1,811 research outputs found

    A Cloud-based Healthcare Framework for Security and Patients’ Data Privacy Using Wireless Body Area Networks

    Get PDF
    AbstractThe recent developments in remote healthcare systems have witnessed significant interests from IT industry (Microsoft, Google, VMware etc) that provide ubiquitous and easily deployable healthcare systems. These systems provide a platform to share medical information, applications, and infrastructure in a ubiquitous and fully automated manner. Communication security and patients’ data privacy are the aspects that would increase the confidence of users in such remote healthcare systems. This paper presents a secure cloud-based mobile healthcare framework using wireless body area networks (WBANs). The research work presented here is twofold: first, it attempts to secure the inter-sensor communication by multi-biometric based key generation scheme in WBANs; and secondly, the electronic medical records (EMRs) are securely stored in the hospital community cloud and privacy of the patients’ data is preserved. The evaluation and analysis shows that the proposed multi-biometric based mechanism provides significant security measures due to its highly efficient key generation mechanism

    A security suite for wireless body area networks

    Full text link
    Wireless Body Area Networks (WBANs) have gained a lot of research attention in recent years since they offer tremendous benefits for remote health monitoring and continuous, real-time patient care. However, as with any wireless communication, data security in WBANs is a challenging design issue. Since such networks consist of small sensors placed on the human body, they impose resource and computational restrictions, thereby making the use of sophisticated and advanced encryption algorithms infeasible. This calls for the design of algorithms with a robust key generation / management scheme, which are reasonably resource optimal. This paper presents a security suite for WBANs, comprised of IAMKeys, an independent and adaptive key management scheme for improving the security of WBANs, and KEMESIS, a key management scheme for security in inter-sensor communication. The novelty of these schemes lies in the use of a randomly generated key for encrypting each data frame that is generated independently at both the sender and the receiver, eliminating the need for any key exchange. The simplicity of the encryption scheme, combined with the adaptability in key management makes the schemes simple, yet secure. The proposed algorithms are validated by performance analysis.Comment: 20 pages, 10 figures, 3 tables, International Journal of Network Security & its Applications (IJNSA

    KALwEN: A New Practical and Interoperable Key Management Scheme for Body Sensor Networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks(BSNs) pose several challenges -- some inherited from wireless sensor networks(WSNs), some unique to themselves -- that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new lightweight scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports global broadcast, local broadcast and neighbor-to-neighbor unicast, while preserving past key secrecry and future key secrecy. The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case

    KALwEN: a new practical and interoperable key management scheme for body sensor networks

    Get PDF
    Key management is the pillar of a security architecture. Body sensor networks (BSNs) pose several challenges–some inherited from wireless sensor networks (WSNs), some unique to themselves–that require a new key management scheme to be tailor-made. The challenge is taken on, and the result is KALwEN, a new parameterized key management scheme that combines the best-suited cryptographic techniques in a seamless framework. KALwEN is user-friendly in the sense that it requires no expert knowledge of a user, and instead only requires a user to follow a simple set of instructions when bootstrapping or extending a network. One of KALwEN's key features is that it allows sensor devices from different manufacturers, which expectedly do not have any pre-shared secret, to establish secure communications with each other. KALwEN is decentralized, such that it does not rely on the availability of a local processing unit (LPU). KALwEN supports secure global broadcast, local broadcast, and local (neighbor-to-neighbor) unicast, while preserving past key secrecy and future key secrecy (FKS). The fact that the cryptographic protocols of KALwEN have been formally verified also makes a convincing case. With both formal verification and experimental evaluation, our results should appeal to theorists and practitioners alike

    Randomness of Physiological Signals in Generation Cryptographic Key for Secure Communication Between Implantable Medical Devices Inside The Body And The Outside World

    Get PDF
    A physiological signal must have a certain level of randomness inside it to be a good source of randomness for generating cryptographic key. Dependency to the history is one of the measures to examine the strength of a randomness source. In dependency to the history, the adversary has infinite access to the history of generated random bits from the source and wants to predict the next random number based on that. Although many physiological signals have been proposed in literature as good source of randomness, no dependency to history analysis has been carried out to examine this fact. In this paper, using a large dataset of physiological signals collected from PhysioNet, the dependency to history of Interpuls Interval (IPI), QRS Complex, and EEG signals (including Alpha, Beta, Delta, Gamma and Theta waves) were examined. The results showed that despite the general assumption that the physiological signals are random, all of them are weak sources of randomness with high dependency to their history. Among them, Alpha wave of EEG signal shows a much better randomness and is a good candidate for post-processing and randomness extraction algorithm

    Aerospace Medicine and Biology: a Continuing Bibliography with Indexes (supplement 330)

    Get PDF
    This bibliography lists 156 reports, articles, and other documents introduced into the NASA Scientific and Technical Information System during November 1989. Subject coverage includes: aerospace medicine and psychology, life support system and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    A Survey on Secure Wireless Body Area Networks

    Get PDF
    Combining tiny sensors and wireless communication technology, wireless body area network (WBAN) is one of the most promising fields. Wearable and implantable sensors are utilized for collecting the physiological data to achieve continuously monitoring of people’s physical conditions. However, due to the openness of wireless environment and the significance and privacy of people’s physiological data, WBAN is vulnerable to various attacks; thus, strict security mechanisms are required to enable a secure WBAN. In this article, we mainly focus on a survey on the security issues in WBAN, including securing internal communication in WBAN and securing communication between WBAN and external users. For each part, we discuss and identify the security goals to be achieved. Meanwhile, relevant security solutions in existing research on WBAN are presented and their applicability is analyzed
    corecore