for its skew-insensitiveness where improved trees‟ performance measured by 

BACC can be induced. The simulation study reveals that HATM performed well for imbalanced class data 

sets while ATM consistently induced higher BACC decision tree in all balanced data sets. This is expected 

since entropy-based heuristic put more weightage on the features which can separate the class evenly while 

suffered from information loss in imbalanced learning environment. Further applications on real data sets 

demonstrate HATM is statistically significance for imbalanced data sets with minimum data pre-processing 

efforts thus support the initial findings in our simulation procedure. Future research could used other 

statistical distance-based functions as the alternative heuristic measure. 
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